Less is more: Antibiotics at the beginning of life
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37105958
PubMed Central
PMC10134707
DOI
10.1038/s41467-023-38156-7
PII: 10.1038/s41467-023-38156-7
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- antibiotická politika * MeSH
- lidé MeSH
- novorozenec MeSH
- novorozenecká sepse * farmakoterapie MeSH
- počátek lidského života MeSH
- sepse * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
Antibiotic exposure at the beginning of life can lead to increased antimicrobial resistance and perturbations of the developing microbiome. Early-life microbiome disruption increases the risks of developing chronic diseases later in life. Fear of missing evolving neonatal sepsis is the key driver for antibiotic overtreatment early in life. Bias (a systemic deviation towards overtreatment) and noise (a random scatter) affect the decision-making process. In this perspective, we advocate for a factual approach quantifying the burden of treatment in relation to the burden of disease balancing antimicrobial stewardship and effective sepsis management.
Department of Clinical Science Intervention and Technology Karolinska Institutet Stockholm Sweden
Department of Neonatology and Neonatal Intensive Care Medical University of Warsaw Warszawa Poland
Department of Neonatology Karolinska University Hospital Stockholm Sweden
Department of Neonatology Thomayer University Hospital Prague Prague Czech Republic
Department of Paediatrics University of Szeged Szeged Hungary
Department of Pediatrics Children's Hospital Lucerne Lucerne Switzerland
Department of Pediatrics Inselspital Bern University Hospital University of Bern Bern Switzerland
Dept of Pediatrics and Adolescence Medicine University Hospital of North Norway Tromsø Norway
Institute of Clinical Medicine University of Oslo and Oslo University Hospital Oslo Norway
Neonatologia e Terapia Intensiva Neonatale University of Bari Bari Italy
Neonatology and Neonatal Intensive Care Unit CHIREC Delta Hospital Brussels Belgium
Neonatology and Neonatal Intensive Care Unit Policlinico Riuniti Foggia Foggia Italy
Service néonatal Clinique CHC Montlegia groupe santé CHC Liège Belgium
Zobrazit více v PubMed
Perin J, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the sustainable development goals. Lancet Child Adolesc. Health. 2022;6:106–115. doi: 10.1016/S2352-4642(21)00311-4. PubMed DOI PMC
Fleischmann C, et al. Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis. Arch. Dis. Child. 2021;106:745–752. doi: 10.1136/archdischild-2020-320217. PubMed DOI PMC
Armstrong GL, Conn LA, Pinner RW. Trends in infectious disease mortality in the United States during the 20th century. JAMA. 1999;281:61–66. doi: 10.1001/jama.281.1.61. PubMed DOI
Sankar J, et al. Delayed administration of antibiotics beyond the first hour of recognition is associated with increased mortality rates in children with sepsis/severe sepsis and septic shock. J. Pediatr. 2021;233:183–190.e3. doi: 10.1016/j.jpeds.2020.12.035. PubMed DOI
Magalhães C, Lima M, Trieu-Cuot P, Ferreira P. To give or not to give antibiotics is not the only question. Lancet Infect. Dis. 2021;21:e191–e201. doi: 10.1016/S1473-3099(20)30602-2. PubMed DOI
Stark A, et al. Medication Use in the Neonatal Intensive Care Unit and Changes from 2010 to 2018. J. Pediatr. 2022;240:66–71.e4. doi: 10.1016/j.jpeds.2021.08.075. PubMed DOI PMC
Benitz WE, Achten NB. Finding a role for the neonatal early-onset sepsis risk calculator. EClin.Med. 2020;19:100255. PubMed PMC
Verani JR, McGee L, Schrag SJ, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC Prevention of perinatal group B streptococcal disease-revised guidelines from CDC, 2010. MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2010;59:1–36. PubMed
Agyeman PKA, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc. Health. 2017;1:124–133. doi: 10.1016/S2352-4642(17)30010-X. PubMed DOI
Flannery DD, et al. Temporal trends and center variation in early antibiotic use among premature infants. JAMA Netw. Open. 2018;1:e180164. doi: 10.1001/jamanetworkopen.2018.0164. PubMed DOI PMC
Giannoni E, et al. Analysis of antibiotic exposure and early-onset neonatal sepsis in Europe, North America, and Australia. JAMA Netw. Open. 2022;5:e2243691. doi: 10.1001/jamanetworkopen.2022.43691. PubMed DOI PMC
WHO | Global action plan on AMR. WHOhttp://www.who.int/antimicrobial-resistance/global-action-plan/en/.
