Genetic and physical interactions reveal overlapping and distinct contributions to meiotic double-strand break formation in C. elegans

. 2024 May 30 ; () : . [epub] 20240530

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid38463951

Grantová podpora
R01 ES030335 NIEHS NIH HHS - United States
R01 GM072551 NIGMS NIH HHS - United States
R01 GM104007 NIGMS NIH HHS - United States
S10 OD030404 NIH HHS - United States

Double-strand breaks (DSBs) are the most deleterious lesions experienced by our genome. Yet, DSBs are intentionally induced during gamete formation to promote the exchange of genetic material between homologous chromosomes. While the conserved topoisomerase-like enzyme Spo11 catalyzes DSBs, additional regulatory proteins-referred to as "Spo11 accessory factors"- regulate the number, timing, and placement of DSBs during early meiotic prophase ensuring that SPO11 does not wreak havoc on the genome. Despite the importance of the accessory factors, they are poorly conserved at the sequence level suggesting that these factors may adopt unique functions in different species. In this work, we present a detailed analysis of the genetic and physical interactions between the DSB factors in the nematode Caenorhabditis elegans providing new insights into conserved and novel functions of these proteins. This work shows that HIM-5 is the determinant of X-chromosome-specific crossovers and that its retention in the nucleus is dependent on DSB-1, the sole accessory factor that interacts with SPO-11. We further provide evidence that HIM-5 coordinates the actions of the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis.

Zobrazit více v PubMed

Arora C., Kee K., Maleki S., & Keeney S. (2004). Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Molecular Cell, 13(4), 549–559. 10.1016/S1097-2765(04)00063-2 PubMed DOI

Bergerat A., De Massy B., Gadelle D., Varoutas P.-C., Nicolas A., & Forterre P. (1997). An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature, 386(6623), 414–417. PubMed

Bouuaert C. C., Tischfield S. E., Pu S., Mimitou E. P., Arias-palomo E., Berger J. M., & Keeney S. (2021). Structural and functional characterization of the Spo11 core complex. 28(January). PubMed PMC

Broverman S. A., & Meneely P. M. (1994). Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans. Genetics, 136(1), 119–127. PubMed PMC

Burns A. R., Kwok T. C. Y., Howard A., Houston E., Johanson K., Chan A., Cutler S. R., McCourt P., & Roy P. J. (2006). High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nature Protocols, 1(4), 1906–1914. 10.1038/nprot.2006.283 PubMed DOI

Cheeseman I. M., Niessen S., Anderson S., Hyndman F., Yates J. R., Oegema K., & Desai A. (2004). A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes and Development, 18(18), 2255–2268. 10.1101/gad.1234104 PubMed DOI PMC

Chin G. M., & Villeneuve A. M. (2001). C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G2 DNA damage checkpoint. Genes and Development, 15(5), 522–534. 10.1101/gad.864101 PubMed DOI PMC

Chung G., Rose A. M., Petalcorin M. I. R., Martin J. S., Kessler Z., Sanchez-Pulido L., Ponting C. P., Yanowitz J. L., & Boulton S. J. (2015). REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans. Genes and Development, 29(18), 1969–1979. 10.1101/gad.266056.115 PubMed DOI PMC

Cole F., Keeney S., & Jasin M. (2010). Evolutionary conservation of meiotic DSB proteins: More than just Spo11. Genes and Development, 24(12), 1201–1207. 10.1101/gad.1944710 PubMed DOI PMC

Das D., Trivedi S., Blazícková J., Arur S., & Silva N. (2022). Phosphorylation of HORMA-domain protein HTP-3 at Serine 285 is dispensable for crossover formation. G3, 12(5), jkac079. PubMed PMC

Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., & Villeneuve A. M. (1998). Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell, 94(3), 387–398. 10.1016/S0092-8674(00)81481-6 PubMed DOI

Dungan J. (2002). Genetics in medicine. Fertility and Sterility, 77(5), 1091.

Gao J., Kim H. M., Elia A. E., Elledge S. J., & Colaiácovo M. P. (2015). NatB Domain-Containing CRA-1 Antagonizes Hydrolase ACER-1 Linking Acetyl-CoA Metabolism to the Initiation of Recombination during C. elegans Meiosis. PLoS Genetics, 11(3), 1–28. 10.1371/journal.pgen.1005029 PubMed DOI PMC

Girard C., Roelens B., Zawadzki K. A., & Villeneuve A. M. (2018). Interdependent and separable functions of Caenorhabditis elegans MRN-C complex members couple formation and repair of meiotic DSBs. Proceedings of the National Academy of Sciences of the United States of America, 115(19), E4443–E4452. 10.1073/pnas.1719029115 PubMed DOI PMC

Guo H., Stamper E. L., Sato-Carlton A., Shimazoe M. A., Li X., Zhang L., Stevens L., Tam J., Dernburg A. F., & Carlton P. M. (2022). Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. BioRxiv, 1–30. 10.1101/2022.02.16.480793 PubMed DOI PMC

