Small Non-Coding RNAs as New Biomarkers to Evaluate the Quality of the Embryo in the IVF Process
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36421701
PubMed Central
PMC9687427
DOI
10.3390/biom12111687
PII: biom12111687
Knihovny.cz E-resources
- Keywords
- IVF, biomarker, embryo selection, embryonic secretome, miRNA, piRNA,
- MeSH
- Biomarkers MeSH
- Fertilization in Vitro MeSH
- Humans MeSH
- RNA, Small Untranslated * MeSH
- Embryo Transfer MeSH
- Pregnancy MeSH
- Artificial Intelligence MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- RNA, Small Untranslated * MeSH
The increased interest in assisted reproduction through in vitro fertilization (IVF) leads to an urgent need to identify biomarkers that reliably highly predict the success of pregnancy. Despite advances in diagnostics, treatment, and IVF approaches, the 30% success rate of IVF seems insurmountable. Idiopathic infertility does not have any explanation for IVF failure especially when a patient is treated with a healthy competitive embryo capable of implantation and development. Since appropriate intercellular communication is essential after embryo implantation, the emergence of the investigation of embryonic secretome including short non-coding RNA (sncRNA) molecules is crucial. That's why biomarker identification, sncRNAs secreted during the IVF process into the blastocyst's cultivation medium, by the implementation of artificial intelligence opens the door to a better understanding of the bidirectional communication between embryonic cells and the endometrium and so the success of the IVF. This study presents a set of promising new sncRNAs which are revealed to predictively distinguish a high-quality embryo, suitable for an embryo transfer in the IVF process, from a low-quality embryo with 86% accuracy. The identified exact combination of miRNAs/piRNAs as a non-invasively obtained biomarker for quality embryo determination, increasing the likelihood of implantation and the success of pregnancy after an embryo transfer.
Central European Institute of Technology Masaryk University 601 77 Brno Czech Republic
Faculty of Natural Sciences Comenius University in Bratislava 842 15 Bratislava Slovakia
Gyncare a s 040 13 Košice Slovakia
SAFTRA BioMAI Pavol Jozef Šafárik University in Košice 040 11 Košice Slovakia
See more in PubMed
Petraglia F., Serour G.I., Chapron C. The changing prevalence of infertility. Int. J. Gynecol. Obstet. 2013;123:S4–S8. doi: 10.1016/j.ijgo.2013.09.005. PubMed DOI
Vander Borght M., Wyns C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012. PubMed DOI
Focus on Reproduction ‘Dramatic’ Decline in Worldwide Total Fertility Rates Predicted. [(accessed on 12 April 2022)]. Available online: https://www.focusonreproduction.eu/article/News-in-Reproduction-Population?fbclid=IwAR3R3Icjm-LQC8zPLAKBDTLdLxCHKGAOqI1sYBe1eJnEvaAgSf2bUCoTkZ0.
Toporcerová S., Špaková I., Mareková M., Rabajdová M. In: Biotechnology in Healthcare. 1st ed. Barh D., editor. Volume 2 Elsevier; London, UK: 2022.
Ehsani M., Mohammadnia-Afrouzi M., Mirzakhami M., Esmaeilzadeh S., Shahbazi M. Female Unexplained Infertility: A Disease with Imbalanced Adaptive Immunity. J. Hum. Reprod Sci. 2019;12:274–282. doi: 10.4103/jhrs.JHRS_30_19. PubMed DOI PMC
Bashiri A., Halper K.I., Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018;16:121. doi: 10.1186/s12958-018-0414-2. PubMed DOI PMC
Rabajdová M., Urban P., Biščáková Z., Urdzík P., Mareková M. Endometrial receptivity—A new challenge of infertility diagnostics in the In Vitro fertilization process. Lek. Obz. 2019;68:95–98.
