The Effects of Ultrasound Treatment of Graphite on the Reversibility of the (De)Intercalation of an Anion from Aqueous Electrolyte Solution

. 2022 Nov 08 ; 12 (22) : . [epub] 20221108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36432218

Grantová podpora
GAUK 371621 Charles University
CZ.02.1.01/0.0/0.0/16_026/0008382 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_019/0000760 Ministry of Education Youth and Sports
GACR 19-23986S Czech Science Foundation

Low cycling stability is one of the most crucial issues in rechargeable batteries. Herein, we study the effects of a simple ultrasound treatment of graphite for the reversible (de)intercalation of a ClO4- anion from a 2.4 M Al(ClO4)3 aqueous solution. We demonstrate that the ultrasound-treated graphite offers the improved reversibility of the ClO4- anion (de)intercalation compared with the untreated samples. The ex situ and in situ Raman spectroelectrochemistry and X-ray diffraction analysis of the ultrasound-treated materials shows no change in the interlayer spacing, a mild increase in the stacking order, and a large increase in the amount of defects in the lattice accompanied by a decrease in the lateral crystallite size. The smaller flakes of the ultrasonicated natural graphite facilitate the improved reversibility of the ClO4- anion electrochemical (de)intercalation and a more stable electrochemical performance with a cycle life of over 300 cycles.

Zobrazit více v PubMed

Dunn B., Kamath H., Tarascon J.M. Electrical energy storage for the grid: A battery of choices. Science. 2011;334:928–935. doi: 10.1126/science.1212741. PubMed DOI

Thackeray M.M., Wolverton C., Isaacs E.D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012;5:7854–7863. doi: 10.1039/c2ee21892e. DOI

Rothermel S., Meister P., Schmuelling G., Fromm O., Meyer H.W., Nowak S., Winter M., Placke T. Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ. Sci. 2014;7:3412–3423. doi: 10.1039/C4EE01873G. DOI

Rodríguez-Pérez I.A., Zhang L., Wrogemann J.M., Driscoll D.M., Sushko M.L., Han K.S., Fulton J.L., Engelhard M.H., Balasubramanian M., Viswanathan V.V., et al. Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries. Adv. Energy Mater. 2020;10:2001256. doi: 10.1002/aenm.202001256. DOI

Inagaki M. Applications of graphite intercalation compounds. J. Mater. Res. 1989;4:1560–1568. doi: 10.1557/JMR.1989.1560. DOI

Dresselhaus M.S., Dresselhaus G. Intercalation compounds of graphite. Adv. Phys. 2002;51:1–186. doi: 10.1080/00018730110113644. DOI

Ji B., Zhang F., Song X., Tang Y. A Novel Potassium-Ion-Based Dual-Ion Battery. Adv. Mater. 2017;29:1700519. doi: 10.1002/adma.201700519. PubMed DOI

Rodríguez-Pérez I.A., Ji X. Anion Hosting Cathodes in Dual-Ion Batteries. ACS Energy Lett. 2017;2:1762–1770. doi: 10.1021/acsenergylett.7b00321. DOI

Placke T., Fromm O., Rothermel S., Schmuelling G., Meister P., Meyer H.-W., Passerini S., Winter M. Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells. ECS Trans. 2013;50:59–68. doi: 10.1149/05024.0059ecst. DOI

Kondo Y., Miyahara Y., Fukutsuka T., Miyazaki K., Abe T. Electrochemical intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions. Electrochem. Commun. 2019;100:26–29. doi: 10.1016/j.elecom.2019.01.015. DOI

Zhu D., Wang H. Hexafluorophosphate Anion Intercalation into Graphite Electrodes from Propylene Carbonate/Gamma-Butyrolactone Solutions. Langmuir. 2021;37:10797–10805. doi: 10.1021/acs.langmuir.1c01693. PubMed DOI