Hassold T., Hall H., & Hunt P. (2007). The origin of human aneuploidy: where we have been, where we are going. Human Molecular Genetics, 16(R2), R203–R208. PubMed

Hayashi M., Chin G. M., & Villeneuve A. M. (2007). C. elegans germ cells switch between distinct modes of double-strand break repair during meiotic prophase progression. PLoS Genetics, 3(11), 2068–2084. 10.1371/journal.pgen.0030191 PubMed DOI PMC

Henderson K. A., Kee K., Maleki S., Santini P. A., & Keeney S. (2006). Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell, 125(7), 1321–1332. PubMed PMC

Hinman A. W., Yeh H. Y., Roelens B., Yamaya K., Woglar A., Bourbon H. M. G., Chi P., & Villeneuve A. M. (2021). Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 118(33), 1–12. 10.1073/pnas.2109306118 PubMed DOI PMC

Hodgkin J., Horvitz H. R., & Brenner S. (1979). Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics, 91(1), 67–94. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1213932&tool=pmcentrez&re ndertype=abstract PubMed PMC

Janisiw E., Raices M., Balmir F., Paulin L. F., Baudrimont A., von Haeseler A., Yanowitz J. L., Jantsch V., & Silva N. (2020). Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nature Communications, 11(1), 1–15. 10.1038/s41467-020-18693-1 PubMed DOI PMC

Joshi N., Brown M. S., Bishop D. K., & Börner G. V. (2015). Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels. Molecular Cell, 57(5), 797–811. 10.1177/0022146515594631.Marriage PubMed DOI PMC

Kee K., & Keeney S. (2002). Meiotic Recombination in Saccharomyces cerevisiae. 122(January), 111–122. PubMed PMC

Kee K., Protacio R. U., Arora C., & Keeney S. (2004). Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO Journal, 23(8), 1815–1824. 10.1038/sj.emboj.7600184 PubMed DOI PMC

Keeney S. (2008). Spo11 and the formation of DNA double-strand breaks in meiosis. Genome Dynamics and Stability, 2, 81–123. 10.1007/7050_2007_026 PubMed DOI PMC

Keeney S., Giroux C. N., & Kleckner N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell, 88(3), 375–384. 10.1016/S0092-8674(00)81876-0 PubMed DOI

Kumar R., Bourbon H. M., & de Massy B. (2010). Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes and Development, 24(12), 1266–1280. 10.1101/gad.571710 PubMed DOI PMC

Kumar R., & de Massy B. (2010). Initiation of meiotic recombination in mammals. Genes, 1(3), 521–549. 10.3390/genes1030521 PubMed DOI PMC

Lam I., & Keeney S. (2015). Mechanism and regulation of meiotic recombination initiation. Cold Spring Harbor Perspectives in Biology, 7(1). 10.1101/cshperspect.a016634 PubMed DOI PMC

Lascarez-Lagunas L. I., Martinez-Garcia M., Nadarajan S., Diaz-Pacheco B. N., Berson E., & Colaiácovo M. P. (2023). Chromatin landscape, DSB levels, and cKU-70/ 80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genetics, 19(1), 1–27. 10.1371/journal.pgen.1010627 PubMed DOI PMC

Li J., Hooker G. W., & Roeder G. S. (2006). Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics, 173(4), 1969–1981. 10.1534/genetics.106.058768 PubMed DOI PMC

Li W., & Yanowitz J. L. (2019). ATM and ATR influence meiotic crossover formation through antagonistic and overlapping functions in caenorhabditis elegans. Genetics, 212(2), 431–443. 10.1534/genetics.119.302193 PubMed DOI PMC

Maleki S., Neale M. J., Arora C., Henderson K. A., & Keeney S. (2007). Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma, 116(5), 471–486. 10.1007/s00412-007-0111-y PubMed DOI PMC

Martini E., Diaz R. L., Hunter N., & Keeney S. (2006). Crossover homeostasis in yeast meiosis. Cell, 126(2), 285–295. PubMed PMC

Mateo A. R. F., Kessler Z., Jolliffe A. K., McGovern O., Yu B., Nicolucci A., Yanowitz J. L., & Derry W. B. (2016). The p53-like Protein CEP-1 Is Required for Meiotic Fidelity in C. Elegans. Current Biology, 26(9), 1148–1158. 10.1016/j.cub.2016.03.036 PubMed DOI PMC

McClendon T. B., Mainpal R., Gandhi Amrit F. R., Krause M. W., Ghazi A., & Yanowitz J. L. (2016). X Chromosome Crossover Formation and Genome Stability in Caenorhabditis elegans Are Independently Regulated by xnd-1. G3: Genes∣Genomes∣Genetics, 6(December), 3913–3925. 10.1534/g3.116.035725 PubMed DOI PMC

