Aqueous Supercapacitor with Wide-Temperature Operability and over 100,000 Cycles Enabled by Water-in-Salt Electrolyte
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05895S
Czech Science Foundation
PubMed
39465594
PubMed Central
PMC11911967
DOI
10.1002/cssc.202401681
Knihovny.cz E-zdroje
- Klíčová slova
- Activated carbon, Aqueous electrolyte, Double layer capacitor, Supercapacitor, Water-in-salt, Wide Electrochemical potential window,
- Publikační typ
- časopisecké články MeSH
Supercapacitors are crucial in renewable energy integration, satellite power systems, and rapid power delivery applications for mitigating voltage fluctuations and storing excess energy. Aqueous electrolytes offer a promising solution for low-cost and safe supercapacitors. However, they still face limitations in cycle life and wide-temperature range performance. Here, we present a symmetric supercapacitor utilizing activated carbon electrodes and a "water-in-salt" electrolyte (WiSE) based on lithium perchlorate. The WiSE electrolyte exhibits an expanded electrochemical stability window, endowing the aqueous supercapacitor with remarkable stability and long cycle life of over 100,000 cycles at 500 mA g-1 with more than 91 % capacity retention. Moreover, the supercapacitor demonstrates good rate capability and wide temperature operability ranging from -20 to 80 °C. The use of high concentrations of salt in the aqueous electrolyte contributes not only to the enhancement of supercapacitor performance and cycle life but also to the temperature stability range, enabling all-season operability.
IMDEA Materials Institute Getafe 28906 Madrid Spain
Waterloo Institute for Nanotechnology University of Waterloo Waterloo ON N2 L 3G1 Canada
Zobrazit více v PubMed
Wu J., Chem Rev 2022, 122, 10821–10859. PubMed
Yadlapalli R. T., Alla R. R., Kandipati R., Kotapati A., J. Energy Storage 2022, 49, 104194.
Banerjee S., De B., Sinha P., Cherusseri J., Kar K. K., in Handbook of Nanocomposite Supercapacitor Materials I: Characteristics (Ed.: Kar K. K.), Springer Inter. Pub. Cham; 2020, 341–350.
Sumangala T. P., Sreekanth M. S., Rahaman A., in Handbook of Nanocomposite Supercapacitor Materials III: Selection (Ed.: Kar K. K.), Springer Inter.Pub. Cham ; 2021, 367–393.
Li J., Yu H., Lv Y., Cai Z., Shen Y., Ruhlmann L., Gan L., Liu M., Nanotechnology 2024, 35, 152001. PubMed
Qin Y., Jha S., Hu C., Song Z., Miao L., Chen Y., Liu P., Lv Y., Gan L., Liu M., J. Colloid Interface Sci. 2024, 675, 1091–1099. PubMed
Wang C., Pu Y., Feng J., Xu Y., Su K., Yang B., Lang J., Tian G., ChemElectroChem 2022, 9, e202200882.
Xiao D., Zhang L., Li Z., Dou H., Zhang X., Energy Storage Mater. 2022, 44, 10–28.
Zafar Z. A., Abbas G., Silhavik M., Knizek K., Kaman O., Sonia F. J., Kumar P., Jiricek P., Houdková J., Frank O., Cervenka J., Electrochim. Acta 2022, 404, 139754.
El Halimi M. S., Poli F., Mancuso N., Olivieri A., Mattioli E. J., Calvaresi M., Chafik T., Zanelli A., Soavi F., Electrochim. Acta 2021, 389, 138653.
Saeed G., Kang T., Byun J. S., Min D., Kim J. S., Sadavar S. V., Park H. S., Energy Mater. 2024, 4, 400023.
Pang M., Jiang S., Zhao J., Zhang S., Wang R., Li N., Liu R., Pan Q., Qu W., Xing B., RSC Adv 2020, 10, 35545–35556. PubMed PMC
Zafar Z. A., Abbas G., Knizek K., Silhavik M., Kumar P., Jiricek P., Houdkova J., Frank O., Cervenka J., J. Mater. Chem. A 2022, 10, 2064–2074.
Zhu Y., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S., Science 2011, 332, 1537–1541. PubMed
Fan W., Wang F., Xiong X., Song B., Wang T., Cheng X., Zhu Z., He J., Liu Y., Wu Y., NPG Asia Mater. 2024, 16, 18.
Jia Z., Hou S., Peng J., Wu X., Tang W., Sun W., Lv S., Yuan X., Liu L., Wu Y., J. Mater. Chem. A 2024, 12, 17835–17895.
