• This record comes from PubMed

PARG and BRCA1-BARD1 cooperative function regulates DNA repair pathway choice during gametogenesis

. 2022 Nov 28 ; 50 (21) : 12291-12308.

Language English Country England, Great Britain Media print

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
P40 OD010440 NIH HHS - United States

Meiotic chromosome segregation relies on programmed DNA double-strand break induction. These are in turn repaired by homologous recombination, generating physical attachments between the parental chromosomes called crossovers. A subset of breaks yields recombinant outcomes, while crossover-independent mechanisms repair the majority of lesions. The balance between different repair pathways is crucial to ensure genome integrity. We show that Caenorhabditis elegans BRC-1/BRCA1-BRD-1/BARD1 and PARG-1/PARG form a complex in vivo, essential for accurate DNA repair in the germline. Simultaneous depletion of BRC-1 and PARG-1 causes synthetic lethality due to reduced crossover formation and impaired break repair, evidenced by hindered RPA-1 removal and presence of aberrant chromatin bodies in diakinesis nuclei, whose formation depends on spo-11 function. These factors undergo a similar yet independent loading in developing oocytes, consistent with operating in different pathways. Abrogation of KU- or Theta-mediated end joining elicits opposite effects in brc-1; parg-1 doubles, suggesting a profound impact in influencing DNA repair pathway choice by BRC-1-PARG-1. Importantly, lack of PARG-1 catalytic activity suppresses untimely accumulation of RAD-51 foci in brc-1 mutants but is only partially required for fertility. Our data show that BRC-1/BRD-1-PARG-1 joint function is essential for genome integrity in meiotic cells by regulating multiple DNA repair pathways.

See more in PubMed

Zickler D., Kleckner N.. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 1999; 33:603–754. PubMed

Zickler D., Kleckner N.. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 2015; 7:a016626. PubMed PMC

Keeney S., Giroux C.N., Kleckner N.. Meiosis-specific DNA double-strand breaks are catalyzed by spo11, a member of a widely conserved protein family. Cell. 1997; 88:375–384. PubMed

Martin J.S., Winkelmann N., Petalcorin M.I.R., McIlwraith M.J., Boulton S.J.. RAD-51-Dependent and -Independent roles of a Caenorhabditiselegans BRCA2-Related protein during DNA double-strand break repair. Mol. Cell. Biol. 2005; 25:3127–3139. PubMed PMC

Clejan I., Boerckel J., Ahmed S.. Developmental modulation of nonhomologous end joining in Caenorhabditiselegans. Genetics. 2006; 173:1301–1317. PubMed PMC

Petalcorin M.I.R., Sandall J., Wigley D.B., Boulton S.J.. CeBRC-2 stimulates D-loop formation by RAD-51 and promotes DNA Single-strand annealing. J. Mol. Biol. 2006; 361:231–242. PubMed

Yin Y., Smolikove S.. Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans. Mol. Cell. Biol. 2013; 33:2732–2747. PubMed PMC

Li Q., Engebrecht J.. BRCA1 and BRCA2 tumor suppressor function in meiosis. Front. Cell Dev. Biol. 2021; 9:668309. PubMed PMC

Janisiw E., Dello Stritto M.R., Jantsch V., Silva N.. BRCA1–BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet. 2018; 14:e1007653. PubMed PMC

Adamo A., Montemauri P., Silva N., Ward J.D., Boulton S.J., La Volpe A.. BRC-1 acts in the inter-sister pathway of meiotic double-strand break repair. EMBO Rep. 2008; 9:287–292. PubMed PMC

Janisiw E., Raices M., Balmir F., Paulin L.F., Baudrimont A., von Haeseler A., Yanowitz J.L., Jantsch V., Silva N.. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat. Commun. 2020; 11:4869. PubMed PMC

Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974; 77:71–94. PubMed PMC

Polanowska J., Martin J.S., Garcia-Muse T., Petalcorin M.I.R., Boulton S.J.. A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J. 2006; 25:2178–2188. PubMed PMC

