Genetic and physical interactions reveal overlapping and distinct contributions to meiotic double-strand break formation in C. elegans
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 ES030335
NIEHS NIH HHS - United States
R01 GM072551
NIGMS NIH HHS - United States
R01 GM104007
NIGMS NIH HHS - United States
S10 OD030404
NIH HHS - United States
PubMed
38463951
PubMed Central
PMC10925144
DOI
10.1101/2024.02.23.581796
PII: 2024.02.23.581796
Knihovny.cz E-zdroje
- Klíčová slova
- C. elegans, Crossover, SPO11, double-strand break, meiosis,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Double-strand breaks (DSBs) are the most deleterious lesions experienced by our genome. Yet, DSBs are intentionally induced during gamete formation to promote the exchange of genetic material between homologous chromosomes. While the conserved topoisomerase-like enzyme Spo11 catalyzes DSBs, additional regulatory proteins-referred to as "Spo11 accessory factors"- regulate the number, timing, and placement of DSBs during early meiotic prophase ensuring that SPO11 does not wreak havoc on the genome. Despite the importance of the accessory factors, they are poorly conserved at the sequence level suggesting that these factors may adopt unique functions in different species. In this work, we present a detailed analysis of the genetic and physical interactions between the DSB factors in the nematode Caenorhabditis elegans providing new insights into conserved and novel functions of these proteins. This work shows that HIM-5 is the determinant of X-chromosome-specific crossovers and that its retention in the nucleus is dependent on DSB-1, the sole accessory factor that interacts with SPO-11. We further provide evidence that HIM-5 coordinates the actions of the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis.
Department of Biology Masaryk University Czech Republic
Zobrazit více v PubMed
Arora C., Kee K., Maleki S., & Keeney S. (2004). Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Molecular Cell, 13(4), 549–559. 10.1016/S1097-2765(04)00063-2 PubMed DOI
Bergerat A., De Massy B., Gadelle D., Varoutas P.-C., Nicolas A., & Forterre P. (1997). An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature, 386(6623), 414–417. PubMed
Bouuaert C. C., Tischfield S. E., Pu S., Mimitou E. P., Arias-palomo E., Berger J. M., & Keeney S. (2021). Structural and functional characterization of the Spo11 core complex. 28(January). PubMed PMC
Broverman S. A., & Meneely P. M. (1994). Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans. Genetics, 136(1), 119–127. PubMed PMC
Burns A. R., Kwok T. C. Y., Howard A., Houston E., Johanson K., Chan A., Cutler S. R., McCourt P., & Roy P. J. (2006). High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nature Protocols, 1(4), 1906–1914. 10.1038/nprot.2006.283 PubMed DOI
Cheeseman I. M., Niessen S., Anderson S., Hyndman F., Yates J. R., Oegema K., & Desai A. (2004). A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes and Development, 18(18), 2255–2268. 10.1101/gad.1234104 PubMed DOI PMC
Chin G. M., & Villeneuve A. M. (2001). C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G2 DNA damage checkpoint. Genes and Development, 15(5), 522–534. 10.1101/gad.864101 PubMed DOI PMC
Chung G., Rose A. M., Petalcorin M. I. R., Martin J. S., Kessler Z., Sanchez-Pulido L., Ponting C. P., Yanowitz J. L., & Boulton S. J. (2015). REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans. Genes and Development, 29(18), 1969–1979. 10.1101/gad.266056.115 PubMed DOI PMC
Cole F., Keeney S., & Jasin M. (2010). Evolutionary conservation of meiotic DSB proteins: More than just Spo11. Genes and Development, 24(12), 1201–1207. 10.1101/gad.1944710 PubMed DOI PMC
Das D., Trivedi S., Blazícková J., Arur S., & Silva N. (2022). Phosphorylation of HORMA-domain protein HTP-3 at Serine 285 is dispensable for crossover formation. G3, 12(5), jkac079. PubMed PMC
Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., & Villeneuve A. M. (1998). Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell, 94(3), 387–398. 10.1016/S0092-8674(00)81481-6 PubMed DOI
Dungan J. (2002). Genetics in medicine. Fertility and Sterility, 77(5), 1091.
