Less is more: Antibiotics at the beginning of life

. 2023 Apr 27 ; 14 (1) : 2423. [epub] 20230427

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37105958
Odkazy

PubMed 37105958
PubMed Central PMC10134707
DOI 10.1038/s41467-023-38156-7
PII: 10.1038/s41467-023-38156-7
Knihovny.cz E-zdroje

Antibiotic exposure at the beginning of life can lead to increased antimicrobial resistance and perturbations of the developing microbiome. Early-life microbiome disruption increases the risks of developing chronic diseases later in life. Fear of missing evolving neonatal sepsis is the key driver for antibiotic overtreatment early in life. Bias (a systemic deviation towards overtreatment) and noise (a random scatter) affect the decision-making process. In this perspective, we advocate for a factual approach quantifying the burden of treatment in relation to the burden of disease balancing antimicrobial stewardship and effective sepsis management.

Biostatistics and Methodology CTU CS Department of Health Sciences and Medicine University of Lucerne Luzern Switzerland

Clinic of Neonatology Department Mother Woman Child Lausanne University Hospital and University of Lausanne Lausanne Switzerland

Department of Clinical Science Intervention and Technology Karolinska Institutet Stockholm Sweden

Department of Neonatology and Neonatal Intensive Care Medical University of Warsaw Warszawa Poland

Department of Neonatology Karolinska University Hospital Stockholm Sweden

Department of Neonatology Thomayer University Hospital Prague Prague Czech Republic

Department of Paediatrics University of Szeged Szeged Hungary

Department of Pediatrics Children's Hospital Lucerne Lucerne Switzerland

Department of Pediatrics Inselspital Bern University Hospital University of Bern Bern Switzerland

Department of Pediatrics Women and Infants Hospital of Rhode Island Warren Alpert Medical School of Brown University Richmond USA

Dept of Pediatrics and Adolescence Medicine University Hospital of North Norway Tromsø Norway

Division of Neonatology Department of Pediatrics McMaster Children's Hospital McMaster University Hamilton Health Sciences Hamilton Canada

Institute of Clinical Medicine University of Oslo and Oslo University Hospital Oslo Norway

Neonatal Directorate Child and Adolescent Health Service King Edward Memorial Hospital Perth Western Australia

Neonatal Intensive Care Unit Mother and Child Department Policlinico University Hospital Modena Italy

Neonatal Unit Department of Obstetrics and Gynecology Motol University Hospital Prague Prague Czech Republic

Neonatologia e Terapia Intensiva Neonatale University of Bari Bari Italy

Neonatology and Neonatal Intensive Care Unit CHIREC Delta Hospital Brussels Belgium

Neonatology and Neonatal Intensive Care Unit Ecclesiastical General Hospital F Miulli Acquaviva delle Fonti Italy

Neonatology and Neonatal Intensive Care Unit Policlinico Riuniti Foggia Foggia Italy

Neonatology and Paediatric Intensive Care Unit Geneva University Hospitals and Geneva University Geneva Switzerland

Paediatric Research Group Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway

Perinatal Intensive Care Unit Department of Obstetrics and Gynaecology Semmelweis University Budapest Hungary

Service néonatal Clinique CHC Montlegia groupe santé CHC Liège Belgium

Zobrazit více v PubMed

Perin J, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the sustainable development goals. Lancet Child Adolesc. Health. 2022;6:106–115. doi: 10.1016/S2352-4642(21)00311-4. PubMed DOI PMC

Fleischmann C, et al. Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis. Arch. Dis. Child. 2021;106:745–752. doi: 10.1136/archdischild-2020-320217. PubMed DOI PMC

Armstrong GL, Conn LA, Pinner RW. Trends in infectious disease mortality in the United States during the 20th century. JAMA. 1999;281:61–66. doi: 10.1001/jama.281.1.61. PubMed DOI

Sankar J, et al. Delayed administration of antibiotics beyond the first hour of recognition is associated with increased mortality rates in children with sepsis/severe sepsis and septic shock. J. Pediatr. 2021;233:183–190.e3. doi: 10.1016/j.jpeds.2020.12.035. PubMed DOI

Magalhães C, Lima M, Trieu-Cuot P, Ferreira P. To give or not to give antibiotics is not the only question. Lancet Infect. Dis. 2021;21:e191–e201. doi: 10.1016/S1473-3099(20)30602-2. PubMed DOI

Stark A, et al. Medication Use in the Neonatal Intensive Care Unit and Changes from 2010 to 2018. J. Pediatr. 2022;240:66–71.e4. doi: 10.1016/j.jpeds.2021.08.075. PubMed DOI PMC

