Phosphorylation of HORMA-domain protein HTP-3 at Serine 285 is dispensable for crossover formation

. 2022 May 06 ; 12 (5) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35389463

Grantová podpora
P40 OD010440 NIH HHS - United States
R01 HD101269 NICHD NIH HHS - United States

Generation of functional gametes is accomplished through a multilayered and finely orchestrated succession of events during meiotic progression. In the Caenorhabditis elegans germline, the HORMA-domain-containing protein HTP-3 plays pivotal roles for the establishment of chromosome axes and the efficient induction of programmed DNA double-strand breaks, both of which are crucial for crossover formation. Double-strand breaks allow for accurate chromosome segregation during the first meiotic division and therefore are an essential requirement for the production of healthy gametes. Phosphorylation-dependent regulation of HORMAD protein plays important roles in controlling meiotic chromosome behavior. Here, we document a phospho-site in HTP-3 at Serine 285 that is constitutively phosphorylated during meiotic prophase I. pHTP-3S285 localization overlaps with panHTP-3 except in nuclei undergoing physiological apoptosis, in which pHTP-3 is absent. Surprisingly, we observed that phosphorylation of HTP-3 at S285 is independent of the canonical kinases that control meiotic progression in nematodes. During meiosis, the htp-3(S285A) mutant displays accelerated RAD-51 turnover, but no other meiotic abnormalities. Altogether, these data indicate that the Ser285 phosphorylation is independent of canonical meiotic protein kinases and does not regulate HTP-3-dependent meiotic processes. We propose a model wherein phosphorylation of HTP-3 occurs through noncanonical or redundant meiotic kinases and/or is likely redundant with additional phospho-sites for function in vivo.

Zobrazit více v PubMed

Adamo A, Montemauri P, Silva N, Ward JD, Boulton SJ, La Volpe A.. BRC‐1 acts in the inter‐sister pathway of meiotic double‐strand break repair. EMBO Rep. 2008;9(3):287–292. PubMed PMC

Alpi A, Pasierbek P, Gartner A, Loidl J.. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma. 2003;112(1):6–16. PubMed

Arur S, Ohmachi M, Nayak S, Hayes M, Miranda A, Hay A, Golden A, Schedl T.. Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development. Proc Natl Acad Sci U S A. 2009;106(12):4776–4781. PubMed PMC

Boulton SJ, Martin JS, Polanowska J, Hill DE, Gartner A, Vidal M.. BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans. Curr Biol. 2004;14(1):33–39. PubMed

Brandt JN, Hussey KA, Kim Y.. Spatial and temporal control of targeting Polo-like kinase during meiotic prophase. J Cell Biol. 2020;219(11):e202006094. PubMed PMC

Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94. PubMed PMC

Castellano-Pozo M, Pacheco S, Sioutas G, Jaso-Tamame AL, Dore MH, Karimi MM, Martinez-Perez E.. Surveillance of cohesin-supported chromosome structure controls meiotic progression. Nat Commun. 2020;11(1):4345. PubMed PMC

Colaiácovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, Villeneuve AM.. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell. 2003;5(3):463–474. PubMed

Couteau F, Nabeshima K, Villeneuve A, Zetka M.. A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr Biol. 2004;14(7):585–592. PubMed

Das D, Chen S-Y, Arur S.. ERK phosphorylates chromosomal axis component HORMA domain protein HTP-1 to regulate oocyte numbers. Sci Adv. 2020;6(44):eabc5580. PubMed PMC

Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM.. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998;94(3):387–398. PubMed

Garcia-Muse T, Boulton SJ.. Distinct modes of ATR activation after replication stress and DNA double-strand breaks in Caenorhabditis elegans. EMBO J. 2005;24(24):4345–4355. PubMed PMC

Goodyer W, Kaitna S, Couteau F, Ward JD, Boulton SJ, Zetka M.. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev Cell. 2008;14(2):263–274. PubMed

Harper NC, Rillo R, Jover-Gil S, Assaf ZJ, Bhalla N, Dernburg AF.. Pairing centers recruit a polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans. Dev Cell. 2011;21(5):934–947. PubMed PMC

Haversat J, Woglar A, Klatt K, Akerib CC, Roberts V, Salazar CC, Chen SY, Arur S, Villeneuve AM, Kim Y. Robust designation of meiotic crossover sites by CDK-2 through phosphorylation of the MutSγ complex. https://doi.org/10.1101/2021.08.31.458431 PubMed PMC

Hinman AW, Yeh H-Y, Roelens B, Yamaya K, Woglar A, Bourbon H-M G, Chi P, Villeneuve AM. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci USA. 2021;118:e2109306118. PubMed PMC

