Influence of Anticorrosive Surface Treatment of Steel Reinforcement Fibers on the Properties of Ultra-High Performance Cement Composite

. 2022 Nov 25 ; 15 (23) : . [epub] 20221125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499896

The influence on the bond between the steel fiber and the matrix of the anticorrosive treatments of steel used for concrete reinforcement is not yet fully understood. The topic of steel fiber treatment was not also studied clearly in terms of brass removal before. This paper deals with how the brass on the surface of steel fibers behaves in the UHPC matrix and how it affects its properties. The steel fibers were firstly modified with a number of surface treatments to remove brass on their surface. Some of the treatments have never been tried before for this purpose. Secondly, the surface of the fibers was analyzed by SEM, EDS, XRF, and stereomicroscopy. Lastly, the properties of the composites were analyzed. It was found out that the majority of brass on the surface of the fibers could be removed by mixture of NH3 and H2O2 with a ratio of 3:1 (v/v). It was also found out that the surface treatment slightly affects the mechanical properties, but it does that only by mechanical interlocking between the fiber and the matrix. No dissolution of the surface treatment was observed under the given conditions. According to the results, steel fibers without surface treatment should be used in UHPC if available.

Zobrazit více v PubMed

Shaikh F.U.A., Luhar S., Arel H.S., Luhar I. Performance evaluation of Ultrahigh performance fibre reinforced concrete—A review. Constr. Build. Mater. 2020;232:117152. doi: 10.1016/j.conbuildmat.2019.117152. DOI

Richard P., Cheyrezy M. Composition of Reactive Powder Concretes. Cem. Concr. Res. 1995;25:1501–1511. doi: 10.1016/0008-8846(95)00144-2. DOI

Mayhoub O.A., Nasr E.S.A.R., Ali Y.A., Kohail M. The influence of ingredients on the properties of reactive powder concrete: A review. Ain Shams Eng. J. 2021;12:145–458. doi: 10.1016/j.asej.2020.07.016. DOI

Maca P., Sovjak R., Konvalinka P. Mix design of UHPFRC and its response to projectile impact. Int. J. Impact Eng. 2014;63:158–163. doi: 10.1016/j.ijimpeng.2013.08.003. DOI

Abdelrahim M.A.A., Elthakeb A., Mohamed U., Noaman M.T. Effect of Steel Fibers and Temperature on the Mechanical Properties of Reactive Powder Concrete. Civ. Environ. Eng. 2021;17:270–276. doi: 10.2478/cee-2021-0028. DOI

Mizani J., Sadeghi A.M., Afshin H. Experimental study on the effect of macro and microfibers on the mechanical properties of reactive powder concrete. Struct. Concr. 2022;23:240–254. doi: 10.1002/suco.202000069. DOI

Rasa S.S., Qureshi L.A., Ali B., Raza A., Khan M.M. Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete. Struct. Concr. 2021;22:334–346. doi: 10.1002/suco.201900439. DOI

Cavill B., Rebentrost M. Ductal—A high-performance material for resistance to blasts and impacts. Aust. J. Struct. Eng. 2006;7:37–45. doi: 10.1080/13287982.2006.11464962. DOI

Deng Y., Zhang Z., Shi C., Wu Z., Zhang C. Steel fiber—Matrix interfacial bond in ultra-high performance concrete: A review. Engineering. 2022. in press . DOI

Pokorny P. The influence of galvanized steel on bond strength with concrete. Corros. Mater. Prot. J. 2013;56:119–135. doi: 10.2478/v10227-011-0020-9. DOI

Chun B., Yoo D., Banthia N. Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete. Cem. Concr. Compos. 2020;113:103669. doi: 10.1016/j.cemconcomp.2020.103669. DOI

Chun B., Kim S., Yoo D. Benefits of chemically treated steel fibers on enhancing the interfacial bond strength from ultra-high-performance concrete. Constr. Build. Mater. 2021;294:123519. doi: 10.1016/j.conbuildmat.2021.123519. DOI

Pi Z.Y., Xiao H.G., Liu R., Li H. Combination usage of nano-SiO2-coated steel fiber and silica fume and its improvement effect on SFRCC. Compos. Part B Eng. 2021;221:109022. doi: 10.1016/j.compositesb.2021.109022. DOI

Küster K., Barburski M., Lomov S.V., Vanclooster K. Metal Fibers-Steel. In: Mahltig B., Kyosev Y., editors. Inorganic and Composite Fibers. 1st ed. Volume 1. Woodhead Publisher; Sawston, UK: 2018. pp. 219–241.

Dove A.B. Steel wire. In: Dove A.B., editor. ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys. 10th ed. Volume 1. ASM International; Novelty, OH, USA: 1990. pp. 460–479. DOI

Wright R.N. Wire Technology. 2nd ed. Butterworth Heinemann; Oxford, UK: 2011. Wire Coatings; pp. 245–256.

Strow H. Brass and bronze plating. Met. Finish. 1999;97:206–209. doi: 10.1016/S0026-0576(00)83077-9. DOI

Wire Fibres. [(accessed on 8 November 2022)]. Available online: https://www.krampeharex.com/en/fibres/products/wire-fibres.