Gao J., Kim H. M., Elia A. E., Elledge S. J., & Colaiácovo M. P. (2015). NatB Domain-Containing CRA-1 Antagonizes Hydrolase ACER-1 Linking Acetyl-CoA Metabolism to the Initiation of Recombination during C. elegans Meiosis. PLoS Genetics, 11(3), 1–28. 10.1371/journal.pgen.1005029 PubMed DOI PMC
Girard C., Roelens B., Zawadzki K. A., & Villeneuve A. M. (2018). Interdependent and separable functions of Caenorhabditis elegans MRN-C complex members couple formation and repair of meiotic DSBs. Proceedings of the National Academy of Sciences of the United States of America, 115(19), E4443–E4452. 10.1073/pnas.1719029115 PubMed DOI PMC
Guo H., Stamper E. L., Sato-Carlton A., Shimazoe M. A., Li X., Zhang L., Stevens L., Tam J., Dernburg A. F., & Carlton P. M. (2022). Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. BioRxiv, 1–30. 10.1101/2022.02.16.480793 PubMed DOI PMC
Hassold T., Hall H., & Hunt P. (2007). The origin of human aneuploidy: where we have been, where we are going. Human Molecular Genetics, 16(R2), R203–R208. PubMed
Hayashi M., Chin G. M., & Villeneuve A. M. (2007). C. elegans germ cells switch between distinct modes of double-strand break repair during meiotic prophase progression. PLoS Genetics, 3(11), 2068–2084. 10.1371/journal.pgen.0030191 PubMed DOI PMC
Henderson K. A., Kee K., Maleki S., Santini P. A., & Keeney S. (2006). Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell, 125(7), 1321–1332. PubMed PMC
Hinman A. W., Yeh H. Y., Roelens B., Yamaya K., Woglar A., Bourbon H. M. G., Chi P., & Villeneuve A. M. (2021). Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 118(33), 1–12. 10.1073/pnas.2109306118 PubMed DOI PMC
Hodgkin J., Horvitz H. R., & Brenner S. (1979). Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics, 91(1), 67–94. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1213932&tool=pmcentrez&re ndertype=abstract PubMed PMC
Janisiw E., Raices M., Balmir F., Paulin L. F., Baudrimont A., von Haeseler A., Yanowitz J. L., Jantsch V., & Silva N. (2020). Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nature Communications, 11(1), 1–15. 10.1038/s41467-020-18693-1 PubMed DOI PMC
Joshi N., Brown M. S., Bishop D. K., & Börner G. V. (2015). Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels. Molecular Cell, 57(5), 797–811. 10.1177/0022146515594631.Marriage PubMed DOI PMC
Kee K., & Keeney S. (2002). Meiotic Recombination in Saccharomyces cerevisiae. 122(January), 111–122. PubMed PMC
Kee K., Protacio R. U., Arora C., & Keeney S. (2004). Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO Journal, 23(8), 1815–1824. 10.1038/sj.emboj.7600184 PubMed DOI PMC
Keeney S. (2008). Spo11 and the formation of DNA double-strand breaks in meiosis. Genome Dynamics and Stability, 2, 81–123. 10.1007/7050_2007_026 PubMed DOI PMC
Keeney S., Giroux C. N., & Kleckner N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell, 88(3), 375–384. 10.1016/S0092-8674(00)81876-0 PubMed DOI
Kumar R., Bourbon H. M., & de Massy B. (2010). Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes and Development, 24(12), 1266–1280. 10.1101/gad.571710 PubMed DOI PMC
Kumar R., & de Massy B. (2010). Initiation of meiotic recombination in mammals. Genes, 1(3), 521–549. 10.3390/genes1030521 PubMed DOI PMC
Lam I., & Keeney S. (2015). Mechanism and regulation of meiotic recombination initiation. Cold Spring Harbor Perspectives in Biology, 7(1). 10.1101/cshperspect.a016634 PubMed DOI PMC
Lascarez-Lagunas L. I., Martinez-Garcia M., Nadarajan S., Diaz-Pacheco B. N., Berson E., & Colaiácovo M. P. (2023). Chromatin landscape, DSB levels, and cKU-70/ 80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genetics, 19(1), 1–27. 10.1371/journal.pgen.1010627 PubMed DOI PMC
Li J., Hooker G. W., & Roeder G. S. (2006). Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics, 173(4), 1969–1981. 10.1534/genetics.106.058768 PubMed DOI PMC
Li W., & Yanowitz J. L. (2019). ATM and ATR influence meiotic crossover formation through antagonistic and overlapping functions in caenorhabditis elegans. Genetics, 212(2), 431–443. 10.1534/genetics.119.302193 PubMed DOI PMC
Maleki S., Neale M. J., Arora C., Henderson K. A., & Keeney S. (2007). Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma, 116(5), 471–486. 10.1007/s00412-007-0111-y PubMed DOI PMC
Martini E., Diaz R. L., Hunter N., & Keeney S. (2006). Crossover homeostasis in yeast meiosis. Cell, 126(2), 285–295. PubMed PMC