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond. Engl. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
Reyman M, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat. Commun. 2022;13:893. doi: 10.1038/s41467-022-28525-z. PubMed DOI PMC
Stiemsma, L. T. & Michels, K. B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics141, (2018). PubMed PMC
Dierikx TH, et al. Association between duration of early empiric antibiotics and necrotizing enterocolitis and late-onset sepsis in preterm infants: a multicenter cohort study. Eur. J. Pediatr. 2022;181:3715–3724. doi: 10.1007/s00431-022-04579-5. PubMed DOI PMC
Vatne A, et al. Early empirical antibiotics and adverse clinical outcomes in infants born very preterm: a population-based cohort. J. Pediatr. 2022;S0022-3476(22):00851–00854. PubMed
Ting JY, et al. Duration of initial empirical antibiotic therapy and outcomes in very low birth weight infants. Pediatrics. 2019;143:e20182286. doi: 10.1542/peds.2018-2286. PubMed DOI
Krediet TG, et al. Microbiological factors associated with neonatal necrotizing enterocolitis: protective effect of early antibiotic treatment. Acta Paediatr. Acta Paediatr. Oslo Nor. 1992. 2003;92:1180–1182. PubMed
Berkhout DJC, et al. Risk factors for necrotizing enterocolitis: a prospective multicenter case-control study. Neonatology. 2018;114:277–284. doi: 10.1159/000489677. PubMed DOI
Dydensborg Sander S, et al. Association between antibiotics in the first year of life and celiac disease. Gastroenterology. 2019;156:2217–2229. doi: 10.1053/j.gastro.2019.02.039. PubMed DOI
Clarke SLN, et al. Moving from nature to nurture: a systematic review and meta-analysis of environmental factors associated with juvenile idiopathic arthritis. Rheumatol. Oxf. Engl. 2022;61:514–530. doi: 10.1093/rheumatology/keab627. PubMed DOI PMC
VanEvery H, Franzosa EA, Nguyen LH, Huttenhower C. Microbiome epidemiology and association studies in human health. Nat. Rev. Genet. 2023;24:109–124. doi: 10.1038/s41576-022-00529-x. PubMed DOI
Brodin P. Immune-microbe interactions early in life: a determinant of health and disease long term. Science. 2022;376:945–950. doi: 10.1126/science.abk2189. PubMed DOI
Dhariwala MO, Scharschmidt TC. Baby’s skin bacteria: first impressions are long-lasting. Trends Immunol. 2021;42:1088–1099. doi: 10.1016/j.it.2021.10.005. PubMed DOI PMC
Stevens, J. et al. The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Sci. Transl. Med. 14, eabl3981, (2022). PubMed PMC
Constantinides MG, Belkaid Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science. 2021;374:eabf0095. doi: 10.1126/science.abf0095. PubMed DOI PMC
Deshmukh HS, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014;20:524–530. doi: 10.1038/nm.3542. PubMed DOI PMC
Cho I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–626. doi: 10.1038/nature11400. PubMed DOI PMC
Radjabzadeh D, et al. Gut microbiome-wide association study of depressive symptoms. Nat. Commun. 2022;13:7128. doi: 10.1038/s41467-022-34502-3. PubMed DOI PMC
Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721. doi: 10.1016/j.cell.2014.05.052. PubMed DOI PMC
Schulman, J. et al. Newborn antibiotic exposures and association with proven bloodstream infection. Pediatrics144, (2019). PubMed
Kimpton JA, et al. Comparison of NICE guideline CG149 and the sepsis risk calculator for the management of early-onset sepsis on the postnatal ward. Neonatology. 2021;118:562–568. doi: 10.1159/000518059. PubMed DOI
Schulman J, et al. Variations in neonatal antibiotic use. Pediatrics. 2018;142:e20180115. doi: 10.1542/peds.2018-0115. PubMed DOI PMC
Cantey JB, Prusakov P. A proposed framework for the clinical management of neonatal ‘Culture-Negative’ sepsis. J. Pediatr. 2022;244:203–211. doi: 10.1016/j.jpeds.2022.01.006. PubMed DOI
Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Lond. Engl. 2015;386:743–800. doi: 10.1016/S0140-6736(15)60692-4. PubMed DOI PMC
Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep. 2019;21:21. doi: 10.1007/s11886-019-1107-y. PubMed DOI
Song P, et al. Global, regional, and national prevalence of asthma in 2019: a systematic analysis and modelling study. J. Glob. Health. 2022;12:04052. doi: 10.7189/jogh.12.04052. PubMed DOI PMC
Serebrisky D, Wiznia A. Pediatric asthma: a global epidemic. Ann. Glob. Health. 2019;85:6. doi: 10.5334/aogh.2416. PubMed DOI PMC
Ng SC, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet Lond. Engl. 2017;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI
Beasley R, Semprini A, Mitchell EA. Risk factors for asthma: is prevention possible? Lancet Lond. Engl. 2015;386:1075–1085. doi: 10.1016/S0140-6736(15)00156-7. PubMed DOI
Jie Z, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8:845. doi: 10.1038/s41467-017-00900-1. PubMed DOI PMC
Zhang Y, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study) Nat. Commun. 2020;11:5015. doi: 10.1038/s41467-020-18414-8. PubMed DOI PMC
Zhu F, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat. Commun. 2020;11:1612. doi: 10.1038/s41467-020-15457-9. PubMed DOI PMC
Pathak JL, Yan Y, Zhang Q, Wang L, Ge L. The role of oral microbiome in respiratory health and diseases. Respir. Med. 2021;185:106475. doi: 10.1016/j.rmed.2021.106475. PubMed DOI
Kissoon N, Uyeki TM. Sepsis and the global burden of disease in children. JAMA Pediatr. 2016;170:107–108. doi: 10.1001/jamapediatrics.2015.3241. PubMed DOI PMC
Goel N, et al. Implementation of an adapted Sepsis Risk Calculator algorithm to reduce antibiotic usage in the management of early onset neonatal sepsis: a multicentre initiative in Wales, UK. Arch. Dis. Child. Fetal Neonatal Ed. 2022;107:303–310. doi: 10.1136/archdischild-2020-321489. PubMed DOI
Achten, N. B. et al. Association of use of the neonatal early-onset sepsis calculator with reduction in antibiotic therapy and safety: a systematic review and meta-analysis. JAMA Pediatr. 10.1001/jamapediatrics.2019.2825 (2019). PubMed PMC
Kuzniewicz MW, et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 2017;171:365–371. doi: 10.1001/jamapediatrics.2016.4678. PubMed DOI
Mundal HS, Rønnestad A, Klingenberg C, Stensvold HJ, Størdal K. Antibiotic use in term and near-term newborns. Pediatrics. 2021;148:e2021051339. doi: 10.1542/peds.2021-051339. PubMed DOI
Stocker M, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns) Lancet Lond. Engl. 2017;390:871–881. doi: 10.1016/S0140-6736(17)31444-7. PubMed DOI
Fjalstad JW, et al. Early-onset sepsis and antibiotic exposure in term infants: a nationwide population-based study in Norway. Pediatr. Infect. Dis. J. 2016;35:1–6. doi: 10.1097/INF.0000000000000906. PubMed DOI
Stoll BJ, et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 2020;174:e200593. doi: 10.1001/jamapediatrics.2020.0593. PubMed DOI PMC
Braye K, et al. Epidemiology of neonatal early-onset sepsis in a geographically diverse Australian health district 2006-2016. PLoS ONE. 2019;14:e0214298. doi: 10.1371/journal.pone.0214298. PubMed DOI PMC
Cailes B, et al. Epidemiology of UK neonatal infections: the neonIN infection surveillance network. Arch. Dis. Child. Fetal Neonatal Ed. 2018;103:F547–F553. doi: 10.1136/archdischild-2017-313203. PubMed DOI
Schrag SJ, et al. Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatrics. 2016;138:e20162013. doi: 10.1542/peds.2016-2013. PubMed DOI
Giannoni E, et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study. J. Pediatr. 2018;201:106–114.e4. doi: 10.1016/j.jpeds.2018.05.048. PubMed DOI
Escobar GJ, et al. Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks’ gestation. Pediatrics. 2014;133:30–36. doi: 10.1542/peds.2013-1689. PubMed DOI PMC
Cantey, J. B. & Baird, S. D. Ending the culture of culture-negative sepsis in the neonatal ICU. Pediatrics140, (2017). PubMed