Benitz WE, Achten NB. Finding a role for the neonatal early-onset sepsis risk calculator. EClin.Med. 2020;19:100255. PubMed PMC

Verani JR, McGee L, Schrag SJ, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC Prevention of perinatal group B streptococcal disease-revised guidelines from CDC, 2010. MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2010;59:1–36. PubMed

Agyeman PKA, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc. Health. 2017;1:124–133. doi: 10.1016/S2352-4642(17)30010-X. PubMed DOI

Flannery DD, et al. Temporal trends and center variation in early antibiotic use among premature infants. JAMA Netw. Open. 2018;1:e180164. doi: 10.1001/jamanetworkopen.2018.0164. PubMed DOI PMC

Giannoni E, et al. Analysis of antibiotic exposure and early-onset neonatal sepsis in Europe, North America, and Australia. JAMA Netw. Open. 2022;5:e2243691. doi: 10.1001/jamanetworkopen.2022.43691. PubMed DOI PMC

WHO | Global action plan on AMR. WHOhttp://www.who.int/antimicrobial-resistance/global-action-plan/en/.

Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond. Engl. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC

Reyman M, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat. Commun. 2022;13:893. doi: 10.1038/s41467-022-28525-z. PubMed DOI PMC

Stiemsma, L. T. & Michels, K. B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics141, (2018). PubMed PMC

Dierikx TH, et al. Association between duration of early empiric antibiotics and necrotizing enterocolitis and late-onset sepsis in preterm infants: a multicenter cohort study. Eur. J. Pediatr. 2022;181:3715–3724. doi: 10.1007/s00431-022-04579-5. PubMed DOI PMC

Vatne A, et al. Early empirical antibiotics and adverse clinical outcomes in infants born very preterm: a population-based cohort. J. Pediatr. 2022;S0022-3476(22):00851–00854. PubMed

Ting JY, et al. Duration of initial empirical antibiotic therapy and outcomes in very low birth weight infants. Pediatrics. 2019;143:e20182286. doi: 10.1542/peds.2018-2286. PubMed DOI

Krediet TG, et al. Microbiological factors associated with neonatal necrotizing enterocolitis: protective effect of early antibiotic treatment. Acta Paediatr. Acta Paediatr. Oslo Nor. 1992. 2003;92:1180–1182. PubMed

Berkhout DJC, et al. Risk factors for necrotizing enterocolitis: a prospective multicenter case-control study. Neonatology. 2018;114:277–284. doi: 10.1159/000489677. PubMed DOI

Dydensborg Sander S, et al. Association between antibiotics in the first year of life and celiac disease. Gastroenterology. 2019;156:2217–2229. doi: 10.1053/j.gastro.2019.02.039. PubMed DOI

Clarke SLN, et al. Moving from nature to nurture: a systematic review and meta-analysis of environmental factors associated with juvenile idiopathic arthritis. Rheumatol. Oxf. Engl. 2022;61:514–530. doi: 10.1093/rheumatology/keab627. PubMed DOI PMC

VanEvery H, Franzosa EA, Nguyen LH, Huttenhower C. Microbiome epidemiology and association studies in human health. Nat. Rev. Genet. 2023;24:109–124. doi: 10.1038/s41576-022-00529-x. PubMed DOI

Brodin P. Immune-microbe interactions early in life: a determinant of health and disease long term. Science. 2022;376:945–950. doi: 10.1126/science.abk2189. PubMed DOI

Dhariwala MO, Scharschmidt TC. Baby’s skin bacteria: first impressions are long-lasting. Trends Immunol. 2021;42:1088–1099. doi: 10.1016/j.it.2021.10.005. PubMed DOI PMC

Stevens, J. et al. The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Sci. Transl. Med. 14, eabl3981, (2022). PubMed PMC

Constantinides MG, Belkaid Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science. 2021;374:eabf0095. doi: 10.1126/science.abf0095. PubMed DOI PMC

Deshmukh HS, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014;20:524–530. doi: 10.1038/nm.3542. PubMed DOI PMC

Cho I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–626. doi: 10.1038/nature11400. PubMed DOI PMC

Radjabzadeh D, et al. Gut microbiome-wide association study of depressive symptoms. Nat. Commun. 2022;13:7128. doi: 10.1038/s41467-022-34502-3. PubMed DOI PMC

Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721. doi: 10.1016/j.cell.2014.05.052. PubMed DOI PMC

Schulman, J. et al. Newborn antibiotic exposures and association with proven bloodstream infection. Pediatrics144, (2019). PubMed

Kimpton JA, et al. Comparison of NICE guideline CG149 and the sepsis risk calculator for the management of early-onset sepsis on the postnatal ward. Neonatology. 2021;118:562–568. doi: 10.1159/000518059. PubMed DOI