Li L., Wang P., Liu S., Bai X., Zou B., Li Y. Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation. J. Assist. Reprod. Genet. 2020;37:21–32. doi: 10.1007/s10815-019-01616-5. PubMed DOI PMC
Ferretti C., Bruni L., Dangles-Marie V., Pecking A., Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Updat. 2007;13:121–141. doi: 10.1093/humupd/dml048. PubMed DOI
Guo X., Yi H., Li T., Wang Y., Wang H., Chen X. Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo Implantation: Clinical Implications. Biomolecules. 2021;11:253. doi: 10.3390/biom11020253. PubMed DOI PMC
Torry D.S., Leavenworth J., Chang M., Maheshwari V., Groesch K., Ball E.R., Torry R. Angiogenesis in implantation. J. Assist. Reprod. Genet. 2007;24:303–315. doi: 10.1007/s10815-007-9152-7. PubMed DOI PMC
Varas-Godoy M., Acuña-Gallardo S., Venegas-Duarte S., Hill C., Caceres-Verschae A., Realini O., Monteiro L.J., Zavala G., Khoury M., Romero R., et al. Angiogenic Properties of Menstrual Stem Cells Are Impaired in Women with a History of Preeclampsia. Stem Cells Int. 2019;2019:1916542. doi: 10.1155/2019/1916542. PubMed DOI PMC
Rosenbluth E.M., Shelton D.N., Wells L.M., Sparks A.E., Van Voorhis B.J. Human embryos secrete microRNAs into culture media—A potential biomarker for implantation. Fertil. Steril. 2014;101:1493–1500. doi: 10.1016/j.fertnstert.2014.01.058. PubMed DOI
Ochoa-Bernal M.A., Fazleabas A.T. Physiologic Events of Embryo Implantation and Decidualization in Human and Non-Human Primates. Int. J. Mol. Sci. 2020;21:1973. doi: 10.3390/ijms21061973. PubMed DOI PMC
Capalbo A., Ubaldi F.M., Cimadomo D., Noli L., Khalaf Y., Farcomeni A., Ilic D., Rienzi L. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2015;105:225–235. doi: 10.1016/j.fertnstert.2015.09.014. PubMed DOI
Rødgaard T., Heegaard P.M., Callesen H. Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod. Biomed. Online. 2015;31:585–592. doi: 10.1016/j.rbmo.2015.08.003. PubMed DOI
Timofeeva A., Drapkina Y., Fedorov I., Chagovets V., Makarova N., Shamina M., Kalinina E., Sukhikh G. Small Noncoding RNA Signatures for Determining the Developmental Potential of an Embryo at the Morula Stage. Int. J. Mol. Sci. 2020;21:9399. doi: 10.3390/ijms21249399. PubMed DOI PMC
Cimadomo D., Rienzi L., Giancani A., Alviggi E., Dusi L., Canipari R., Noli L., Ilic D., Khalaf Y., Ubaldi F.M., et al. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: Searching for biomarkers of implantation. Hum. Reprod. 2019;34:1746–1761. doi: 10.1093/humrep/dez119. PubMed DOI
Cuman C., Van Sinderen M., Gantier M.P., Rainczuk K., Sorby K., Rombauts L., Osianlis T., Dimitriadis E. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion. eBioMedicine. 2015;2:1528–1535. doi: 10.1016/j.ebiom.2015.09.003. PubMed DOI PMC
Borges E., Jr., Setti A.S., Braga D.P.A.F., Geraldo M.V., Figueira R.d.C.S., Iaconelli A., Jr. miR-142-3p as a biomarker of blastocyst implantation failure—A pilot study. JBRA Assist. Reprod. 2016;20:200–205. doi: 10.5935/1518-0557.20160039. PubMed DOI PMC
Abu-Halima M., Häusler S., Backes C., Fehlmann T., Staib C., Nestel S., Nazarenko I., Meese E., Keller A. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization. Sci. Rep. 2017;7:13525. doi: 10.1038/s41598-017-13683-8. PubMed DOI PMC
Kim J., Lee J., Jun J.H. Identification of differentially expressed microRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos in mice. Reprod. Fertil. Dev. 2019;31:645–657. doi: 10.1071/RD18161. PubMed DOI