Smith L., Dunn B., Science 2015, 350, 918. PubMed
Li Y., Zhou Z., Deng W., Li C., Yuan X., Hu J., Zhang M., Chen H., Li R., ChemElectroChem 2021, 8, 1451–1454.
Huang C., Sun T., Hulicova-Jurcakova D., ChemSusChem 2013, 6, 2330–2339. PubMed
Zhang Q., Ma Y., Lu Y., Li L., Wan F., Zhang K., Chen J., Nat. Commun. 2020, 11, 4463. PubMed PMC
Chen M., Feng G., Qiao R., Curr. Opin. Colloid Interface Sci. 2020, 47, 99–110.
Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science 2015, 350, 938–943. PubMed
Bu X., Su L., Dou Q., Lei S., Yan X., J. Mater. Chem. A 2019, 7, 7541–7547.
Naderi L., Shahrokhian S., Soavi F., J. Mater. Chem. A 2020, 8, 19588–19602.
Xiao D., Wu Q., Liu X., Dou Q., Liu L., Yang B., Yu H., ChemElectroChem 2019, 6, 439–443.
Kulkarni P., Ghosh D., Balakrishna R. G., Sustain. Energy Fuels 2021, 5, 1619–1654.
Abbas G., Sonia F. J., Zafar Z. A., Knížek K., Houdková J., Jiříček P., Bouša M., Plšek J., Kalbáč M., Červenka J., Frank O., Carbon 2022, 186, 612–623. PubMed PMC
Abbas G., Zafar Z. A., Sonia F. J., Knizek K., Houdkova J., Jiricek P., Kalbac M., Cervenka J., Frank O., Nanomaterials (Basel) 2022, 12, 3932. PubMed PMC
Jin X., Song L., Dai C., Xiao Y., Han Y., Zhang X., Li X., Bai C., Zhang J., Zhao Y., Zhang Z., Jiang L., Qu L., Adv. Energy Mater. 2021, 11, 2101523.
Mansuer M., Miao L., Qin Y., Song Z., Zhu D., Duan H., Lv Y., Li L., Liu M., Gan L., Chin. Chem. Lett. 2023, 34, 107304.
Tang C., Li M., Du J., Wang Y., Zhang Y., Wang G., Shi X., Li Y., Liu J., Lian C., Li L., J. Colloid Interface Sci. 2022, 608, 1162–1172. PubMed
Yang W., Yang Y., Yang H., Zhou H., ACS Energy Lett. 2022, 7, 2515–2530.
Sun Q., Vib. Spectrosc. 2009, 51, 213–217.
Auer B. M., Skinner J. L., J. Chem. Phys. 2008, 128, 224511. PubMed
Yin J., Zheng C., Qi L., Wang H., J. Power Sources 2011, 196, 4080–4087.
Lee M. H., Kim S. J., Chang D., Kim J., Moon S., Oh K., Park K.-Y., Seong W. M., Park H., Kwon G., Lee B., Kang K., Mater. Today 2019, 29, 26–36.
Huang M., Yang J., Zhen S., Wan C., Jiang X., Ju X., Chin. Chem. Lett. 2021, 32, 834–837.
Rudolph C. C. P. W. W., Phy. Chem. Chem. Phy. : PCCP 1999, 1, 4583–4593. PubMed
Rouquerol J., Llewellyn P. L., Rouquerol F., Stud. Surf. Sci. Catal. 2007, 160, 49–56.
Rouquerol F., Rouquerol J., Sing K. S. W., Llewellyn P. L., Maurin G., Adsorption by powders and porous solids: principles, methodology and applications, Second edition. ed., Academic Press, Kidlington, Oxford: 2014.
Imtiaz S., Zhang J., Zafar Z. A., Ji S., Huang T., Anderson J. A., Zhang Z., Huang Y., Sci. China Mater. 2016, 59, 389–407.
Parsons D. F., J. Colloid Interface Sci. 2014, 427, 67–72. PubMed
Sayah S., Ghosh A., Baazizi M., Amine R., Dahbi M., Amine Y., Ghamouss F., Amine K., Nano Energy 2022, 98, 107336.
Pan Z., Liu X., Yang J., Li X., Liu Z., Loh X. J., Wang J., Adv. Energy Mater. 2021, 11, 2100608.
Ren Z., Shi X., Wu Z.-S., Next Energy 2023, 1, 100068.