Meneely P. M., McGovern O. L., Heinis F. I., & Yanowitz J. L. (2012). Crossover distribution and frequency are regulated by him-5 in caenorhabditis elegans. Genetics, 190(4), 1251–1266. 10.1534/genetics.111.137463 PubMed DOI PMC

Mets D. G., & Meyer B. J. (2009). Condensins Regulate Meiotic DNA Break Distribution, thus Crossover Frequency, by Controlling Chromosome Structure. Cell, 139(1), 73–86. 10.1016/j.cell.2009.07.035 PubMed DOI PMC

Murakami H., & Keeney S. (2008). Regulating the formation of DNA double-strand breaks in meiosis. Genes and Development, 22(3), 286–292. 10.1101/gad.1642308 PubMed DOI PMC

Nadarajan S., Altendorfer E., Saito T. T., Martinez-Garcia M., & Colaiácovo M. P. (2021). HIM-17 regulates the position of recombination events and GSP-1/2 localization to establish short arm identity on bivalents in meiosis. Proceedings of the National Academy of Sciences of the United States of America, 118(17), 1–10. 10.1073/pnas.2016363118 PubMed DOI PMC

Panizza S., Mendoza M. A., Berlinger M., Huang L., Nicolas A., Shirahige K., & Klein F. (2011). Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell, 146(3), 372–383. 10.1016/j.cell.2011.07.003 PubMed DOI

Prieler S., Penkner A., Borde V., & Klein F. (2005). The control of Spo11’s interaction with meiotic recombination hotspots. Genes and Development, 19(2), 255–269. 10.1101/gad.321105 PubMed DOI PMC

Reddy K. C., & Villeneuve A. M. (2004). C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell, 118(4), 439–452. PubMed

Robert T., Nore A., Brun C., Maffre C., Crimi B., Bourbon H.-M. H., De Massy B., Guichard V., Bourbon H.-M. H., & De Massy B. (2016). The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science, 351(6276), 943–949. PubMed

Rose A. M., & Baillie D. L. (1979). A mutation in Caenorhabditis elegans that increases recombination frequency more than threefold. Nature, 281(5732), 599–600. PubMed

Rosu S., Zawadzki K. A., Stamper E. L., Libuda D. E., Reese A. L., Dernburg A. F., & Villeneuve A. M. (2013). The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genetics, 9(8), e1003674. PubMed PMC

Sasanuma H., Murakami H., Fukuda T., Shibata T., Nicolas A., & Ohta K. (2007). Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Research, 35(4), 1119–1133. 10.1093/nar/gkl1162 PubMed DOI PMC

Sommermeyer V., Béneut C., Chaplais E., Serrentino M. E., & Borde V. (2013). Spp1, a Member of the Set1 Complex, Promotes Meiotic DSB Formation in Promoters by Tethering Histone H3K4 Methylation Sites to Chromosome Axes. Molecular Cell, 49(1), 43–54. 10.1016/j.molcel.2012.11.008 PubMed DOI

Stamper E. L., Rodenbusch S. E., Rosu S., Ahringer J., Villeneuve A. M., & Dernburg A. F. (2013). Identification of DSB-1, a Protein Required for Initiation of Meiotic Recombination in Caenorhabditis elegans, Illuminates a Crossover Assurance Checkpoint. PLoS Genetics, 9(8), 1–18. 10.1371/journal.pgen.1003679 PubMed DOI PMC

Tsai B., Liu W., Dong D., Shi K., Chen L., & Gao N. (2020). Phase separation of Mer2 organizes the meiotic loop-axis structure of chromatin during meiosis I. BioRxiv, 2020.12.15.422856. 10.1101/2020.12.15.422856 DOI

Vrielynck N., Schneider K., Rodriguez M., Sims J., Chambon A., Hurel A., De Muyt A., Ronceret A., Krsicka O., Mézard C., Schlögelhofer P., & Grelon M. (2021). Conservation and divergence of meiotic DNA double strand break forming mechanisms in Arabidopsis thaliana. Nucleic Acids Research, 49(17), 9821–9835. 10.1093/nar/gkab715 PubMed DOI PMC

Wagner C. R., Kuervers L., Baillie D., & Yanowitz J. L. (2010). xnd-1 regulates the global recombination landscape in C. elegans. Nature, 467(7317), 839–843. 10.1038/nature09429 PubMed DOI PMC

Yeh H. Y., Lin S. W., Wu Y. C., Chan N. L., & Chi P. (2017). Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C. elegans. Scientific Reports, 7(1), 1–11. 10.1038/s41598-017-02641-z PubMed DOI PMC

Yin Y., & Smolikove S. (2013). Impaired Resection of Meiotic Double-Strand Breaks Channels Repair to Nonhomologous End Joining in Caenorhabditis elegans. Molecular and Cellular Biology, 33(14), 2732–2747. 10.1128/mcb.00055-13 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...