Wang Y., Li J., Huang Y., Wang H. Anion Storage Behavior of Graphite Electrodes in LiBF4/Sulfone/Ethyl Methyl Carbonate Solutions. Langmuir. 2019;35:14804–14811. doi: 10.1021/acs.langmuir.9b02758. PubMed DOI

Lv Z., Han M., Sun J., Hou L., Chen H., Li Y., Lin M.C. A high discharge voltage dual-ion rechargeable battery using pure (DMPI+)(AlCl4−) ionic liquid electrolyte. J. Power Sources. 2019;418:233–240. doi: 10.1016/j.jpowsour.2019.02.035. DOI

Zafar Z.A., Abbas G., Knizek K., Silhavik M., Kumar P., Jiricek P., Houdková J., Frank O., Cervenka J. Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn-graphite dual-ion battery. J. Mater. Chem. A. 2022;10:2064–2074. doi: 10.1039/D1TA10122F. DOI

Bordet F., Ahlbrecht K., Tübke J., Ufheil J., Hoes T., Oetken M., Holzapfel M. Anion intercalation into graphite from a sodium-containing electrolyte. Electrochim. Acta. 2015;174:1317–1323. doi: 10.1016/j.electacta.2015.06.095. DOI

Zhu J., Li Y., Yang B., Liu L., Li J., Yan X., He D. A Dual Carbon-Based Potassium Dual Ion Battery with Robust Comprehensive Performance. Small. 2018;14:1801836. doi: 10.1002/smll.201801836. PubMed DOI

Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014;114:11503–11618. doi: 10.1021/cr500003w. PubMed DOI

Jiang X., Luo L., Zhong F., Feng X., Chen W., Ai X., Yang H., Cao Y. Electrolytes for Dual-Carbon Batteries. ChemElectroChem. 2019;6:2615–2629. doi: 10.1002/celc.201900300. DOI

Wang P., Chen Z., Wang H., Ji Z., Feng Y., Wang J., Liu J., Hu M., Fei J., Gan W., et al. A high-performance flexible aqueous Al ion rechargeable battery with long cycle life. Energy Storage Mater. 2020;25:426–435. doi: 10.1016/j.ensm.2019.09.038. DOI

Nandi S., Das S.K. Realizing a Low-Cost and Sustainable Rechargeable Aqueous Aluminum-Metal Battery with Exfoliated Graphite Cathode. ACS Sustain. Chem. Eng. 2019;7:19839–19847. doi: 10.1021/acssuschemeng.9b05185. DOI

Liu Z., Huang Y., Huang Y., Yang Q., Li X., Huang Z., Zhi C. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020;49:180–232. doi: 10.1039/C9CS00131J. PubMed DOI

Liang T., Hou R., Dou Q., Zhang H., Yan X. The Applications of Water-in-Salt Electrolytes in Electrochemical Energy Storage Devices. Adv. Funct. Mater. 2021;31:2006749. doi: 10.1002/adfm.202006749. DOI

Zafar Z.A., Abbas G., Silhavik M., Knizek K., Kaman O., Sonia F.J., Kumar P., Jiricek P., Houdková J., Frank O., et al. Reversible anion intercalation into graphite from aluminum perchlorate “water-in-salt” electrolyte. Electrochim. Acta. 2022;404:139754. doi: 10.1016/j.electacta.2021.139754. DOI

Ng K.L., Malik M., Buch E., Glossmann T., Hintennach A., Azimi G. A low-cost rechargeable aluminum/natural graphite battery utilizing urea-based ionic liquid analog. Electrochim. Acta. 2019;327:135031. doi: 10.1016/j.electacta.2019.135031. DOI

Liu C., Liu Z., Niu H., Wang C., Wang Z., Gao B., Liu J., Taylor M. Preparation and in-situ Raman characterization of binder-free u-GF@CFC cathode for rechargeable aluminum-ion battery. MethodsX. 2019;6:2374–2383. doi: 10.1016/j.mex.2019.10.008. PubMed DOI PMC