Mateo A. R. F., Kessler Z., Jolliffe A. K., McGovern O., Yu B., Nicolucci A., Yanowitz J. L., & Derry W. B. (2016). The p53-like Protein CEP-1 Is Required for Meiotic Fidelity in C. Elegans. Current Biology, 26(9), 1148–1158. 10.1016/j.cub.2016.03.036 PubMed DOI PMC
McClendon T. B., Mainpal R., Gandhi Amrit F. R., Krause M. W., Ghazi A., & Yanowitz J. L. (2016). X Chromosome Crossover Formation and Genome Stability in Caenorhabditis elegans Are Independently Regulated by xnd-1. G3: Genes∣Genomes∣Genetics, 6(December), 3913–3925. 10.1534/g3.116.035725 PubMed DOI PMC
Meneely P. M., McGovern O. L., Heinis F. I., & Yanowitz J. L. (2012). Crossover distribution and frequency are regulated by him-5 in caenorhabditis elegans. Genetics, 190(4), 1251–1266. 10.1534/genetics.111.137463 PubMed DOI PMC
Mets D. G., & Meyer B. J. (2009). Condensins Regulate Meiotic DNA Break Distribution, thus Crossover Frequency, by Controlling Chromosome Structure. Cell, 139(1), 73–86. 10.1016/j.cell.2009.07.035 PubMed DOI PMC
Murakami H., & Keeney S. (2008). Regulating the formation of DNA double-strand breaks in meiosis. Genes and Development, 22(3), 286–292. 10.1101/gad.1642308 PubMed DOI PMC
Nadarajan S., Altendorfer E., Saito T. T., Martinez-Garcia M., & Colaiácovo M. P. (2021). HIM-17 regulates the position of recombination events and GSP-1/2 localization to establish short arm identity on bivalents in meiosis. Proceedings of the National Academy of Sciences of the United States of America, 118(17), 1–10. 10.1073/pnas.2016363118 PubMed DOI PMC
Panizza S., Mendoza M. A., Berlinger M., Huang L., Nicolas A., Shirahige K., & Klein F. (2011). Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell, 146(3), 372–383. 10.1016/j.cell.2011.07.003 PubMed DOI
Prieler S., Penkner A., Borde V., & Klein F. (2005). The control of Spo11’s interaction with meiotic recombination hotspots. Genes and Development, 19(2), 255–269. 10.1101/gad.321105 PubMed DOI PMC
Reddy K. C., & Villeneuve A. M. (2004). C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell, 118(4), 439–452. PubMed
Robert T., Nore A., Brun C., Maffre C., Crimi B., Bourbon H.-M. H., De Massy B., Guichard V., Bourbon H.-M. H., & De Massy B. (2016). The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science, 351(6276), 943–949. PubMed
Rose A. M., & Baillie D. L. (1979). A mutation in Caenorhabditis elegans that increases recombination frequency more than threefold. Nature, 281(5732), 599–600. PubMed
Rosu S., Zawadzki K. A., Stamper E. L., Libuda D. E., Reese A. L., Dernburg A. F., & Villeneuve A. M. (2013). The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genetics, 9(8), e1003674. PubMed PMC
Sasanuma H., Murakami H., Fukuda T., Shibata T., Nicolas A., & Ohta K. (2007). Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Research, 35(4), 1119–1133. 10.1093/nar/gkl1162 PubMed DOI PMC
Sommermeyer V., Béneut C., Chaplais E., Serrentino M. E., & Borde V. (2013). Spp1, a Member of the Set1 Complex, Promotes Meiotic DSB Formation in Promoters by Tethering Histone H3K4 Methylation Sites to Chromosome Axes. Molecular Cell, 49(1), 43–54. 10.1016/j.molcel.2012.11.008 PubMed DOI
Stamper E. L., Rodenbusch S. E., Rosu S., Ahringer J., Villeneuve A. M., & Dernburg A. F. (2013). Identification of DSB-1, a Protein Required for Initiation of Meiotic Recombination in Caenorhabditis elegans, Illuminates a Crossover Assurance Checkpoint. PLoS Genetics, 9(8), 1–18. 10.1371/journal.pgen.1003679 PubMed DOI PMC
Tsai B., Liu W., Dong D., Shi K., Chen L., & Gao N. (2020). Phase separation of Mer2 organizes the meiotic loop-axis structure of chromatin during meiosis I. BioRxiv, 2020.12.15.422856. 10.1101/2020.12.15.422856 DOI
Vrielynck N., Schneider K., Rodriguez M., Sims J., Chambon A., Hurel A., De Muyt A., Ronceret A., Krsicka O., Mézard C., Schlögelhofer P., & Grelon M. (2021). Conservation and divergence of meiotic DNA double strand break forming mechanisms in Arabidopsis thaliana. Nucleic Acids Research, 49(17), 9821–9835. 10.1093/nar/gkab715 PubMed DOI PMC
Wagner C. R., Kuervers L., Baillie D., & Yanowitz J. L. (2010). xnd-1 regulates the global recombination landscape in C. elegans. Nature, 467(7317), 839–843. 10.1038/nature09429 PubMed DOI PMC
Yeh H. Y., Lin S. W., Wu Y. C., Chan N. L., & Chi P. (2017). Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C. elegans. Scientific Reports, 7(1), 1–11. 10.1038/s41598-017-02641-z PubMed DOI PMC
Yin Y., & Smolikove S. (2013). Impaired Resection of Meiotic Double-Strand Breaks Channels Repair to Nonhomologous End Joining in Caenorhabditis elegans. Molecular and Cellular Biology, 33(14), 2732–2747. 10.1128/mcb.00055-13 PubMed DOI PMC