• This record comes from PubMed

Small Non-Coding RNAs as New Biomarkers to Evaluate the Quality of the Embryo in the IVF Process

. 2022 Nov 14 ; 12 (11) : . [epub] 20221114

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The increased interest in assisted reproduction through in vitro fertilization (IVF) leads to an urgent need to identify biomarkers that reliably highly predict the success of pregnancy. Despite advances in diagnostics, treatment, and IVF approaches, the 30% success rate of IVF seems insurmountable. Idiopathic infertility does not have any explanation for IVF failure especially when a patient is treated with a healthy competitive embryo capable of implantation and development. Since appropriate intercellular communication is essential after embryo implantation, the emergence of the investigation of embryonic secretome including short non-coding RNA (sncRNA) molecules is crucial. That's why biomarker identification, sncRNAs secreted during the IVF process into the blastocyst's cultivation medium, by the implementation of artificial intelligence opens the door to a better understanding of the bidirectional communication between embryonic cells and the endometrium and so the success of the IVF. This study presents a set of promising new sncRNAs which are revealed to predictively distinguish a high-quality embryo, suitable for an embryo transfer in the IVF process, from a low-quality embryo with 86% accuracy. The identified exact combination of miRNAs/piRNAs as a non-invasively obtained biomarker for quality embryo determination, increasing the likelihood of implantation and the success of pregnancy after an embryo transfer.

See more in PubMed

Petraglia F., Serour G.I., Chapron C. The changing prevalence of infertility. Int. J. Gynecol. Obstet. 2013;123:S4–S8. doi: 10.1016/j.ijgo.2013.09.005. PubMed DOI

Vander Borght M., Wyns C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012. PubMed DOI

Focus on Reproduction ‘Dramatic’ Decline in Worldwide Total Fertility Rates Predicted. [(accessed on 12 April 2022)]. Available online: https://www.focusonreproduction.eu/article/News-in-Reproduction-Population?fbclid=IwAR3R3Icjm-LQC8zPLAKBDTLdLxCHKGAOqI1sYBe1eJnEvaAgSf2bUCoTkZ0.

Toporcerová S., Špaková I., Mareková M., Rabajdová M. In: Biotechnology in Healthcare. 1st ed. Barh D., editor. Volume 2 Elsevier; London, UK: 2022.

Ehsani M., Mohammadnia-Afrouzi M., Mirzakhami M., Esmaeilzadeh S., Shahbazi M. Female Unexplained Infertility: A Disease with Imbalanced Adaptive Immunity. J. Hum. Reprod Sci. 2019;12:274–282. doi: 10.4103/jhrs.JHRS_30_19. PubMed DOI PMC

Bashiri A., Halper K.I., Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018;16:121. doi: 10.1186/s12958-018-0414-2. PubMed DOI PMC

Rabajdová M., Urban P., Biščáková Z., Urdzík P., Mareková M. Endometrial receptivity—A new challenge of infertility diagnostics in the In Vitro fertilization process. Lek. Obz. 2019;68:95–98.

Li L., Wang P., Liu S., Bai X., Zou B., Li Y. Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation. J. Assist. Reprod. Genet. 2020;37:21–32. doi: 10.1007/s10815-019-01616-5. PubMed DOI PMC

Ferretti C., Bruni L., Dangles-Marie V., Pecking A., Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Updat. 2007;13:121–141. doi: 10.1093/humupd/dml048. PubMed DOI

Guo X., Yi H., Li T., Wang Y., Wang H., Chen X. Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo Implantation: Clinical Implications. Biomolecules. 2021;11:253. doi: 10.3390/biom11020253. PubMed DOI PMC

Torry D.S., Leavenworth J., Chang M., Maheshwari V., Groesch K., Ball E.R., Torry R. Angiogenesis in implantation. J. Assist. Reprod. Genet. 2007;24:303–315. doi: 10.1007/s10815-007-9152-7. PubMed DOI PMC

