Analysis of Antibiotic Exposure and Early-Onset Neonatal Sepsis in Europe, North America, and Australia
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36416819
PubMed Central
PMC9685486
DOI
10.1001/jamanetworkopen.2022.43691
PII: 2798898
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky terapeutické užití MeSH
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- novorozenecká sepse * farmakoterapie epidemiologie MeSH
- průřezové studie MeSH
- retrospektivní studie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Severní Amerika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
IMPORTANCE: Appropriate use of antibiotics is life-saving in neonatal early-onset sepsis (EOS), but overuse of antibiotics is associated with antimicrobial resistance and long-term adverse outcomes. Large international studies quantifying early-life antibiotic exposure along with EOS incidence are needed to provide a basis for future interventions aimed at safely reducing neonatal antibiotic exposure. OBJECTIVE: To compare early postnatal exposure to antibiotics, incidence of EOS, and mortality among different networks in high-income countries. DESIGN, SETTING, AND PARTICIPANTS: This is a retrospective, cross-sectional study of late-preterm and full-term neonates born between January 1, 2014, and December 31, 2018, in 13 hospital-based or population-based networks from 11 countries in Europe and North America and Australia. The study included all infants born alive at a gestational age greater than or equal to 34 weeks in the participating networks. Data were analyzed from October 2021 to March 2022. EXPOSURES: Exposure to antibiotics started in the first postnatal week. MAIN OUTCOMES AND MEASURES: The main outcomes were the proportion of late-preterm and full-term neonates receiving intravenous antibiotics, the duration of antibiotic treatment, the incidence of culture-proven EOS, and all-cause and EOS-associated mortality. RESULTS: A total of 757 979 late-preterm and full-term neonates were born in the participating networks during the study period; 21 703 neonates (2.86%; 95% CI, 2.83%-2.90%), including 12 886 boys (59.4%) with a median (IQR) gestational age of 39 (36-40) weeks and median (IQR) birth weight of 3250 (2750-3750) g, received intravenous antibiotics during the first postnatal week. The proportion of neonates started on antibiotics ranged from 1.18% to 12.45% among networks. The median (IQR) duration of treatment was 9 (7-14) days for neonates with EOS and 4 (3-6) days for those without EOS. This led to an antibiotic exposure of 135 days per 1000 live births (range across networks, 54-491 days per 1000 live births). The incidence of EOS was 0.49 cases per 1000 live births (range, 0.18-1.45 cases per 1000 live births). EOS-associated mortality was 3.20% (12 of 375 neonates; range, 0.00%-12.00%). For each case of EOS, 58 neonates were started on antibiotics and 273 antibiotic days were administered. CONCLUSIONS AND RELEVANCE: The findings of this study suggest that antibiotic exposure during the first postnatal week is disproportionate compared with the burden of EOS and that there are wide (up to 9-fold) variations internationally. This study defined a set of indicators reporting on both dimensions to facilitate benchmarking and future interventions aimed at safely reducing antibiotic exposure in early life.
Department of Neonatology and Neonatal Intensive Care Medical University of Warsaw Warsaw Poland
Department of Neonatology Thomayer University Hospital Prague Prague Czech Republic
Department of Paediatrics University of Szeged Szeged Hungary
Department of Pediatrics and Adolescence Medicine University Hospital of North Norway Tromsø Norway
Department of Pediatrics Children's Hospital Lucerne Lucerne Switzerland
Department of Pediatrics Inselspital Bern University Hospital University of Bern Bern Switzerland
Institute of Clinical Medicine University of Oslo and Oslo University Hospital Oslo Norway
Neonatologia e Terapia Intensiva Neonatale University of Bari Bari Italy
Neonatology and Neonatal Intensive Care Unit CHIREC Delta Hospital Brussels Belgium
Neonatology and Neonatal Intensive Care Unit Policlinico Riuniti Foggia Foggia Italy