Campbell RJ. Change management in health care. Health Care Manag. 2020;39:50–65. doi: 10.1097/HCM.0000000000000290. PubMed DOI
Ravi S, Patel SR, Laurence SK, Sebok-Syer SS, Gharahbaghian L. Kotter’s 8 stages of change: implementation of clinical screening protocols for assessing patients for COVID-19 - a review of an academic medical centre’s preparedness. BMJ Lead. 2022;6:319–322. PubMed
van Herk W, et al. Variation in current management of term and late-preterm neonates at risk for early-onset sepsis: an international survey and review of guidelines. Pediatr. Infect. Dis. J. 2016;35:494–500. doi: 10.1097/INF.0000000000001063. PubMed DOI
Fontela PS, et al. Clinical reasoning behind antibiotic use in PICUs: a qualitative study. Pediatr. Crit. Care Med. J. Soc. Crit. Care Med. World Fed. Pediatr. Intensive Crit. Care Soc. 2022;23:e126–e135. PubMed
Teixeira Rodrigues A, Roque F, Falcão A, Figueiras A, Herdeiro MT. Understanding physician antibiotic prescribing behaviour: a systematic review of qualitative studies. Int. J. Antimicrob. Agents. 2013;41:203–212. doi: 10.1016/j.ijantimicag.2012.09.003. PubMed DOI
Cabral C, Lucas PJ, Ingram J, Hay AD, Horwood J. ‘It’s safer to …’ parent consulting and clinician antibiotic prescribing decisions for children with respiratory tract infections: an analysis across four qualitative studies. Soc. Sci. Med. 1982. 2015;136–137:156–164. PubMed
Livorsi D, Comer A, Matthias MS, Perencevich EN, Bair MJ. Factors influencing antibiotic-prescribing decisions among inpatient physicians: a qualitative investigation. Infect. Control Hosp. Epidemiol. 2015;36:1065–1072. doi: 10.1017/ice.2015.136. PubMed DOI PMC
Rosling, H., Rosling, O. & Rönnlund, A. R. Factfulness: Ten Reasons We’re Wrong About The World - And Why Things Are Better Than You Think. (Sceptre, 2018).
Steinmann KE, et al. Impact of empowering leadership on antimicrobial stewardship: a single center study in a neonatal and pediatric intensive care unit and a literature review. Front. Pediatr. 2018;6:294. doi: 10.3389/fped.2018.00294. PubMed DOI PMC
Mukhopadhyay S, et al. Variation in sepsis evaluation across a national network of nurseries. Pediatrics. 2017;139:e20162845. doi: 10.1542/peds.2016-2845. PubMed DOI
Klingenberg C, Kornelisse RF, Buonocore G, Maier RF, Stocker M. Culture-negative early-onset neonatal sepsis - at the crossroad between efficient sepsis care and antimicrobial stewardship. Front. Pediatr. 2018;6:285. doi: 10.3389/fped.2018.00285. PubMed DOI PMC
Mahboub-Ahari A, Pourreza A, Akbari Sari A, Rahimi Foroushani A, Heydari H. Stated time preferences for health: a systematic review and meta analysis of private and social discount rates. J. Res. Health Sci. 2014;14:181–186. PubMed
Andreoni J, Sprenger C. Risk preferences are not time preferences. Am. Econ. Rev. 2012;102:3357–3376. doi: 10.1257/aer.102.7.3357. DOI
Al-Azzawi R, Halvorsen PA, Risør T. Context and general practitioner decision-making - a scoping review of contextual influence on antibiotic prescribing. BMC Fam. Pract. 2021;22:225. doi: 10.1186/s12875-021-01574-x. PubMed DOI PMC
Kahneman D., Sibony O., Sunstein CR. Noise: A Flaw in Human Judgment. (Little Brown Spark, 2021).
Eskreis-Winkler L, Fishbach A. You think failure is hard? So is learning from it. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2022;17:1511–1524. doi: 10.1177/17456916211059817. PubMed DOI
Gawande, A. Better: A Surgeon’s Notes on Performance. (Macmillan USA, 2008).
Dron L, et al. Data capture and sharing in the COVID-19 pandemic: a cause for concern. Lancet Digit. Health. 2022;4:e748–e756. doi: 10.1016/S2589-7500(22)00147-9. PubMed DOI PMC
Equity within digital health technology within the WHO European Region: a scoping review. https://www.who.int/europe/publications/i/item/WHO-EURO-2022-6810-46576-67595.