Schulman J, et al. Variations in neonatal antibiotic use. Pediatrics. 2018;142:e20180115. doi: 10.1542/peds.2018-0115. PubMed DOI PMC

Cantey JB, Prusakov P. A proposed framework for the clinical management of neonatal ‘Culture-Negative’ sepsis. J. Pediatr. 2022;244:203–211. doi: 10.1016/j.jpeds.2022.01.006. PubMed DOI

Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Lond. Engl. 2015;386:743–800. doi: 10.1016/S0140-6736(15)60692-4. PubMed DOI PMC

Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep. 2019;21:21. doi: 10.1007/s11886-019-1107-y. PubMed DOI

Song P, et al. Global, regional, and national prevalence of asthma in 2019: a systematic analysis and modelling study. J. Glob. Health. 2022;12:04052. doi: 10.7189/jogh.12.04052. PubMed DOI PMC

Serebrisky D, Wiznia A. Pediatric asthma: a global epidemic. Ann. Glob. Health. 2019;85:6. doi: 10.5334/aogh.2416. PubMed DOI PMC

Ng SC, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet Lond. Engl. 2017;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI

Beasley R, Semprini A, Mitchell EA. Risk factors for asthma: is prevention possible? Lancet Lond. Engl. 2015;386:1075–1085. doi: 10.1016/S0140-6736(15)00156-7. PubMed DOI

Jie Z, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8:845. doi: 10.1038/s41467-017-00900-1. PubMed DOI PMC

Zhang Y, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study) Nat. Commun. 2020;11:5015. doi: 10.1038/s41467-020-18414-8. PubMed DOI PMC

Zhu F, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat. Commun. 2020;11:1612. doi: 10.1038/s41467-020-15457-9. PubMed DOI PMC

Pathak JL, Yan Y, Zhang Q, Wang L, Ge L. The role of oral microbiome in respiratory health and diseases. Respir. Med. 2021;185:106475. doi: 10.1016/j.rmed.2021.106475. PubMed DOI

Kissoon N, Uyeki TM. Sepsis and the global burden of disease in children. JAMA Pediatr. 2016;170:107–108. doi: 10.1001/jamapediatrics.2015.3241. PubMed DOI PMC

Goel N, et al. Implementation of an adapted Sepsis Risk Calculator algorithm to reduce antibiotic usage in the management of early onset neonatal sepsis: a multicentre initiative in Wales, UK. Arch. Dis. Child. Fetal Neonatal Ed. 2022;107:303–310. doi: 10.1136/archdischild-2020-321489. PubMed DOI

Achten, N. B. et al. Association of use of the neonatal early-onset sepsis calculator with reduction in antibiotic therapy and safety: a systematic review and meta-analysis. JAMA Pediatr. 10.1001/jamapediatrics.2019.2825 (2019). PubMed PMC

Kuzniewicz MW, et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 2017;171:365–371. doi: 10.1001/jamapediatrics.2016.4678. PubMed DOI

Mundal HS, Rønnestad A, Klingenberg C, Stensvold HJ, Størdal K. Antibiotic use in term and near-term newborns. Pediatrics. 2021;148:e2021051339. doi: 10.1542/peds.2021-051339. PubMed DOI

Stocker M, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns) Lancet Lond. Engl. 2017;390:871–881. doi: 10.1016/S0140-6736(17)31444-7. PubMed DOI

Fjalstad JW, et al. Early-onset sepsis and antibiotic exposure in term infants: a nationwide population-based study in Norway. Pediatr. Infect. Dis. J. 2016;35:1–6. doi: 10.1097/INF.0000000000000906. PubMed DOI

Stoll BJ, et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 2020;174:e200593. doi: 10.1001/jamapediatrics.2020.0593. PubMed DOI PMC

Braye K, et al. Epidemiology of neonatal early-onset sepsis in a geographically diverse Australian health district 2006-2016. PLoS ONE. 2019;14:e0214298. doi: 10.1371/journal.pone.0214298. PubMed DOI PMC

Cailes B, et al. Epidemiology of UK neonatal infections: the neonIN infection surveillance network. Arch. Dis. Child. Fetal Neonatal Ed. 2018;103:F547–F553. doi: 10.1136/archdischild-2017-313203. PubMed DOI

Schrag SJ, et al. Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatrics. 2016;138:e20162013. doi: 10.1542/peds.2016-2013. PubMed DOI

Giannoni E, et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study. J. Pediatr. 2018;201:106–114.e4. doi: 10.1016/j.jpeds.2018.05.048. PubMed DOI