Service Néonatal Clinique CHC Montlegia Groupe Santé CHC Liège Belgium
Zobrazit více v PubMed
Versporten A, Zarb P, Caniaux I, et al. ; Global-PPS network . Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health. 2018;6(6):e619-e629. doi:10.1016/S2214-109X(18)30186-4 PubMed DOI
Prusakov P, Goff DA, Wozniak PS, et al. ; Global NEO-ASP Study Group . A global point prevalence survey of antimicrobial use in neonatal intensive care units: the no-more-antibiotics and resistance (NO-MAS-R) study. EClinicalMedicine. 2021;32:100727. doi:10.1016/j.eclinm.2021.100727 PubMed DOI PMC
Hufnagel M, Versporten A, Bielicki J, Drapier N, Sharland M, Goossens H; ARPEC Project Group . High rates of prescribing antimicrobials for prophylaxis in children and neonates: results from the Antibiotic Resistance and Prescribing in European Children Point Prevalence Survey. J Pediatric Infect Dis Soc. 2019;8(2):143-151. doi:10.1093/jpids/piy019 PubMed DOI
World Health Organization . World Health Assembly 69. Global action plan on antimicrobial resistance: options for establishing a global development and stewardship framework to support the development, control, distribution and appropriate use of new antimicrobial medicines, diagnostic tools, vaccines and other interventions—report by the Secretariat. 2016. Accessed April 5, 2022. https://apps.who.int/iris/handle/10665/252682
Fjalstad JW, Esaiassen E, Juvet LK, van den Anker JN, Klingenberg C. Antibiotic therapy in neonates and impact on gut microbiota and antibiotic resistance development: a systematic review. J Antimicrob Chemother. 2018;73(3):569-580. doi:10.1093/jac/dkx426 PubMed DOI
Antimicrobial Resistance Collaborators . Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655. doi:10.1016/S0140-6736(21)02724-0 PubMed DOI PMC
Stiemsma LT, Michels KB. The role of the microbiome in the developmental origins of health and disease. Pediatrics. 2018;141(4):e20172437. doi:10.1542/peds.2017-2437 PubMed DOI PMC
Sourour W, Sanchez V, Sourour M, et al. . The association between prolonged antibiotic use in culture negative infants and length of hospital stay and total hospital costs. Am J Perinatol. Published online May 11, 2021. doi:10.1055/s-0041-1729560 PubMed DOI
Stark A, Smith PB, Hornik CP, et al. . Medication use in the neonatal intensive care unit and changes from 2010 to 2018. J Pediatr. 2022;240:66-71.e4. doi:10.1016/j.jpeds.2021.08.075 PubMed DOI PMC
Benitz WE, Achten NB. Finding a role for the neonatal early-onset sepsis risk calculator. EClinicalMedicine. 2020;19:100255. doi:10.1016/j.eclinm.2019.100255 PubMed DOI PMC
Achten NB, Klingenberg C, Benitz WE, et al. . Association of use of the neonatal early-onset sepsis calculator with reduction in antibiotic therapy and safety: a systematic review and meta-analysis. JAMA Pediatr. 2019;173(11):1032-1040. doi:10.1001/jamapediatrics.2019.2825 PubMed DOI PMC
Klingenberg C, Kornelisse RF, Buonocore G, Maier RF, Stocker M. Culture-negative early-onset neonatal sepsis: at the crossroad between efficient sepsis care and antimicrobial stewardship. Front Pediatr. 2018;6:285. doi:10.3389/fped.2018.00285 PubMed DOI PMC
Cantey JB, Patel SJ. Antimicrobial stewardship in the NICU. Infect Dis Clin North Am. 2014;28(2):247-261. doi:10.1016/j.idc.2014.01.005 PubMed DOI
Araujo da Silva AR, Marques A, Di Biase C, et al. . Effectiveness of antimicrobial stewardship programmes in neonatology: a systematic review. Arch Dis Child. 2020;105(6):563-568. doi:10.1136/archdischild-2019-318026 PubMed DOI
Flannery DD, Horbar JD. Metrics of neonatal antibiotic use. Semin Perinatol. 2020;44(8):151329. doi:10.1016/j.semperi.2020.151329 PubMed DOI
Fitchett EJA, Seale AC, Vergnano S, et al. ; SPRING (Strengthening Publications Reporting Infection in Newborns Globally) Group . Strengthening the Reporting of Observational Studies in Epidemiology for Newborn Infection (STROBE-NI): an extension of the STROBE statement for neonatal infection research. Lancet Infect Dis. 2016;16(10):e202-e213. doi:10.1016/S1473-3099(16)30082-2 PubMed DOI
Kuzniewicz MW, Puopolo KM, Fischer A, et al. . A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 2017;171(4):365-371. doi:10.1001/jamapediatrics.2016.4678 PubMed DOI