Das D., Trivedi S., Blazícková J., Arur S., Silva N.. Phosphorylation of HORMA-domain protein HTP-3 at serine 285 is dispensable for crossover formation. G3 Genes|Genomes|Genetics. 2022; 12:jkac079. PubMed PMC

Kurhanewicz N.A., Dinwiddie D., Bush Z.D., Libuda D.E.. Elevated temperatures cause transposon-associated DNA damage in C. elegans spermatocytes. Curr. Biol. 2020; 30:5007–5017. PubMed PMC

Silva N., Ferrandiz N., Barroso C., Tognetti S., Lightfoot J., Telecan O., Encheva V., Faull P., Hanni S., Furger A.et al. .. The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression. Dev. Cell. 2014; 31:503–511. PubMed

Woglar A., Daryabeigi A., Adamo A., Habacher C., Machacek T., La Volpe A., Jantsch V.. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement. PLoS Genet. 2013; 9:e1003335. PubMed PMC

Paix A., Schmidt H., Seydoux G.. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res. 2016; 44:e128. PubMed PMC

Wu L.C., Wang Z.W., Tsan J.T., Spillman M.A., Phung A., Xu X.L., Yang M.-C.W., Hwang L.-Y., Bowcock A.M., Baer R.. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 1996; 14:430–440. PubMed

Li Q., Saito T.T., Martinez-Garcia M., Deshong A.J., Nadarajan S., Lawrence K.S., Checchi P.M., Colaiacovo M.P., Engebrecht J.. The tumor suppressor BRCA1–BARD1 complex localizes to the synaptonemal complex and regulates recombination under meiotic dysfunction in Caenorhabditis elegans. PLos Genet. 2018; 14:e1007701. PubMed PMC

Hodgkin J., Horvitz H.R., Brenner S.. nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics. 1979; 91:67–94. PubMed PMC

Hillers K.J. Meiosis. WormBook. 2017; 10.1895/wormbook.1.178.1. PubMed DOI PMC

Rosu S., Zawadzki K.A., Stamper E.L., Libuda D.E., Reese A.L., Dernburg A.F., Villeneuve A.M.. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genet. 2013; 9:e1003674. PubMed PMC

Stamper E.L., Rodenbusch S.E., Rosu S., Ahringer J., Villeneuve A.M., Dernburg A.F.. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint. PLoS Genet. 2013; 9:e1003679. PubMed PMC

Meneely P.M., McGovern O.L., Heinis F.I., Yanowitz J.L.. Crossover distribution and frequency are regulated by him-5 in Caenorhabditiselegans. Genetics. 2012; 190:1251–1266. PubMed PMC

Reddy K.C., Villeneuve A.M.. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell. 2004; 118:439–452. PubMed

Kelly K.O., Dernburg A.F., Stanfield G.M., Villeneuve A.M.. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics. 2000; 156:617–630. PubMed PMC

Zalevsky J., MacQueen A.J., Duffy J.B., Kemphues K.J., Villeneuve A.M.. Crossing over during Caenorhabditis elegans meiosis requires a conserved muts-based pathway that is partially dispensable in budding yeast. Genetics. 1999; 153:1271–1283. PubMed PMC

Yokoo R., Zawadzki K.A., Nabeshima K., Drake M., Arur S., Villeneuve A.M.. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell. 2012; 149:75–87. PubMed PMC

Colaiácovo M.P., MacQueen A.J., Martinez-Perez E., McDonald K., Adamo A., La Volpe A., Villeneuve A.M.. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell. 2003; 5:463–474. PubMed

MacQueen A.J. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 2002; 16:2428–2442. PubMed PMC

Girard C., Roelens B., Zawadzki K.A., Villeneuve A.M.. Interdependent and separable functions of Caenorhabditiselegans MRN-C complex members couple formation and repair of meiotic DSBs. Proc. Natl. Acad. Sci. U.S.A. 2018; 115:E4443–E4452. PubMed PMC