Dong E, et al. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard: data collection process, challenges faced, and lessons learned. Lancet Infect. Dis. 2022;S1473:00434–0. PubMed PMC
Peeples L. Lessons from the COVID data wizards. Nature. 2022;603:564–567. doi: 10.1038/d41586-022-00792-2. PubMed DOI
Hoque DME, et al. Impact of clinical registries on quality of patient care and clinical outcomes: a systematic review. PLoS ONE. 2017;12:e0183667. doi: 10.1371/journal.pone.0183667. PubMed DOI PMC
Ruoss JL, et al. Routine early antibiotic use in symptomatic preterm neonates: a pilot randomized controlled trial. J. Pediatr. 2021;229:294–298.e3. doi: 10.1016/j.jpeds.2020.09.056. PubMed DOI PMC
Russell JT, et al. Antibiotics and the developing intestinal microbiome, metabolome and inflammatory environment in a randomized trial of preterm infants. Sci. Rep. 2021;11:1943. doi: 10.1038/s41598-021-80982-6. PubMed DOI PMC
Subbiah V. The next generation of evidence-based medicine. Nat. Med. 2023;29:49–58. doi: 10.1038/s41591-022-02160-z. PubMed DOI
Mahajan P, et al. Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger. JAMA. 2016;316:846–857. doi: 10.1001/jama.2016.9207. PubMed DOI PMC
Serna E, Parra-Llorca A, Panadero J, Vento M, Cernada M. miRNomic signature in very low birth-weight neonates discriminates late-onset gram-positive sepsis from controls. Diagn. Basel Switz. 2021;11:1389. PubMed PMC
Cernada M, et al. Genome-wide expression profiles in very low birth weight infants with neonatal sepsis. Pediatrics. 2014;133:e1203–e1211. doi: 10.1542/peds.2013-2552. PubMed DOI
Chawanpaiboon S, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health. 2019;7:e37–e46. PubMed PMC
Flannery DD, Edwards EM, Puopolo KM, Horbar JD. Early-onset sepsis among very preterm infants. Pediatrics. 2021;148:e2021052456. doi: 10.1542/peds.2021-052456. PubMed DOI PMC
Huncikova, Z. et al. Late-onset sepsis in very preterm infants in Norway in 2009–2018: a population-based study. Arch. Dis. Child. Fetal Neonatal Ed. fetalneonatal-2022-324977 10.1136/archdischild-2022-324977 (2023). PubMed PMC
Flannery DD, et al. Neonatal infections: insights from a multicenter longitudinal research collaborative. Semin. Perinatol. 2022;46:151637. doi: 10.1016/j.semperi.2022.151637. PubMed DOI PMC
Larsen GY, et al. Development of a quality improvement learning collaborative to improve pediatric sepsis outcomes. Pediatrics. 2021;147:e20201434. doi: 10.1542/peds.2020-1434. PubMed DOI PMC
Madden K. Risk and resistance: examining our antibiotic use. Pediatr. Crit. Care. 2022;23:227–228. doi: 10.1097/PCC.0000000000002894. PubMed DOI
Wynn JL. Defining neonatal sepsis. Curr. Opin. Pediatr. 2016;28:135–140. doi: 10.1097/MOP.0000000000000315. PubMed DOI PMC
Hayes, R. et al. Neonatal sepsis definitions from randomised clinical trials. Pediatr. Res. 10.1038/s41390-021-01749-3 (2021). PubMed PMC
Achten, N. B. et al. Stratification of culture-proven early-onset sepsis cases by the neonatal early-onset sepsis calculator: an individual patient data meta-analysis. J. Pediatr. 10.1016/j.jpeds.2021.01.065 (2021). PubMed
Vatne A, et al. Reduced antibiotic exposure by serial physical examinations in term neonates at risk of early-onset sepsis. Pediatr. Infect. Dis. J. 2020;39:438–443. doi: 10.1097/INF.0000000000002590. PubMed DOI
Malik, F. Führen Leisten Leben: Wirksames Management für eine neue Welt, plus E-Book inside. (Campus Verlag, 2019).
Hollnagel, E. Safety-I and Safety-II: The Past and Future of Safety Management. (Routledge, 2014).
Bartman T, Merandi J, Maa T, Kuehn S, Brilli RJ. Developing tools to enhance the adaptive capacity (Safety II) of Health Care Providers at a Children’s Hospital. Jt. Comm. J. Qual. Patient Saf. 2021;47:526–532. PubMed