Escobar GJ, et al. Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks’ gestation. Pediatrics. 2014;133:30–36. doi: 10.1542/peds.2013-1689. PubMed DOI PMC

Cantey, J. B. & Baird, S. D. Ending the culture of culture-negative sepsis in the neonatal ICU. Pediatrics140, (2017). PubMed

Campbell RJ. Change management in health care. Health Care Manag. 2020;39:50–65. doi: 10.1097/HCM.0000000000000290. PubMed DOI

Ravi S, Patel SR, Laurence SK, Sebok-Syer SS, Gharahbaghian L. Kotter’s 8 stages of change: implementation of clinical screening protocols for assessing patients for COVID-19 - a review of an academic medical centre’s preparedness. BMJ Lead. 2022;6:319–322. PubMed

van Herk W, et al. Variation in current management of term and late-preterm neonates at risk for early-onset sepsis: an international survey and review of guidelines. Pediatr. Infect. Dis. J. 2016;35:494–500. doi: 10.1097/INF.0000000000001063. PubMed DOI

Fontela PS, et al. Clinical reasoning behind antibiotic use in PICUs: a qualitative study. Pediatr. Crit. Care Med. J. Soc. Crit. Care Med. World Fed. Pediatr. Intensive Crit. Care Soc. 2022;23:e126–e135. PubMed

Teixeira Rodrigues A, Roque F, Falcão A, Figueiras A, Herdeiro MT. Understanding physician antibiotic prescribing behaviour: a systematic review of qualitative studies. Int. J. Antimicrob. Agents. 2013;41:203–212. doi: 10.1016/j.ijantimicag.2012.09.003. PubMed DOI

Cabral C, Lucas PJ, Ingram J, Hay AD, Horwood J. ‘It’s safer to …’ parent consulting and clinician antibiotic prescribing decisions for children with respiratory tract infections: an analysis across four qualitative studies. Soc. Sci. Med. 1982. 2015;136–137:156–164. PubMed

Livorsi D, Comer A, Matthias MS, Perencevich EN, Bair MJ. Factors influencing antibiotic-prescribing decisions among inpatient physicians: a qualitative investigation. Infect. Control Hosp. Epidemiol. 2015;36:1065–1072. doi: 10.1017/ice.2015.136. PubMed DOI PMC

Rosling, H., Rosling, O. & Rönnlund, A. R. Factfulness: Ten Reasons We’re Wrong About The World - And Why Things Are Better Than You Think. (Sceptre, 2018).

Steinmann KE, et al. Impact of empowering leadership on antimicrobial stewardship: a single center study in a neonatal and pediatric intensive care unit and a literature review. Front. Pediatr. 2018;6:294. doi: 10.3389/fped.2018.00294. PubMed DOI PMC

Mukhopadhyay S, et al. Variation in sepsis evaluation across a national network of nurseries. Pediatrics. 2017;139:e20162845. doi: 10.1542/peds.2016-2845. PubMed DOI

Klingenberg C, Kornelisse RF, Buonocore G, Maier RF, Stocker M. Culture-negative early-onset neonatal sepsis - at the crossroad between efficient sepsis care and antimicrobial stewardship. Front. Pediatr. 2018;6:285. doi: 10.3389/fped.2018.00285. PubMed DOI PMC

Mahboub-Ahari A, Pourreza A, Akbari Sari A, Rahimi Foroushani A, Heydari H. Stated time preferences for health: a systematic review and meta analysis of private and social discount rates. J. Res. Health Sci. 2014;14:181–186. PubMed

Andreoni J, Sprenger C. Risk preferences are not time preferences. Am. Econ. Rev. 2012;102:3357–3376. doi: 10.1257/aer.102.7.3357. DOI

Al-Azzawi R, Halvorsen PA, Risør T. Context and general practitioner decision-making - a scoping review of contextual influence on antibiotic prescribing. BMC Fam. Pract. 2021;22:225. doi: 10.1186/s12875-021-01574-x. PubMed DOI PMC

Kahneman D., Sibony O., Sunstein CR. Noise: A Flaw in Human Judgment. (Little Brown Spark, 2021).

Eskreis-Winkler L, Fishbach A. You think failure is hard? So is learning from it. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2022;17:1511–1524. doi: 10.1177/17456916211059817. PubMed DOI

Gawande, A. Better: A Surgeon’s Notes on Performance. (Macmillan USA, 2008).

Dron L, et al. Data capture and sharing in the COVID-19 pandemic: a cause for concern. Lancet Digit. Health. 2022;4:e748–e756. doi: 10.1016/S2589-7500(22)00147-9. PubMed DOI PMC

Equity within digital health technology within the WHO European Region: a scoping review. https://www.who.int/europe/publications/i/item/WHO-EURO-2022-6810-46576-67595.

