Influence of Anticorrosive Surface Treatment of Steel Reinforcement Fibers on the Properties of Ultra-High Performance Cement Composite
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36499896
PubMed Central
PMC9740478
DOI
10.3390/ma15238401
PII: ma15238401
Knihovny.cz E-zdroje
- Klíčová slova
- brass, compressive strength, flexural strength, reactive powder concrete, ultra-high-performance concrete,
- Publikační typ
- časopisecké články MeSH
The influence on the bond between the steel fiber and the matrix of the anticorrosive treatments of steel used for concrete reinforcement is not yet fully understood. The topic of steel fiber treatment was not also studied clearly in terms of brass removal before. This paper deals with how the brass on the surface of steel fibers behaves in the UHPC matrix and how it affects its properties. The steel fibers were firstly modified with a number of surface treatments to remove brass on their surface. Some of the treatments have never been tried before for this purpose. Secondly, the surface of the fibers was analyzed by SEM, EDS, XRF, and stereomicroscopy. Lastly, the properties of the composites were analyzed. It was found out that the majority of brass on the surface of the fibers could be removed by mixture of NH3 and H2O2 with a ratio of 3:1 (v/v). It was also found out that the surface treatment slightly affects the mechanical properties, but it does that only by mechanical interlocking between the fiber and the matrix. No dissolution of the surface treatment was observed under the given conditions. According to the results, steel fibers without surface treatment should be used in UHPC if available.
Zobrazit více v PubMed
Shaikh F.U.A., Luhar S., Arel H.S., Luhar I. Performance evaluation of Ultrahigh performance fibre reinforced concrete—A review. Constr. Build. Mater. 2020;232:117152. doi: 10.1016/j.conbuildmat.2019.117152. DOI
Richard P., Cheyrezy M. Composition of Reactive Powder Concretes. Cem. Concr. Res. 1995;25:1501–1511. doi: 10.1016/0008-8846(95)00144-2. DOI
Mayhoub O.A., Nasr E.S.A.R., Ali Y.A., Kohail M. The influence of ingredients on the properties of reactive powder concrete: A review. Ain Shams Eng. J. 2021;12:145–458. doi: 10.1016/j.asej.2020.07.016. DOI
Maca P., Sovjak R., Konvalinka P. Mix design of UHPFRC and its response to projectile impact. Int. J. Impact Eng. 2014;63:158–163. doi: 10.1016/j.ijimpeng.2013.08.003. DOI
Abdelrahim M.A.A., Elthakeb A., Mohamed U., Noaman M.T. Effect of Steel Fibers and Temperature on the Mechanical Properties of Reactive Powder Concrete. Civ. Environ. Eng. 2021;17:270–276. doi: 10.2478/cee-2021-0028. DOI
Mizani J., Sadeghi A.M., Afshin H. Experimental study on the effect of macro and microfibers on the mechanical properties of reactive powder concrete. Struct. Concr. 2022;23:240–254. doi: 10.1002/suco.202000069. DOI
Rasa S.S., Qureshi L.A., Ali B., Raza A., Khan M.M. Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete. Struct. Concr. 2021;22:334–346. doi: 10.1002/suco.201900439. DOI
Cavill B., Rebentrost M. Ductal—A high-performance material for resistance to blasts and impacts. Aust. J. Struct. Eng. 2006;7:37–45. doi: 10.1080/13287982.2006.11464962. DOI
Deng Y., Zhang Z., Shi C., Wu Z., Zhang C. Steel fiber—Matrix interfacial bond in ultra-high performance concrete: A review. Engineering. 2022. in press . DOI
Pokorny P. The influence of galvanized steel on bond strength with concrete. Corros. Mater. Prot. J. 2013;56:119–135. doi: 10.2478/v10227-011-0020-9. DOI
Chun B., Yoo D., Banthia N. Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete. Cem. Concr. Compos. 2020;113:103669. doi: 10.1016/j.cemconcomp.2020.103669. DOI
Chun B., Kim S., Yoo D. Benefits of chemically treated steel fibers on enhancing the interfacial bond strength from ultra-high-performance concrete. Constr. Build. Mater. 2021;294:123519. doi: 10.1016/j.conbuildmat.2021.123519. DOI
Pi Z.Y., Xiao H.G., Liu R., Li H. Combination usage of nano-SiO2-coated steel fiber and silica fume and its improvement effect on SFRCC. Compos. Part B Eng. 2021;221:109022. doi: 10.1016/j.compositesb.2021.109022. DOI
Küster K., Barburski M., Lomov S.V., Vanclooster K. Metal Fibers-Steel. In: Mahltig B., Kyosev Y., editors. Inorganic and Composite Fibers. 1st ed. Volume 1. Woodhead Publisher; Sawston, UK: 2018. pp. 219–241.
Dove A.B. Steel wire. In: Dove A.B., editor. ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys. 10th ed. Volume 1. ASM International; Novelty, OH, USA: 1990. pp. 460–479. DOI
Wright R.N. Wire Technology. 2nd ed. Butterworth Heinemann; Oxford, UK: 2011. Wire Coatings; pp. 245–256.