Holloway JK, Sun X, Yokoo R, Villeneuve AM, Cohen PE.. Mammalian CNTD1 is critical for meiotic crossover maturation and deselection of excess precrossover sites. J Cell Biol. 2014;205(5):633–641. PubMed PMC

Hurlock ME, Čavka I, Kursel LE, Haversat J, Wooten M, Nizami Z, Turniansky R, Hoess P, Ries J, Gall JG, et al.Identification of novel synaptonemal complex components in C. elegans. J Cell Biol. 2020;219(5):e201910043. PubMed PMC

Janisiw E, Dello Stritto MR, Jantsch V, Silva N.. BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet. 2018;14(11):e1007653. PubMed PMC

Janisiw E, Raices M, Balmir F, Paulin LF, Baudrimont A, von Haeseler A, Yanowitz JL, Jantsch V, Silva N.. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat Commun. 2020;11(1):4869. PubMed PMC

Keeney S, Giroux CN, Kleckner N.. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997;88(3):375–384. PubMed

Kim Y, Kostow N, Dernburg AF.. The chromosome axis mediates feedback control of CHK-2 to ensure crossover formation in C. elegans. Dev Cell. 2015;35(2):247–261. PubMed PMC

Labella S, Woglar A, Jantsch V, Zetka M.. Polo kinases establish links between meiotic chromosomes and cytoskeletal forces essential for homolog pairing. Dev Cell. 2011;21(5):948–958. PubMed

MacQueen AJ, Colaiácovo MP, McDonald K, Villeneuve AM.. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 2002;16(18):2428–2442. PubMed PMC

MacQueen AJ, Villeneuve AM.. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev. 2001;15(13):1674–1687. PubMed PMC

Martinez-Perez E, Villeneuve AM.. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev. 2005;19(22):2727–2743. PubMed PMC

Meneely PM, McGovern OL, Heinis FI, Yanowitz JL.. Crossover distribution and frequency are regulated by him-5 in Caenorhabditis elegans. Genetics. 2012;190(4):1251–1266. PubMed PMC

Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J.. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev. 2001;15(11):1349–1360. PubMed PMC

Rappsilber J, Mann M, Ishihama Y.. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2(8):1896–1906. PubMed

Reddy KC, Villeneuve AM.. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell. 2004;118(4):439–452. PubMed

Rosu S, Zawadzki KA, Stamper EL, Libuda DE, Reese AL, Dernburg AF, Villeneuve AM.. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genet. 2013;9(8):e1003674. PubMed PMC

Schumacher B, Hofmann K, Boulton S, Gartner A.. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol. 2001;11(21):1722–1727. PubMed

Severson AF, Ling L, van Zuylen V, Meyer BJ.. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev. 2009;23(15):1763–1778. PubMed PMC

Severson AF, Meyer BJ.. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes. Elife. 2014;3:e03467. PubMed PMC

Silva N, Ferrandiz N, Barroso C, Tognetti S, Lightfoot J, Telecan O, Encheva V, Faull P, Hanni S, Furger A, et al.The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression. Dev Cell. 2014;31(4):503–511. PubMed

Smolikov S, Eizinger A, Schild-Prufert K, Hurlburt A, McDonald K, Engebrecht J, Villeneuve AM, Colaiácovo MP.. SYP-3 restricts synaptonemal complex assembly to bridge paired chromosome axes during meiosis in Caenorhabditis elegans. Genetics. 2007;176(4):2015–2025. PubMed PMC

Smolikov S, Schild-Prüfert K, Colaiácovo MP.. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis. PLoS Genet. 2009;5(10):e1000669. PubMed PMC

Stamper EL, Rodenbusch SE, Rosu S, Ahringer J, Villeneuve AM, Dernburg AF.. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint. PLoS Genet. 2013;9(8):e1003679. PubMed PMC

Tyanova S, Temu T, Cox J.. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–2319. PubMed

Vaudel M, Burkhart JM, Zahedi RP, Oveland E, Berven FS, Sickmann A, Martens L, Barsnes H.. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol. 2015;33(1):22–24. PubMed

Wagner CR, Kuervers L, Baillie DL, Yanowitz JL.. xnd-1 regulates the global recombination landscape in Caenorhabditis elegans. Nature. 2010;467(7317):839–843. PubMed PMC

Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM.. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell. 2012;149(1):75–87. PubMed PMC

Zhang L, Stauffer W, Zwicker D, Dernburg AF.. Crossover patterning through kinase-regulated condensation and coarsening of recombination nodules. Cell Bio. 2021.

Zhang Z, Xie S, Wang R, Guo S, Zhao Q, Nie H, Liu Y, Zhang F, Chen M, Liu L, et al.Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol. 2020;219(5):e201910086. PubMed PMC

Zickler D, Kleckner N.. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754. PubMed

Zickler D, Kleckner N.. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol. 2015;7(6):a016626. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...