Kokai F., Sorin R., Chigusa H., Hanai K., Koshio A., Ishihara M., Koga Y., Hasegawa M., Imanishi N., Takeda Y. Ultrasonication fabrication of high quality multilayer graphene flakes and their characterization as anodes for lithium ion batteries. Diam. Relat. Mater. 2012;29:63–68. doi: 10.1016/j.diamond.2012.07.011. DOI

Heckmann A., Fromm O., Rodehorst U., Münster P., Winter M., Placke T. New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of graphitization degree. Carbon N. Y. 2018;131:201–212. doi: 10.1016/j.carbon.2018.01.099. DOI

Abbas G., Sonia F.J., Zafar Z.A., Knížek K., Houdková J., Jiříček P., Bouša M., Plšek J., Kalbáč M., Červenka J., et al. Influence of structural properties on (de-)intercalation of ClO4− anion in graphite from concentrated aqueous electrolyte. Carbon N. Y. 2022;186:612–623. doi: 10.1016/j.carbon.2021.10.051. DOI

Kaewmala S., Limphirat W., Yordsri V., Kim H., Muhammad S., Yoon W.S., Srilomsak S., Limthongkul P., Meethong N. Structural and Electrochemical Kinetic Properties of 0.5Li2MnO3∙0.5LiCoO2 Cathode Materials with Different Li2MnO3 Domain Sizes. Sci. Rep. 2019;9:427. doi: 10.1038/s41598-018-36593-9. PubMed DOI PMC

Zou J., Sole C., Drewett N.E., Velický M., Hardwick L.J. In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses. J. Phys. Chem. Lett. 2016;7:4291–4296. doi: 10.1021/acs.jpclett.6b01886. PubMed DOI

Li N., Su D. In-situ structural characterizations of electrochemical intercalation of graphite compounds. Carbon Energy. 2019;1:200–218. doi: 10.1002/cey2.21. DOI

Oswald S., Nikolowski K., Ehrenberg H. Quasi in situ XPS investigations on intercalation mechanisms in Li-ion battery materials. Anal. Bioanal. Chem. 2009;393:1871–1877. doi: 10.1007/s00216-008-2520-z. PubMed DOI

Zhang Y., Lu F., Pan L., Xu Y., Yang Y., Bando Y., Golberg D., Yao J., Wang X. Improved cycling stability of NiS2 cathodes through designing a “kiwano” hollow structure. J. Mater. Chem. A. 2018;6:11978–11984. doi: 10.1039/C8TA01551A. DOI

Fan H., Qi L., Wang H. Intercalation Behavior of Hexafluorophosphate into Graphite Electrode from Propylene/Ethylmethyl Carbonates. J. Electrochem. Soc. 2017;164:A2262–A2267. doi: 10.1149/2.0371712jes. DOI

Wang B., Wang Y., Huang Y., Zhang L., Ma S., Wang H. Hexafluorophosphate Intercalation into the Graphite Electrode from Mixed Cyclic Carbonates. ACS Appl. Energy Mater. 2021;4:5316–5325. doi: 10.1021/acsaem.1c00813. DOI

Wang D.Y., Huang S.K., Liao H.J., Chen Y.M., Wang S.W., Kao Y.T., An J.Y., Lee Y.C., Chuang C.H., Huang Y.C., et al. Insights into dynamic molecular intercalation mechanism for Al[sbnd]C battery by operando synchrotron X-ray techniques. Carbon N. Y. 2019;146:528–534. doi: 10.1016/j.carbon.2019.01.038. DOI

Zhu D., Huang Y., Zhang L., Fan H., Wang H. PF6—Intercalation into Graphite Electrode from Gamma-butyrolactone/ethyl Methyl Carbonate. J. Electrochem. Soc. 2020;167:070513. doi: 10.1149/1945-7111/ab68ce. DOI