Varas-Godoy M., Acuña-Gallardo S., Venegas-Duarte S., Hill C., Caceres-Verschae A., Realini O., Monteiro L.J., Zavala G., Khoury M., Romero R., et al. Angiogenic Properties of Menstrual Stem Cells Are Impaired in Women with a History of Preeclampsia. Stem Cells Int. 2019;2019:1916542. doi: 10.1155/2019/1916542. PubMed DOI PMC

Rosenbluth E.M., Shelton D.N., Wells L.M., Sparks A.E., Van Voorhis B.J. Human embryos secrete microRNAs into culture media—A potential biomarker for implantation. Fertil. Steril. 2014;101:1493–1500. doi: 10.1016/j.fertnstert.2014.01.058. PubMed DOI

Ochoa-Bernal M.A., Fazleabas A.T. Physiologic Events of Embryo Implantation and Decidualization in Human and Non-Human Primates. Int. J. Mol. Sci. 2020;21:1973. doi: 10.3390/ijms21061973. PubMed DOI PMC

Capalbo A., Ubaldi F.M., Cimadomo D., Noli L., Khalaf Y., Farcomeni A., Ilic D., Rienzi L. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2015;105:225–235. doi: 10.1016/j.fertnstert.2015.09.014. PubMed DOI

Rødgaard T., Heegaard P.M., Callesen H. Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod. Biomed. Online. 2015;31:585–592. doi: 10.1016/j.rbmo.2015.08.003. PubMed DOI

Timofeeva A., Drapkina Y., Fedorov I., Chagovets V., Makarova N., Shamina M., Kalinina E., Sukhikh G. Small Noncoding RNA Signatures for Determining the Developmental Potential of an Embryo at the Morula Stage. Int. J. Mol. Sci. 2020;21:9399. doi: 10.3390/ijms21249399. PubMed DOI PMC

Cimadomo D., Rienzi L., Giancani A., Alviggi E., Dusi L., Canipari R., Noli L., Ilic D., Khalaf Y., Ubaldi F.M., et al. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: Searching for biomarkers of implantation. Hum. Reprod. 2019;34:1746–1761. doi: 10.1093/humrep/dez119. PubMed DOI

Cuman C., Van Sinderen M., Gantier M.P., Rainczuk K., Sorby K., Rombauts L., Osianlis T., Dimitriadis E. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion. eBioMedicine. 2015;2:1528–1535. doi: 10.1016/j.ebiom.2015.09.003. PubMed DOI PMC

Borges E., Jr., Setti A.S., Braga D.P.A.F., Geraldo M.V., Figueira R.d.C.S., Iaconelli A., Jr. miR-142-3p as a biomarker of blastocyst implantation failure—A pilot study. JBRA Assist. Reprod. 2016;20:200–205. doi: 10.5935/1518-0557.20160039. PubMed DOI PMC

Abu-Halima M., Häusler S., Backes C., Fehlmann T., Staib C., Nestel S., Nazarenko I., Meese E., Keller A. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization. Sci. Rep. 2017;7:13525. doi: 10.1038/s41598-017-13683-8. PubMed DOI PMC

Kim J., Lee J., Jun J.H. Identification of differentially expressed microRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos in mice. Reprod. Fertil. Dev. 2019;31:645–657. doi: 10.1071/RD18161. PubMed DOI

Timofeeva A.V., Chagovets V.V., Drapkina Y.S., Makarova N.P., Kalinina E.A., Sukhikh G.T. Cell-Free, Embryo-Specific sncRNA as a Molecular Biological Bridge between Patient Fertility and IVF Efficiency. Int. J. Mol. Sci. 2019;20:2912. doi: 10.3390/ijms20122912. PubMed DOI PMC

Cimadomo D., Capalbo A., Ubaldi F.M., Scarica C., Palagiano A., Canipari R., Rienzi L. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis. BioMed Res. Int. 2016;2016:7193075. doi: 10.1155/2016/7193075. PubMed DOI PMC

Manna C., Nanni L., Lumini A., Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online. 2013;26:42–49. doi: 10.1016/j.rbmo.2012.09.015. PubMed DOI