American Academy of Pediatrics Committee on Fetus And Newborn . Levels of neonatal care. Pediatrics. 2012;130(3):587-597. doi:10.1542/peds.2012-1999 PubMed DOI
Giannoni E, Agyeman PKA, Stocker M, et al. ; Swiss Pediatric Sepsis Study . Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study. J Pediatr. 2018;201:106-114.e4. doi:10.1016/j.jpeds.2018.05.048 PubMed DOI
Schrag SJ, Farley MM, Petit S, et al. . Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatrics. 2016;138(6):e20162013. doi:10.1542/peds.2016-2013 PubMed DOI
Stoll BJ, Puopolo KM, Hansen NI, et al. ; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network . Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 2020;174(7):e200593. doi:10.1001/jamapediatrics.2020.0593 PubMed DOI PMC
Cailes B, Kortsalioudaki C, Buttery J, et al. ; neonIN Network . Epidemiology of UK neonatal infections: the neonIN Infection Surveillance Network. Arch Dis Child Fetal Neonatal Ed. 2018;103(6):F547-F553. doi:10.1136/archdischild-2017-313203 PubMed DOI
Braye K, Foureur M, de Waal K, Jones M, Putt E, Ferguson J. Epidemiology of neonatal early-onset sepsis in a geographically diverse Australian health district 2006-2016. PLoS One. 2019;14(4):e0214298. doi:10.1371/journal.pone.0214298 PubMed DOI PMC
Schulman J, Benitz WE, Profit J, et al. . Newborn antibiotic exposures and association with proven bloodstream infection. Pediatrics. 2019;144(5):e20191105. doi:10.1542/peds.2019-1105 PubMed DOI
Escobar GJ, Puopolo KM, Wi S, et al. . Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks’ gestation. Pediatrics. 2014;133(1):30-36. doi:10.1542/peds.2013-1689 PubMed DOI PMC
Mundal HS, Rønnestad A, Klingenberg C, Stensvold HJ, Størdal K. Antibiotic use in term and near-term newborns. Pediatrics. 2021;148(6):e2021051339. doi:10.1542/peds.2021-051339 PubMed DOI
Goel N, Cannell S, Davies G, et al. . Implementation of an adapted Sepsis Risk Calculator algorithm to reduce antibiotic usage in the management of early onset neonatal sepsis: a multicentre initiative in Wales, UK. Arch Dis Child Fetal Neonatal Ed. 2022;107(3):303-310. doi:10.1136/archdischild-2020-321489 PubMed DOI
Berardi A, Bedetti L, Spada C, Lucaccioni L, Frymoyer A. Serial clinical observation for management of newborns at risk of early-onset sepsis. Curr Opin Pediatr. 2020;32(2):245-251. doi:10.1097/MOP.0000000000000864 PubMed DOI
Vatne A, Klingenberg C, Øymar K, Rønnestad AE, Manzoni P, Rettedal S. Reduced antibiotic exposure by serial physical examinations in term neonates at risk of early-onset sepsis. Pediatr Infect Dis J. 2020;39(5):438-443. doi:10.1097/INF.0000000000002590 PubMed DOI
Duvoisin G, Fischer C, Maucort-Boulch D, Giannoni E. Reduction in the use of diagnostic tests in infants with risk factors for early-onset neonatal sepsis does not delay antibiotic treatment. Swiss Med Wkly. 2014;144:w13981. doi:10.4414/smw.2014.13981 PubMed DOI
Schulman J, Dimand RJ, Lee HC, Duenas GV, Bennett MV, Gould JB. Neonatal intensive care unit antibiotic use. Pediatrics. 2015;135(5):826-833. doi:10.1542/peds.2014-3409 PubMed DOI
van Herk W, el Helou S, Janota J, et al. . Variation in current management of term and late-preterm neonates at risk for early-onset sepsis: an international survey and review of guidelines. Pediatr Infect Dis J. 2016;35(5):494-500. doi:10.1097/INF.0000000000001063 PubMed DOI
Steinmann KE, Lehnick D, Buettcher M, et al. . Impact of empowering leadership on antimicrobial stewardship: a single center study in a neonatal and pediatric intensive care unit and a literature review. Front Pediatr. 2018;6:294. doi:10.3389/fped.2018.00294 PubMed DOI PMC
Satterfield J, Miesner AR, Percival KM. The role of education in antimicrobial stewardship. J Hosp Infect. 2020;105(2):130-141. doi:10.1016/j.jhin.2020.03.028 PubMed DOI
Grünebaum A, McCullough LB, Arabin B, Dudenhausen J, Orosz B, Chervenak FA. Underlying causes of neonatal deaths in term singleton pregnancies: home births versus hospital births in the United States. J Perinat Med. 2017;45(3):349-357. doi:10.1515/jpm-2016-0200 PubMed DOI
Stocker M, van Herk W, El Helou S, et al. ; NeoPInS Study Group . Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns). Lancet. 2017;390(10097):871-881. doi:10.1016/S0140-6736(17)31444-7 PubMed DOI