Seel J.A., Dahn J.R. Electrochemical Intercalation of PF6 into Graphite. J. Electrochem. Soc. 2000;147:892. doi: 10.1149/1.1393288. DOI

Gao J., Tian S., Qi L., Wang H. Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim. Acta. 2015;176:22–27. doi: 10.1016/j.electacta.2015.06.152. DOI

Akikubo K., Kurahashi T., Kawaguchi S., Tachibana M. Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction. Carbon N. Y. 2020;169:307–311. doi: 10.1016/j.carbon.2020.07.027. DOI

Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006;97:18740. doi: 10.1103/PhysRevLett.97.187401. PubMed DOI

Cançado L.G., Jorio A., Ferreira E.H.M., Stavale F., Achete C.A., Capaz R.B., Moutinho M.V.O., Lombardo A., Kulmala T.S., Ferrari A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011;11:3190–3196. doi: 10.1021/nl201432g. PubMed DOI

Lim S., Yoon S.H., Mochida I., Chi J.H. Surface modification of carbon nanofiber with high degree of graphitization. J. Phys. Chem. B. 2004;108:1533–1536. doi: 10.1021/jp036819r. DOI

Wu C., Cheng Q., Wu K. Electrochemical Functionalization of N -Methyl-2-pyrrolidone-Exfoliated Graphene Nanosheets as Highly Sensitive Analytical Platform for Phenols. Anal. Chem. 2015;87:3294–3299. doi: 10.1021/ac504309j. PubMed DOI

Liu T., Zhu C., Kou T., Worsley M.A., Qian F., Condes C., Duoss E.B., Spadaccini C.M., Li Y. Ion Intercalation Induced Capacitance Improvement for Graphene-Based Supercapacitor Electrodes. ChemNanoMat. 2016;2:635–641. doi: 10.1002/cnma.201600107. DOI

Bu X., Su L., Dou Q., Lei S., Yan X. A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A. 2019;7:7541–7547. doi: 10.1039/C9TA00154A. DOI

Schmuelling G., Placke T., Kloepsch R., Fromm O., Meyer H.W., Passerini S., Winter M. X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. J. Power Sources. 2013;239:563–571. doi: 10.1016/j.jpowsour.2013.03.064. DOI

Xu J.H., Turney D.E., Jadhav A.L., Messinger R.J. Effects of Graphite Structure and Ion Transport on the Electrochemical Properties of Rechargeable Aluminum-Graphite Batteries. ACS Appl. Energy Mater. 2019;11:7799–7810. doi: 10.1021/acsaem.9b01184. DOI

Sonia F.J., Jangid M.K., Ananthoju B., Aslam M., Johari P., Mukhopadhyay A. Understanding the Li-storage in few layers graphene with respect to bulk graphite: Experimental, analytical and computational study. J. Mater. Chem. A. 2017;5:8662–8679. doi: 10.1039/C7TA01978E. DOI

Sonia F.J., Jangid M.K., Aslam M., Johari P., Mukhopadhyay A. Enhanced and faster potassium storage in graphene with respect to graphite: A comparative study with lithium storage. ACS Nano. 2019;13:2190–2204. doi: 10.1021/acsnano.8b08867. PubMed DOI

Zhang E., Cao W., Wang B., Yu X., Wang L., Xu Z., Lu B. A novel aluminum dual-ion battery. Energy Storage Mater. 2018;11:91–99. doi: 10.1016/j.ensm.2017.10.001. DOI

Son D.K., Kim J., Raj M.R., Lee G. Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries. Carbon N. Y. 2021;175:187–201. doi: 10.1016/j.carbon.2021.01.015. DOI

Skaltsas T., Ke X., Bittencourt C., Tagmatarchis N. Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J. Phys. Chem. C. 2013;117:23272–23278. doi: 10.1021/jp4057048. DOI