Fernandez E.I., Ferreira A.S., Cecílio M.H.M., Chéles D., De Souza R.C.M., Nogueira M.F.G., Rocha J.C. Artificial intelligence in the IVF laboratory: Overview through the application of different types of algorithms for the classification of reproductive data. J. Assist. Reprod. Genet. 2020;37:2359–2376. doi: 10.1007/s10815-020-01881-9. PubMed DOI PMC

Raimundo J., Cabrita P. Artificial intelligence at assisted reproductive technology. Procedia Comput. Sci. 2021;181:442–447. doi: 10.1016/j.procs.2021.01.189. DOI

Zhao Y., Sun H., Feng M., Zhao J., Zhao X., Wan Q., Cai D. Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol. Endocrinol. 2017;34:428–432. doi: 10.1080/09513590.2017.1409714. PubMed DOI

Amjadi F.S., Salehi E., Zandieh Z., Rashidi M., Taleahmad S., Masrour M.J., Aflatoonian R., Mehdizadeh M. Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation. Iran. J. Basic. Med. Sci. 2019;22:426–431. doi: 10.22038/ijbms.2019.32961.7874. PubMed DOI PMC

Ashary N., Tiwari A., Modi D. Embryo Implantation: War in Times of Love. Endocrinology. 2018;159:1188–1198. doi: 10.1210/en.2017-03082. PubMed DOI

Zaninovic N., Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil. Steril. 2020;114:914–920. doi: 10.1016/j.fertnstert.2020.09.157. PubMed DOI

Nasiri N., Eftekhari-Yazdi P. An Overview of The Available Methods for Morphological Scoring of Pre-Implantation Embryos in In Vitro Fertilization. Cell J. 2015;16:392–405. doi: 10.22074/cellj.2015.486. PubMed DOI PMC

Milewski R., Ajduk A. Time-lapse imaging of cleavage divisions in embryo quality assessment. Reproduction. 2017;154:R37–R53. doi: 10.1530/REP-17-0004. PubMed DOI

Irani M., Reichman D., Robles A., Melnick A., Davis O., Zaninovic N., Xu K., Rosenwaks Z. Morphologic grading of euploid blastocysts influences implantation and ongoing pregnancy rates. Fertil. Steril. 2017;107:664–670. doi: 10.1016/j.fertnstert.2016.11.012. PubMed DOI

Gardner D.K., Lane M., Stevens J., Schlenker T., Schoolcraft W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000;73:1155–1158. doi: 10.1016/S0015-0282(00)00518-5. PubMed DOI

Moayeri M., Saeidi H., Modarresi M.H., Hashemi M. The Effect of Preimplantation Genetic Screening on Implantation Rate in Women over 35 Years of Age. Cell J. 2016;18:13–20. doi: 10.22074/cellj.2016.3982. PubMed DOI PMC

Qiu J., Li P., Dong M., Xin X., Tan J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: A machine learning method. J. Transl. Med. 2019;17:317. doi: 10.1186/s12967-019-2062-5. PubMed DOI PMC

Liu R., Bai S., Jiang X., Luo L., Tong X., Zheng S., Wang Y., Xu B. Multifactor Prediction of Embryo Transfer Outcomes Based on a Machine Learning Algorithm. Front. Endocrinol. 2021;12:745039. doi: 10.3389/fendo.2021.745039. PubMed DOI PMC

Xi Q., Yang Q., Wang M., Huang B., Zhang B., Li Z., Liu S., Yang L., Zhu L., Jin L. Individualized embryo selection strategy developed by stacking machine learning model for better in vitro fertilization outcomes: An application study. Reprod. Biol. Endocrinol. 2021;19:53. doi: 10.1186/s12958-021-00734-z. PubMed DOI PMC

Khosravi P., Kazemi E., Zhan Q., Malmsten J.E., Toschi M., Zisimopoulos P., Sigaras A., Lavery S., Cooper L.A.D., Hickman C., et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2019;2:21. doi: 10.1038/s41746-019-0096-y. PubMed DOI PMC

Liang P., Yang W., Chen X., Long C., Zheng L., Li H., Zuo Y. Machine Learning of Single-Cell Transcriptome Highly Identifies mRNA Signature by Comparing F-Score Selection with DGE Analysis. Mol. Ther. Nucleic Acids. 2020;20:155–163. doi: 10.1016/j.omtn.2020.02.004. PubMed DOI PMC