Dong E, et al. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard: data collection process, challenges faced, and lessons learned. Lancet Infect. Dis. 2022;S1473:00434–0. PubMed PMC

Peeples L. Lessons from the COVID data wizards. Nature. 2022;603:564–567. doi: 10.1038/d41586-022-00792-2. PubMed DOI

Hoque DME, et al. Impact of clinical registries on quality of patient care and clinical outcomes: a systematic review. PLoS ONE. 2017;12:e0183667. doi: 10.1371/journal.pone.0183667. PubMed DOI PMC

Ruoss JL, et al. Routine early antibiotic use in symptomatic preterm neonates: a pilot randomized controlled trial. J. Pediatr. 2021;229:294–298.e3. doi: 10.1016/j.jpeds.2020.09.056. PubMed DOI PMC

Russell JT, et al. Antibiotics and the developing intestinal microbiome, metabolome and inflammatory environment in a randomized trial of preterm infants. Sci. Rep. 2021;11:1943. doi: 10.1038/s41598-021-80982-6. PubMed DOI PMC

Subbiah V. The next generation of evidence-based medicine. Nat. Med. 2023;29:49–58. doi: 10.1038/s41591-022-02160-z. PubMed DOI

Mahajan P, et al. Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger. JAMA. 2016;316:846–857. doi: 10.1001/jama.2016.9207. PubMed DOI PMC

Serna E, Parra-Llorca A, Panadero J, Vento M, Cernada M. miRNomic signature in very low birth-weight neonates discriminates late-onset gram-positive sepsis from controls. Diagn. Basel Switz. 2021;11:1389. PubMed PMC

Cernada M, et al. Genome-wide expression profiles in very low birth weight infants with neonatal sepsis. Pediatrics. 2014;133:e1203–e1211. doi: 10.1542/peds.2013-2552. PubMed DOI

Chawanpaiboon S, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health. 2019;7:e37–e46. PubMed PMC

Flannery DD, Edwards EM, Puopolo KM, Horbar JD. Early-onset sepsis among very preterm infants. Pediatrics. 2021;148:e2021052456. doi: 10.1542/peds.2021-052456. PubMed DOI PMC

Huncikova, Z. et al. Late-onset sepsis in very preterm infants in Norway in 2009–2018: a population-based study. Arch. Dis. Child. Fetal Neonatal Ed. fetalneonatal-2022-324977 10.1136/archdischild-2022-324977 (2023). PubMed PMC

Flannery DD, et al. Neonatal infections: insights from a multicenter longitudinal research collaborative. Semin. Perinatol. 2022;46:151637. doi: 10.1016/j.semperi.2022.151637. PubMed DOI PMC

Larsen GY, et al. Development of a quality improvement learning collaborative to improve pediatric sepsis outcomes. Pediatrics. 2021;147:e20201434. doi: 10.1542/peds.2020-1434. PubMed DOI PMC

Madden K. Risk and resistance: examining our antibiotic use. Pediatr. Crit. Care. 2022;23:227–228. doi: 10.1097/PCC.0000000000002894. PubMed DOI

Wynn JL. Defining neonatal sepsis. Curr. Opin. Pediatr. 2016;28:135–140. doi: 10.1097/MOP.0000000000000315. PubMed DOI PMC

Hayes, R. et al. Neonatal sepsis definitions from randomised clinical trials. Pediatr. Res. 10.1038/s41390-021-01749-3 (2021). PubMed PMC

Achten, N. B. et al. Stratification of culture-proven early-onset sepsis cases by the neonatal early-onset sepsis calculator: an individual patient data meta-analysis. J. Pediatr. 10.1016/j.jpeds.2021.01.065 (2021). PubMed

Vatne A, et al. Reduced antibiotic exposure by serial physical examinations in term neonates at risk of early-onset sepsis. Pediatr. Infect. Dis. J. 2020;39:438–443. doi: 10.1097/INF.0000000000002590. PubMed DOI

Malik, F. Führen Leisten Leben: Wirksames Management für eine neue Welt, plus E-Book inside. (Campus Verlag, 2019).

Hollnagel, E. Safety-I and Safety-II: The Past and Future of Safety Management. (Routledge, 2014).

Bartman T, Merandi J, Maa T, Kuehn S, Brilli RJ. Developing tools to enhance the adaptive capacity (Safety II) of Health Care Providers at a Children’s Hospital. Jt. Comm. J. Qual. Patient Saf. 2021;47:526–532. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...