Shibaev A.A., Mal’tsev L.I., Petrov V.M., Maksimovskii E.A., Ukhina A.V., Prosanov I.Y., Popov M.V., Bannov A.G. Studies of ultrasonication of exfoliated graphite. Prot. Met. Phys. Chem. Surf. 2017;53:261–267. doi: 10.1134/S2070205117020216. DOI

Xu J.H., Schoetz T., McManus J.R., Subramanian V.R., Fields P.W., Messinger R.J. Tunable Pseudocapacitive Intercalation of Chloroaluminate Anions into Graphite Electrodes for Rechargeable Aluminum Batteries. J. Electrochem. Soc. 2021;168:060514. doi: 10.1149/1945-7111/ac0648. DOI

Liu C., Liu Z., Li Q., Niu H., Wang C., Wang Z., Gao B. Binder-free ultrasonicated graphite flakes@carbon fiber cloth cathode for rechargeable aluminum-ion battery. J. Power Sources. 2019;438:226950. doi: 10.1016/j.jpowsour.2019.226950. DOI

Kim J., Raj M.R., Lee G. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life. Nano-Micro Lett. 2021;13:171. doi: 10.1007/s40820-021-00698-0. PubMed DOI PMC

Peng Y., Chen Z., Zhang R., Zhou W., Gao P., Wu J., Liu H., Liu J., Hu A., Chen X. Oxygen-Containing Functional Groups Regulating the Carbon/Electrolyte Interfacial Properties Toward Enhanced K+ Storage. Nano-Micro Lett. 2021;13:192. doi: 10.1007/s40820-021-00722-3. PubMed DOI PMC

Xiong D., Li X., Shan H., Zhao Y., Dong L., Xu H., Zhang X., Li D., Sun X. Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries. Electrochim. Acta. 2015;174:762–769. doi: 10.1016/j.electacta.2015.06.041. DOI

Cao H., Peng X., Zhao M., Liu P., Xu B., Guo J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Adv. 2018;8:2858–2865. doi: 10.1039/C7RA12425B. PubMed DOI PMC

Tian S., Qi L., Wang H. Difluoro(oxalato)borate anion intercalation into graphite electrode from ethylene carbonate. Solid State Ionics. 2016;291:42–46. doi: 10.1016/j.ssi.2016.04.022. DOI

Lin M.C., Gong M., Lu B., Wu Y., Wang D.Y., Guan M., Angell M., Chen C., Yang J., Hwang B.J., et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520:325–328. doi: 10.1038/nature14340. PubMed DOI

Flores E., Novák P., Berg E.J. In situ and Operando Raman spectroscopy of layered transition metal oxides for Li-ion battery cathodes. Front. Energy Res. 2018;6:82. doi: 10.3389/fenrg.2018.00082. DOI

Wang D.Y., Wei C.Y., Lin M.C., Pan C.J., Chou H.L., Chen H.A., Gong M., Wu Y., Yuan C., Angell M., et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat. Commun. 2017;8:14283. doi: 10.1038/ncomms14283. PubMed DOI PMC

Julien C.M., Mauger A. In situ Raman analyses of electrode materials for Li-ion batter. AIMS Mater. Sci. 2018;5:650–698. doi: 10.3934/matersci.2018.4.650. DOI

Liang H.J., Hou B.H., Li W.H., Ning Q.L., Yang X.Y., Gu Z.Y., Nie X.J., Wang G., Wu X.L. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ. Sci. 2019;12:3575–3584. doi: 10.1039/C9EE02759A. DOI

Pan C.J., Yuan C., Zhu G., Zhang Q., Huang C.J., Lin M.C., Angell M., Hwang B.J., Kaghazchi P., Dai H. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries. Proc. Natl. Acad. Sci. USA. 2018;115:5670–5675. doi: 10.1073/pnas.1803576115. PubMed DOI PMC