Timofeeva A.V., Chagovets V.V., Drapkina Y.S., Makarova N.P., Kalinina E.A., Sukhikh G.T. Cell-Free, Embryo-Specific sncRNA as a Molecular Biological Bridge between Patient Fertility and IVF Efficiency. Int. J. Mol. Sci. 2019;20:2912. doi: 10.3390/ijms20122912. PubMed DOI PMC
Cimadomo D., Capalbo A., Ubaldi F.M., Scarica C., Palagiano A., Canipari R., Rienzi L. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis. BioMed Res. Int. 2016;2016:7193075. doi: 10.1155/2016/7193075. PubMed DOI PMC
Manna C., Nanni L., Lumini A., Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online. 2013;26:42–49. doi: 10.1016/j.rbmo.2012.09.015. PubMed DOI
Fernandez E.I., Ferreira A.S., Cecílio M.H.M., Chéles D., De Souza R.C.M., Nogueira M.F.G., Rocha J.C. Artificial intelligence in the IVF laboratory: Overview through the application of different types of algorithms for the classification of reproductive data. J. Assist. Reprod. Genet. 2020;37:2359–2376. doi: 10.1007/s10815-020-01881-9. PubMed DOI PMC
Raimundo J., Cabrita P. Artificial intelligence at assisted reproductive technology. Procedia Comput. Sci. 2021;181:442–447. doi: 10.1016/j.procs.2021.01.189. DOI
Zhao Y., Sun H., Feng M., Zhao J., Zhao X., Wan Q., Cai D. Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol. Endocrinol. 2017;34:428–432. doi: 10.1080/09513590.2017.1409714. PubMed DOI
Amjadi F.S., Salehi E., Zandieh Z., Rashidi M., Taleahmad S., Masrour M.J., Aflatoonian R., Mehdizadeh M. Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation. Iran. J. Basic. Med. Sci. 2019;22:426–431. doi: 10.22038/ijbms.2019.32961.7874. PubMed DOI PMC
Ashary N., Tiwari A., Modi D. Embryo Implantation: War in Times of Love. Endocrinology. 2018;159:1188–1198. doi: 10.1210/en.2017-03082. PubMed DOI
Zaninovic N., Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil. Steril. 2020;114:914–920. doi: 10.1016/j.fertnstert.2020.09.157. PubMed DOI
Nasiri N., Eftekhari-Yazdi P. An Overview of The Available Methods for Morphological Scoring of Pre-Implantation Embryos in In Vitro Fertilization. Cell J. 2015;16:392–405. doi: 10.22074/cellj.2015.486. PubMed DOI PMC
Milewski R., Ajduk A. Time-lapse imaging of cleavage divisions in embryo quality assessment. Reproduction. 2017;154:R37–R53. doi: 10.1530/REP-17-0004. PubMed DOI
Irani M., Reichman D., Robles A., Melnick A., Davis O., Zaninovic N., Xu K., Rosenwaks Z. Morphologic grading of euploid blastocysts influences implantation and ongoing pregnancy rates. Fertil. Steril. 2017;107:664–670. doi: 10.1016/j.fertnstert.2016.11.012. PubMed DOI
Gardner D.K., Lane M., Stevens J., Schlenker T., Schoolcraft W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000;73:1155–1158. doi: 10.1016/S0015-0282(00)00518-5. PubMed DOI
Moayeri M., Saeidi H., Modarresi M.H., Hashemi M. The Effect of Preimplantation Genetic Screening on Implantation Rate in Women over 35 Years of Age. Cell J. 2016;18:13–20. doi: 10.22074/cellj.2016.3982. PubMed DOI PMC
Qiu J., Li P., Dong M., Xin X., Tan J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: A machine learning method. J. Transl. Med. 2019;17:317. doi: 10.1186/s12967-019-2062-5. PubMed DOI PMC
Liu R., Bai S., Jiang X., Luo L., Tong X., Zheng S., Wang Y., Xu B. Multifactor Prediction of Embryo Transfer Outcomes Based on a Machine Learning Algorithm. Front. Endocrinol. 2021;12:745039. doi: 10.3389/fendo.2021.745039. PubMed DOI PMC
Xi Q., Yang Q., Wang M., Huang B., Zhang B., Li Z., Liu S., Yang L., Zhu L., Jin L. Individualized embryo selection strategy developed by stacking machine learning model for better in vitro fertilization outcomes: An application study. Reprod. Biol. Endocrinol. 2021;19:53. doi: 10.1186/s12958-021-00734-z. PubMed DOI PMC