Strow H. Brass and bronze plating. Met. Finish. 1999;97:206–209. doi: 10.1016/S0026-0576(00)83077-9. DOI
Wire Fibres. [(accessed on 8 November 2022)]. Available online: https://www.krampeharex.com/en/fibres/products/wire-fibres.
Pokorny P., Pernicova R., Vokac M., Sedlarova I., Kouril M. The impact of produced hydrogen gas and calcium zincate on changes of porous structure of cement paste in the vicinity of hot-dip galvanized steel. Corros. Mater. Prot. 2017;61:67–79. doi: 10.1515/kom-2017-0012. DOI
Macias A., Andrade C. Corrosion of galvanized steel reinforcements in alkaline solutions: Part 1. Br. Corros. J. 2013;22:113–118. doi: 10.1179/000705987798271631. DOI
Macias A., Andrade C. Corrosion of galvanized steel in dilute Ca(OH)2 solutions (pH 11·1–12·6) Br. Corros. J. 2013;22:162–171. doi: 10.1179/000705987798271505. DOI
Blanco M.T., Andrade C., Macias A. SEM Study of the Corrosion Products of Galvanized Reinforcements Immersed in Solutions in the pH Range 12·6 to 13·6. Br. Corros. J. 2013;19:41–48. doi: 10.1179/000705984798273524. DOI
Tashiro C., Tatibana S. Bond strength between C3S paste and iron, copper or zinc wire and microstructure of interface. Cem. Concr. Res. 1983;13:377–382. doi: 10.1016/0008-8846(83)90037-6. DOI
Pi Z., Xiao H., Liu R., Liu M., Li H. Effects of brass coating and nano-SiO2 coating on steel fiber-matrix interfacial properties of cement-based composite. Compos. Part B Eng. 2020;189:107904. doi: 10.1016/j.compositesb.2020.107904. DOI
Corinaldesi V., Nardinocchi A. Influence of type of fibers on the properties of high performance cement-based composites. Constr. Build. Mater. 2016;107:321–331. doi: 10.1016/j.conbuildmat.2016.01.024. DOI
Novotny R., Bartonickova E., Kotrla J. The effect of burnt lime addition on hydration of Ultra-high performance cementitious composites. IOP Conf. Ser. Mater. Sci. Eng. 2019;583:12004. doi: 10.1088/1757-899X/583/1/012004. DOI
Citek D., Pokorny P., Citek A., Krystov M., Rehacek S. Bond strength of brass metallized reinforcement with UHPC and NSC at ambient temperature. AIP Conf. Proc. 2021;2322:20043. doi: 10.1063/5.0042720. DOI
Fu X., Chung D.D.L. Linear correlation of bond strength and contact electrical resistivity between steel rebar and concrete. Cem. Concr. Res. 1995;25:1397–1402. doi: 10.1016/0008-8846(95)00133-W. DOI
Yoo D., Gim J.Y., Chun B. Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete. J. Mater. Res. Technol. 2020;9:3632–3648. doi: 10.1016/j.jmrt.2020.01.101. DOI
Yoo D., Shin W., Chun B. Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers. Cem. Concr. Compos. 2020;109:103566. doi: 10.1016/j.cemconcomp.2020.103566. DOI
Kim S., Choi S., Yoo D. Surface modification of steel fibers using chemical solutions and their pullout behaviors from ultra-high-performance concrete. J. Build. Eng. 2020;32:101709. doi: 10.1016/j.jobe.2020.101709. DOI
Yoo D., Jang Y.S., Chun B., Kim S. Chelate effect on fiber surface morphology and its benefits on pullout and tensile behaviors of ultra-high-performance concrete. Cem. Concr. Compos. 2021;115:103864. doi: 10.1016/j.cemconcomp.2020.103864. DOI
Greenwood N.N., Earnshaw A. Chemistry of the Elements. 2nd ed. Butterworth Heinemann; Oxford, UK: Burlington, MA, USA: 1997.
Housecroft C.E., Sharpe A.G. Inorganic Chemistry. 4th ed. Pearson Education Limited; Essex, UK: 2012.
Pourbaix M., Franklin J.A. Atlas of Electrochemical Equilibria in Aqueous Solutions. 2nd ed. National Association of Corrosion Engineers; Houston, TX, USA: 1974.
Cotton F.A., Wilkinson G. Advanced Inorganic Chemistry. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 1980.
Selvaraj S., Ponmariappan S.S., Natesan M., Palaniswamy N. Dezincification of Brass and its Control—An Overview. Corros. Rev. 2003;21:41–74. doi: 10.1515/CORRREV.2003.21.1.41. DOI
Bocian L. Master’s Thesis. Brno University of Technology; Brno, Czech Republic: May 13, 2022. Influence of Anticorrosive Surface Treatment of Steel Reinforcement Fibers on the Properties of Ultrahigh-Performace Cement Composite. PubMed PMC
Guo P., La Plante E.C., Wang B., Chen X., Balonis M., Bauchy M., Sant G. Direct observation of pitting corrosion evolutions on carbon steel surfaces at the nano-to-micro-scales. Sci. Rep. 2018;8:7990. doi: 10.1038/s41598-018-26340-5. PubMed DOI PMC
Influence of Fumed Nanosilica on Ballistic Performance of UHPCs