Wang H., Bai Y., Chen S., Luo X., Wu C., Wu F., Lu J., Amine K. Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interfaces. 2015;7:80–84. doi: 10.1021/am508001h. PubMed DOI

Sheet D., Bera A., Fu Y., Desmecht A., Riant O., Hermans S. Carbon-Nanotube-Appended PAMAM Dendrimers Bearing Iron(II) α-Keto Acid Complexes: Catalytic Non-Heme Oxygenase Models. Chem.—A Eur. J. 2019;25:9191–9196. doi: 10.1002/chem.201901735. PubMed DOI

Takehira H., Karim M.R., Shudo Y., Fukuda M., Mashimo T., Hayami S. Modulating the Work Function of Graphene by Pulsed Plasma Aided Controlled Chlorination. Sci. Rep. 2018;8:17392. doi: 10.1038/s41598-018-35668-x. PubMed DOI PMC

Jagadeesh M.S., Bussetti G., Calloni A., Yivlialin R., Brambilla L., Accogli A., Gibertini E., Alliata D., Goletti C., Ciccacci F., et al. Incipient Anion Intercalation of Highly Oriented Pyrolytic Graphite Close to the Oxygen Evolution Potential: A Combined X-ray Photoemission and Raman Spectroscopy Study. J. Phys. Chem. C. 2019;123:1790–1797. doi: 10.1021/acs.jpcc.8b09823. DOI

Schnyder B., Alliata D., Kötz R., Siegenthaler H. Electrochemical intercalation of perchlorate ions in HOPG: An SFM/LFM and XPS study. Appl. Surf. Sci. 2001;173:221–232. doi: 10.1016/S0169-4332(00)00902-8. DOI

Zou L., Huang B., Huang Y., Huang Q., Wang C. An investigation of heterogeneity of the degree of graphitization in carbon–carbon composites. Mater. Chem. Phys. 2003;82:654–662. doi: 10.1016/S0254-0584(03)00332-8. DOI

Warren B.E. X-ray Diffraction in Random Layer Lattices. Phys. Rev. 1941;59:693–698. doi: 10.1103/PhysRev.59.693. DOI

Cançado L.G., Takai K., Enoki T., Endo M., Kim Y.A., Mizusaki H., Jorio A., Coelho L.N., Magalhães-Paniago R., Pimenta M.A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006;88:163106. doi: 10.1063/1.2196057. DOI

Jayaramulu K., Dubal D., Nagar B., Ranc V., Tomanec O., Petr M., Datta K.K.R., Zboril R., Gómez-Romero P., Fischer R.A. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage. Adv. Mater. 2018;30:e1705789. doi: 10.1002/adma.201705789. PubMed DOI

Pei S., Cheng H.M. The reduction of graphene oxide. Carbon N. Y. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI

Stobinski L., Lesiak B., Malolepszy A., Mazurkiewicz M., Mierzwa B., Zemek J., Jiricek P., Bieloshapka I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014;195:145–154. doi: 10.1016/j.elspec.2014.07.003. DOI

Yang D., Velamakanni A., Bozoklu G., Park S., Stoller M., Piner R.D., Stankovich S., Jung I., Field D.A., Ventrice C.A., Jr., et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon N. Y. 2009;47:145–152. doi: 10.1016/j.carbon.2008.09.045. DOI

Fan L.-Z., Liu J.-L., Ud-Din R., Yan X., Qu X. The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets. Carbon. 2012;50:3724–3730. doi: 10.1016/j.carbon.2012.03.046. DOI

Yoshida A., Tanahashi I., Nishino A. Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers. Carbon. 1990;28:611–615. doi: 10.1016/0008-6223(90)90062-4. DOI

Bokare A., Nordlund D., Melendrez C., Robinson R., Keles O., Wolcott A., Erogbogbo F. Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diam. Relat. Mater. 2020;110:108101. doi: 10.1016/j.diamond.2020.108101. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...