Pokorny P., Pernicova R., Vokac M., Sedlarova I., Kouril M. The impact of produced hydrogen gas and calcium zincate on changes of porous structure of cement paste in the vicinity of hot-dip galvanized steel. Corros. Mater. Prot. 2017;61:67–79. doi: 10.1515/kom-2017-0012. DOI

Macias A., Andrade C. Corrosion of galvanized steel reinforcements in alkaline solutions: Part 1. Br. Corros. J. 2013;22:113–118. doi: 10.1179/000705987798271631. DOI

Macias A., Andrade C. Corrosion of galvanized steel in dilute Ca(OH)2 solutions (pH 11·1–12·6) Br. Corros. J. 2013;22:162–171. doi: 10.1179/000705987798271505. DOI

Blanco M.T., Andrade C., Macias A. SEM Study of the Corrosion Products of Galvanized Reinforcements Immersed in Solutions in the pH Range 12·6 to 13·6. Br. Corros. J. 2013;19:41–48. doi: 10.1179/000705984798273524. DOI

Tashiro C., Tatibana S. Bond strength between C3S paste and iron, copper or zinc wire and microstructure of interface. Cem. Concr. Res. 1983;13:377–382. doi: 10.1016/0008-8846(83)90037-6. DOI

Pi Z., Xiao H., Liu R., Liu M., Li H. Effects of brass coating and nano-SiO2 coating on steel fiber-matrix interfacial properties of cement-based composite. Compos. Part B Eng. 2020;189:107904. doi: 10.1016/j.compositesb.2020.107904. DOI

Corinaldesi V., Nardinocchi A. Influence of type of fibers on the properties of high performance cement-based composites. Constr. Build. Mater. 2016;107:321–331. doi: 10.1016/j.conbuildmat.2016.01.024. DOI

Novotny R., Bartonickova E., Kotrla J. The effect of burnt lime addition on hydration of Ultra-high performance cementitious composites. IOP Conf. Ser. Mater. Sci. Eng. 2019;583:12004. doi: 10.1088/1757-899X/583/1/012004. DOI

Citek D., Pokorny P., Citek A., Krystov M., Rehacek S. Bond strength of brass metallized reinforcement with UHPC and NSC at ambient temperature. AIP Conf. Proc. 2021;2322:20043. doi: 10.1063/5.0042720. DOI

Fu X., Chung D.D.L. Linear correlation of bond strength and contact electrical resistivity between steel rebar and concrete. Cem. Concr. Res. 1995;25:1397–1402. doi: 10.1016/0008-8846(95)00133-W. DOI

Yoo D., Gim J.Y., Chun B. Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete. J. Mater. Res. Technol. 2020;9:3632–3648. doi: 10.1016/j.jmrt.2020.01.101. DOI

Yoo D., Shin W., Chun B. Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers. Cem. Concr. Compos. 2020;109:103566. doi: 10.1016/j.cemconcomp.2020.103566. DOI

Kim S., Choi S., Yoo D. Surface modification of steel fibers using chemical solutions and their pullout behaviors from ultra-high-performance concrete. J. Build. Eng. 2020;32:101709. doi: 10.1016/j.jobe.2020.101709. DOI

Yoo D., Jang Y.S., Chun B., Kim S. Chelate effect on fiber surface morphology and its benefits on pullout and tensile behaviors of ultra-high-performance concrete. Cem. Concr. Compos. 2021;115:103864. doi: 10.1016/j.cemconcomp.2020.103864. DOI

Greenwood N.N., Earnshaw A. Chemistry of the Elements. 2nd ed. Butterworth Heinemann; Oxford, UK: Burlington, MA, USA: 1997.

Housecroft C.E., Sharpe A.G. Inorganic Chemistry. 4th ed. Pearson Education Limited; Essex, UK: 2012.

Pourbaix M., Franklin J.A. Atlas of Electrochemical Equilibria in Aqueous Solutions. 2nd ed. National Association of Corrosion Engineers; Houston, TX, USA: 1974.

Cotton F.A., Wilkinson G. Advanced Inorganic Chemistry. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 1980.

Selvaraj S., Ponmariappan S.S., Natesan M., Palaniswamy N. Dezincification of Brass and its Control—An Overview. Corros. Rev. 2003;21:41–74. doi: 10.1515/CORRREV.2003.21.1.41. DOI

Bocian L. Master’s Thesis. Brno University of Technology; Brno, Czech Republic: May 13, 2022. Influence of Anticorrosive Surface Treatment of Steel Reinforcement Fibers on the Properties of Ultrahigh-Performace Cement Composite. PubMed PMC

Guo P., La Plante E.C., Wang B., Chen X., Balonis M., Bauchy M., Sant G. Direct observation of pitting corrosion evolutions on carbon steel surfaces at the nano-to-micro-scales. Sci. Rep. 2018;8:7990. doi: 10.1038/s41598-018-26340-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...