Lemmens B.B.L.G., Johnson N.M., Tijsterman M.. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing ku-mediated non-homologous end joining. PLoS Genet. 2013; 9:e1003276. PubMed PMC

Penkner A., Portik-Dobos Z., Tang L., Schnabel R., Novatchkova M., Jantsch V., Loidl J.. A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination. EMBO J. 2007; 26:5071–5082. PubMed PMC

Alpi A., Pasierbek P., Gartner A., Loidl J.. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma. 2003; 112:6–16. PubMed

Dernburg A.F., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A.M.. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998; 94:387–398. PubMed

Wagner C.R., Kuervers L., Baillie D.L., Yanowitz J.L.. xnd-1 regulates the global recombination landscape in Caenorhabditis elegans. Nature. 2010; 467:839–843. PubMed PMC

Harrell K., Day M., Smolikove S.. Recruitment of MRE-11 to complex DNA damage is modulated by meiosis-specific chromosome organization. Mutat. Res. 2021; 822:111743. PubMed PMC

Hinman A.W., Yeh H.-Y., Roelens B., Yamaya K., Woglar A., Bourbon H.-M.G., Chi P., Villeneuve A.M.. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc. Natl. Acad. Sci. U.S.A. 2021; 118:e2109306118. PubMed PMC

Caldwell C.C., Spies M.. Dynamic elements of replication protein a at the crossroads of DNA replication, recombination, and repair. Crit. Rev. Biochem. Mol. Biol. 2020; 55:482–507. PubMed PMC

Chen H., Lisby M., Symington L.S.. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol. Cell. 2013; 50:589–600. PubMed PMC

Iyama T., Wilson D.M.. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst.). 2013; 12:620–636. PubMed PMC

Hefel A., Honda M., Cronin N., Harrell K., Patel P., Spies M., Smolikove S.. RPA complexes in Caenorhabditiselegans meiosis; unique roles in replication, meiotic recombination and apoptosis. Nucleic Acids Res. 2021; 49:2005–2026. PubMed PMC

Machovina T.S., Mainpal R., Daryabeigi A., McGovern O., Paouneskou D., Labella S., Zetka M., Jantsch V., Yanowitz J.L.. A surveillance system ensures crossover formation in C. elegans. Curr. Biol. 2016; 26:2873–2884. PubMed PMC

Pattabiraman D., Roelens B., Woglar A., Villeneuve A.M.. Meiotic recombination modulates the structure and dynamics of the synaptonemal complex during c. elegans meiosis. PLoS Genet. 2017; 13:e1006670. PubMed PMC

Goodyer W., Kaitna S., Couteau F., Ward J.D., Boulton S.J., Zetka M.. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev. Cell. 2008; 14:263–274. PubMed

Phillips C.M., Wong C., Bhalla N., Carlton P.M., Weiser P., Meneely P.M., Dernburg A.F.. HIM-8 binds to the x chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell. 2005; 123:1051–1063. PubMed PMC

Macaisne N., Kessler Z., Yanowitz J.L.. Meiotic double-strand break proteins influence repair pathway utilization. Genetics. 2018; 210:843–856. PubMed PMC

Muzzini D.M., Plevani P., Boulton S.J., Cassata G., Marini F.. Caenorhabditis elegans POLQ-1 and HEL-308 function in two distinct DNA interstrand cross-link repair pathways. DNA Repair (Amst.). 2008; 7:941–950. PubMed

Gagnon S.N., Hengartner M.O., Desnoyers S.. The genes pme-1 and pme-2 encode two poly(ADP-ribose) polymerases in Caenorhabditis elegans. Biochem. J. 2002; 368:263–271. PubMed PMC

Amé J.-C., Fouquerel E., Gauthier L.R., Biard D., Boussin F.D., Dantzer F., de Murcia G., Schreiber V.. Radiation-induced mitotic catastrophe in PARG-deficient cells. J. Cell Sci. 2009; 122:1990–2002. PubMed

O’Sullivan J., Tedim Ferreira M., Gagné J.-P., Sharma A.K., Hendzel M.J., Masson J.-Y., Poirier G.G.. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nat. Commun. 2019; 10:1182. PubMed PMC