Khosravi P., Kazemi E., Zhan Q., Malmsten J.E., Toschi M., Zisimopoulos P., Sigaras A., Lavery S., Cooper L.A.D., Hickman C., et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2019;2:21. doi: 10.1038/s41746-019-0096-y. PubMed DOI PMC
Liang P., Yang W., Chen X., Long C., Zheng L., Li H., Zuo Y. Machine Learning of Single-Cell Transcriptome Highly Identifies mRNA Signature by Comparing F-Score Selection with DGE Analysis. Mol. Ther. Nucleic Acids. 2020;20:155–163. doi: 10.1016/j.omtn.2020.02.004. PubMed DOI PMC
Yang Q., Li R., Lyu Q., Hou L., Liu Z., Sun Q., Liu M., Shi H., Xu B., Yin M., et al. Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun. 2019;10:3389. doi: 10.1038/s41467-019-11312-8. PubMed DOI PMC
Ahmad J., Hasnain S.E., Siddiqui M.A., Ahamed M., Musarrat J., Al-Khedhairy A.A. MicroRNA in Carcinogenesis & Cancer Diagnostics: A New Paradigm. Indian J. Med. Res. 2013;137:680–694. PubMed PMC
Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. PubMed DOI
Ding D., Liu J., Dong K., Midic U., Hess R., Xie H., Demireva E.Y., Chen C. PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice. Nat. Commun. 2017;8:819. doi: 10.1038/s41467-017-00854-4. PubMed DOI PMC
Battaglia R., Musumeci P., Ragusa M., Barbagallo D., Scalia M., Zimbone M., Faro J.M.L., Borzì P., Scollo P., Purrello M., et al. Ovarian aging increases small extracellular vesicle CD81+ release in human follicular fluid and influences miRNA profiles. Aging. 2020;12:12324–12341. doi: 10.18632/aging.103441. PubMed DOI PMC
Hocaoglu M., Demirer S., Karaalp I.L., Kaynak E., Attar E., Turgut A., Karateke A., Komurcu-Bayrak E. Identification of miR-16-5p and miR-155-5p microRNAs differentially expressed in circulating leukocytes of pregnant women with polycystic ovary syndrome and gestational diabetes. Gynecol. Endocrinol. 2021;37:216–220. doi: 10.1080/09513590.2020.1843620. PubMed DOI
Tagliaferri S., Cepparulo P., Vinciguerra A., Campanile M., Esposito G., Maruotti G.M., Zullo F., Annunziato L., Pignataro G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front. Pediatr. 2021;9:611112. doi: 10.3389/fped.2021.611112. PubMed DOI PMC
Russell S.J., Menezes K., Balakier H., Librach C. Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods. Syst. Biol. Reprod. Med. 2020;66:129–139. doi: 10.1080/19396368.2020.1716108. PubMed DOI
Calleja-Agius J., Jauniaux E., Pizzey A., Muttukrishna S. Investigation of systemic inflammatory response in first trimester pregnancy failure. Hum. Reprod. 2012;27:349–357. doi: 10.1093/humrep/der402. PubMed DOI
Zahedkalaei A.T., Kazemi M., Zolfaghari P., Rashidan M., Sohrabi M.B. Association Between Urinary Tract Infection in the First Trimester and Risk of Preeclampsia: A Case–Control Study. Int. J. Womens Health. 2020;12:521–526. doi: 10.2147/IJWH.S256943. PubMed DOI PMC
Giakoumelou S., Wheelhouse N., Cuschieri K., Entrican G., Howie S.E., Horne A.W. The role of infection in miscarriage. Hum. Reprod. Update. 2016;22:116–133. doi: 10.1093/humupd/dmv041. PubMed DOI PMC
Ibarra A., Vega-Guedes B., Brito-Casillas Y., Wägner A.M. Diabetes in Pregnancy and MicroRNAs: Promises and Limitations in Their Clinical Application. Non Coding RNA. 2018;4:32. doi: 10.3390/ncrna4040032. PubMed DOI PMC
Winger E.E., Reed J.L., Ji X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for predicting adverse pregnancy outcome. J. Reprod. Immunol. 2015;110:22–35. doi: 10.1016/j.jri.2015.03.005. PubMed DOI