Yang Q., Li R., Lyu Q., Hou L., Liu Z., Sun Q., Liu M., Shi H., Xu B., Yin M., et al. Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun. 2019;10:3389. doi: 10.1038/s41467-019-11312-8. PubMed DOI PMC

Ahmad J., Hasnain S.E., Siddiqui M.A., Ahamed M., Musarrat J., Al-Khedhairy A.A. MicroRNA in Carcinogenesis & Cancer Diagnostics: A New Paradigm. Indian J. Med. Res. 2013;137:680–694. PubMed PMC

Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. PubMed DOI

Ding D., Liu J., Dong K., Midic U., Hess R., Xie H., Demireva E.Y., Chen C. PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice. Nat. Commun. 2017;8:819. doi: 10.1038/s41467-017-00854-4. PubMed DOI PMC

Battaglia R., Musumeci P., Ragusa M., Barbagallo D., Scalia M., Zimbone M., Faro J.M.L., Borzì P., Scollo P., Purrello M., et al. Ovarian aging increases small extracellular vesicle CD81+ release in human follicular fluid and influences miRNA profiles. Aging. 2020;12:12324–12341. doi: 10.18632/aging.103441. PubMed DOI PMC

Hocaoglu M., Demirer S., Karaalp I.L., Kaynak E., Attar E., Turgut A., Karateke A., Komurcu-Bayrak E. Identification of miR-16-5p and miR-155-5p microRNAs differentially expressed in circulating leukocytes of pregnant women with polycystic ovary syndrome and gestational diabetes. Gynecol. Endocrinol. 2021;37:216–220. doi: 10.1080/09513590.2020.1843620. PubMed DOI

Tagliaferri S., Cepparulo P., Vinciguerra A., Campanile M., Esposito G., Maruotti G.M., Zullo F., Annunziato L., Pignataro G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front. Pediatr. 2021;9:611112. doi: 10.3389/fped.2021.611112. PubMed DOI PMC

Russell S.J., Menezes K., Balakier H., Librach C. Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods. Syst. Biol. Reprod. Med. 2020;66:129–139. doi: 10.1080/19396368.2020.1716108. PubMed DOI

Calleja-Agius J., Jauniaux E., Pizzey A., Muttukrishna S. Investigation of systemic inflammatory response in first trimester pregnancy failure. Hum. Reprod. 2012;27:349–357. doi: 10.1093/humrep/der402. PubMed DOI

Zahedkalaei A.T., Kazemi M., Zolfaghari P., Rashidan M., Sohrabi M.B. Association Between Urinary Tract Infection in the First Trimester and Risk of Preeclampsia: A Case–Control Study. Int. J. Womens Health. 2020;12:521–526. doi: 10.2147/IJWH.S256943. PubMed DOI PMC

Giakoumelou S., Wheelhouse N., Cuschieri K., Entrican G., Howie S.E., Horne A.W. The role of infection in miscarriage. Hum. Reprod. Update. 2016;22:116–133. doi: 10.1093/humupd/dmv041. PubMed DOI PMC

Ibarra A., Vega-Guedes B., Brito-Casillas Y., Wägner A.M. Diabetes in Pregnancy and MicroRNAs: Promises and Limitations in Their Clinical Application. Non Coding RNA. 2018;4:32. doi: 10.3390/ncrna4040032. PubMed DOI PMC

Winger E.E., Reed J.L., Ji X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for predicting adverse pregnancy outcome. J. Reprod. Immunol. 2015;110:22–35. doi: 10.1016/j.jri.2015.03.005. PubMed DOI

Kaczmarek M.M., Najmula J., Guzewska M.M., Przygrodzka E. MiRNAs in the Peri-Implantation Period: Contribution to Embryo–Maternal Communication in Pigs. Int. J. Mol. Sci. 2020;21:2229. doi: 10.3390/ijms21062229. PubMed DOI PMC