Koh D.W., Lawler A.M., Poitras M.F., Sasaki M., Wattler S., Nehls M.C., Stöger T., Poirier G.G., Dawson V.L., Dawson T.M.. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc. Natl. Acad. Sci. U.S.A. 2004; 101:17699–17704. PubMed PMC

Menissier de Murcia J. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 2003; 22:2255–2263. PubMed PMC

Dantzer F., Mark M., Quenet D., Scherthan H., Huber A., Liebe B., Monaco L., Chicheportiche A., Sassone-Corsi P., de Murcia G.et al. .. Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis i and spermiogenesis. Proc. Natl. Acad. Sci. U.S.A. 2006; 103:14854–14859. PubMed PMC

Fong P.C., Boss D.S., Yap T.A., Tutt A., Wu P., Mergui-Roelvink M., Mortimer P., Swaisland H., Lau A., O’Connor M.J.et al. .. Inhibition of poly(adp-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009; 361:123–134. PubMed

Menear K.A., Adcock C., Boulter R., Cockcroft X., Copsey L., Cranston A., Dillon K.J., Drzewiecki J., Garman S., Gomez S.et al. .. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2 H -phthalazin-1-one: a novel bioavailable inhibitor of Poly(ADP-ribose) polymerase-1. J. Med. Chem. 2008; 51:6581–6591. PubMed

Robson M., Im S.-A., Senkus E., Xu B., Domchek S.M., Masuda N., Delaloge S., Li W., Tung N., Armstrong A.et al. .. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 2017; 377:523–533. PubMed

Slade D. 2020) PARP and PARG inhibitors in cancer treatment. Genes Dev. 34:360–394. PubMed PMC

Raices M., Bowman R., Smolikove S., Yanowitz J.L.. Aging negatively impacts DNA repair and bivalent formation in the C. elegans germ line. Front. Cell Dev. Biol. 2021; 9:695333. PubMed PMC

Loose J.A., Amrit F.R.G., Patil T., Yanowitz J.L., Ghazi A.. Meiotic dysfunction accelerates somatic aging in Caenorhabditis elegans. Aging Cell. 2022; 21:e13716. PubMed PMC

Hartman P.S., Herman R.K.. Radiation-sensitive mutants of Caenorhabditis elegans. Genetics. 1982; 102:159–178. PubMed PMC

Bessler J.B., Andersen E.C., Villeneuve A.M.. Differential localization and independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in the Caenorhabditis elegans adult germ line. PLoS Genet. 2010; 6:e1000830. PubMed PMC

Fong Y., Bender L., Wang W., Strome S.. Regulation of the different chromatin states of autosomes and x chromosomes in the germ line of C. elegans. Science. 2002; 296:2235–2238. PubMed PMC

Gao J., Kim H.-M., Elia A.E., Elledge S.J., Colaiácovo M.P.. NatB domain-containing CRA-1 antagonizes hydrolase ACER-1 linking Acetyl-CoA metabolism to the initiation of recombination during C. elegans meiosis. PLoS Genet. 2015; 11:e1005029. PubMed PMC

Tsai C.J., Mets D.G., Albrecht M.R., Nix P., Chan A., Meyer B.J.. Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit. Genes Dev. 2008; 22:194–211. PubMed PMC

Kamp J.A., van Schendel R., Dilweg I.W., Tijsterman M.. BRCA1-associated structural variations are a consequence of polymerase theta-mediated end-joining. Nat. Commun. 2020; 11:3615. PubMed PMC

Gumienny T.L., Lambie E., Hartwieg E., Horvitz H.R., Hengartner M.O.. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development. 1999; 126:1011–1022. PubMed

More is not better: brood size and population growth in a self-fertilizing nematode. Proc. R. Soc. Lond. B. 1991; 246:19–24. PubMed

Mortusewicz O., Fouquerel E., Amé J.-C., Leonhardt H., Schreiber V.. PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res. 2011; 39:5045–5056. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...