Kaczmarek M.M., Najmula J., Guzewska M.M., Przygrodzka E. MiRNAs in the Peri-Implantation Period: Contribution to Embryo–Maternal Communication in Pigs. Int. J. Mol. Sci. 2020;21:2229. doi: 10.3390/ijms21062229. PubMed DOI PMC
Bahramy A., Zafari N., Izadi P., Soleymani F., Kavousi S., Noruzinia M. The Role of miRNAs 340-5p, 92a-3p, and 381-3p in Patients with Endometriosis: A Plasma and Mesenchymal Stem-Like Cell Study. BioMed Res. Int. 2021;2021:1–15. doi: 10.1155/2021/5298006. PubMed DOI PMC
Lin L., Du T., Huang J., Huang L.-L., Yang D.-Z. Identification of Differentially Expressed MicroRNAs in the Ovary of Polycystic Ovary Syndrome with Hyperandrogenism and Insulin Resistance. Chin. Med. J. 2015;128:169–174. doi: 10.4103/0366-6999.149189. PubMed DOI PMC
Zhong C., Gao L., Shu L., Hou Z., Cai L., Huang J., Liu J., Mao Y. Analysis of IVF/ICSI Outcomes in Endometriosis Patients with Recurrent Implantation Failure: Influence on Cumulative Live Birth Rate. Front. Endocrinol. 2021;12:640288. doi: 10.3389/fendo.2021.640288. PubMed DOI PMC
Butler A.E., Ramachandran V., Sathyapalan T., David R., Gooderham N., Benurwar M., Dargham S., Hayat S., Najafi-Shoushtari S.H., Atkin S.L. microRNA Expression in Women with and without Polycystic Ovarian Syndrome Matched for Body Mass Index. Front. Endocrinol. 2020;11:206. doi: 10.3389/fendo.2020.00206. PubMed DOI PMC
Gu T., Elgin S.C.R. Maternal Depletion of Piwi, a Component of the RNAi System, Impacts Heterochromatin Formation in Drosophila. PLoS Genet. 2013;9:e1003780. doi: 10.1371/journal.pgen.1003780. PubMed DOI PMC
Ding D., Chen C. Cracking the egg: A breakthrough in piRNA function in mammalian oocytes and embryos. Biol. Reprod. 2022;106:6–8. doi: 10.1093/biolre/ioab206. PubMed DOI PMC
Russell S., Stalker L., LaMarre J. PIWIs, piRNAs and Retrotransposons: Complex battles during reprogramming in gametes and early embryos. Reprod. Domest. Anim. 2017;52:28–38. doi: 10.1111/rda.13053. PubMed DOI
Kamalidehghan B., Habibi M., Afjeh S.S., Shoai M., Alidoost S., Ghale R.A., Eshghifar N., Pouresmaeili F. The Importance of Small Non-Coding RNAs in Human Reproduction: A Review Article. Appl. Clin. Genet. 2020;13:1–11. doi: 10.2147/TACG.S207491. PubMed DOI PMC
Du W.W., Yang W., Xuan J., Gupta S., Krylov S.N., Ma X., Yang Q., Yang B.B. Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death Differ. 2016;23:1458–1470. doi: 10.1038/cdd.2016.27. PubMed DOI PMC
Zhang H., Zhang F., Chen Q., Li M., Lv X., Xiao Y., Zhang Z., Hou L., Lai Y., Zhang Y., et al. The piRNA pathway is essential for generating functional oocytes in golden hamsters. Nature. 2021;23:1013–1022. doi: 10.1038/s41556-021-00750-6. PubMed DOI
Jia S.-Z., Yang Y., Lang J., Sun P., Leng J. Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum. Reprod. 2013;28:322–330. doi: 10.1093/humrep/des413. PubMed DOI PMC
Lau N.L., Ohsumi T., Borowsky M., Kingston R.E., Blower M.D. Systematic and Single Cell Analysis of Xenopus Piwi-Interacting RNAs and Xiwi. EMBO J. 2009;28:2945–2958. doi: 10.1038/emboj.2009.237. PubMed DOI PMC
Kim V.N. Small RNAs Just Got Bigger: Piwi-Interacting RNAs (PiRNAs) in Mammalian Testes. Genes Dev. 2006;20:1993–1997. doi: 10.1101/gad.1456106. PubMed DOI
Gou L.-T., Kang J.-Y., Dai P., Wang X., Li F., Zhao S., Zhang M., Hua M.-M., Lu Y., Zhu Y., et al. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell. 2017;169:1090–1104.e13. doi: 10.1016/j.cell.2017.04.034. PubMed DOI PMC