Bahramy A., Zafari N., Izadi P., Soleymani F., Kavousi S., Noruzinia M. The Role of miRNAs 340-5p, 92a-3p, and 381-3p in Patients with Endometriosis: A Plasma and Mesenchymal Stem-Like Cell Study. BioMed Res. Int. 2021;2021:1–15. doi: 10.1155/2021/5298006. PubMed DOI PMC

Lin L., Du T., Huang J., Huang L.-L., Yang D.-Z. Identification of Differentially Expressed MicroRNAs in the Ovary of Polycystic Ovary Syndrome with Hyperandrogenism and Insulin Resistance. Chin. Med. J. 2015;128:169–174. doi: 10.4103/0366-6999.149189. PubMed DOI PMC

Zhong C., Gao L., Shu L., Hou Z., Cai L., Huang J., Liu J., Mao Y. Analysis of IVF/ICSI Outcomes in Endometriosis Patients with Recurrent Implantation Failure: Influence on Cumulative Live Birth Rate. Front. Endocrinol. 2021;12:640288. doi: 10.3389/fendo.2021.640288. PubMed DOI PMC

Butler A.E., Ramachandran V., Sathyapalan T., David R., Gooderham N., Benurwar M., Dargham S., Hayat S., Najafi-Shoushtari S.H., Atkin S.L. microRNA Expression in Women with and without Polycystic Ovarian Syndrome Matched for Body Mass Index. Front. Endocrinol. 2020;11:206. doi: 10.3389/fendo.2020.00206. PubMed DOI PMC

Gu T., Elgin S.C.R. Maternal Depletion of Piwi, a Component of the RNAi System, Impacts Heterochromatin Formation in Drosophila. PLoS Genet. 2013;9:e1003780. doi: 10.1371/journal.pgen.1003780. PubMed DOI PMC

Ding D., Chen C. Cracking the egg: A breakthrough in piRNA function in mammalian oocytes and embryos. Biol. Reprod. 2022;106:6–8. doi: 10.1093/biolre/ioab206. PubMed DOI PMC

Russell S., Stalker L., LaMarre J. PIWIs, piRNAs and Retrotransposons: Complex battles during reprogramming in gametes and early embryos. Reprod. Domest. Anim. 2017;52:28–38. doi: 10.1111/rda.13053. PubMed DOI

Kamalidehghan B., Habibi M., Afjeh S.S., Shoai M., Alidoost S., Ghale R.A., Eshghifar N., Pouresmaeili F. The Importance of Small Non-Coding RNAs in Human Reproduction: A Review Article. Appl. Clin. Genet. 2020;13:1–11. doi: 10.2147/TACG.S207491. PubMed DOI PMC

Du W.W., Yang W., Xuan J., Gupta S., Krylov S.N., Ma X., Yang Q., Yang B.B. Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death Differ. 2016;23:1458–1470. doi: 10.1038/cdd.2016.27. PubMed DOI PMC

Zhang H., Zhang F., Chen Q., Li M., Lv X., Xiao Y., Zhang Z., Hou L., Lai Y., Zhang Y., et al. The piRNA pathway is essential for generating functional oocytes in golden hamsters. Nature. 2021;23:1013–1022. doi: 10.1038/s41556-021-00750-6. PubMed DOI

Jia S.-Z., Yang Y., Lang J., Sun P., Leng J. Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum. Reprod. 2013;28:322–330. doi: 10.1093/humrep/des413. PubMed DOI PMC

Lau N.L., Ohsumi T., Borowsky M., Kingston R.E., Blower M.D. Systematic and Single Cell Analysis of Xenopus Piwi-Interacting RNAs and Xiwi. EMBO J. 2009;28:2945–2958. doi: 10.1038/emboj.2009.237. PubMed DOI PMC

Kim V.N. Small RNAs Just Got Bigger: Piwi-Interacting RNAs (PiRNAs) in Mammalian Testes. Genes Dev. 2006;20:1993–1997. doi: 10.1101/gad.1456106. PubMed DOI

Gou L.-T., Kang J.-Y., Dai P., Wang X., Li F., Zhao S., Zhang M., Hua M.-M., Lu Y., Zhu Y., et al. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell. 2017;169:1090–1104.e13. doi: 10.1016/j.cell.2017.04.034. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...