Influence of Fumed Nanosilica on Ballistic Performance of UHPCs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36984030
PubMed Central
PMC10052983
DOI
10.3390/ma16062151
PII: ma16062151
Knihovny.cz E-zdroje
- Klíčová slova
- ballistic resistance, differential efficiency factor, nanosilica, ultra-high performance cement composite,
- Publikační typ
- časopisecké články MeSH
This research delves into the potential use of fumed nanosilica in ultra-high performance concrete for ballistic protection. First, the mechanical properties, slump flow, and specific gravity of UHPC with different contents of Aerosil 200 were determined. Then, calorimetric studies were conducted on these cement composites. Lastly, the differential efficiency factor and spalling area of UHPC with fumed nanosilica were determined. It was found out that the slump flow, the mechanical properties, and differential efficiency factor are slightly decreased by the addition of fumed nanosilica. However, the addition of the fumed nanosilica is beneficial in terms of the spalling area decrease and it is highly reactive during the induction period. Some of the results are supported by BSEM imaging.
Zobrazit více v PubMed
Bajaber M.A., Hakeem I.Y. UHPC Evolution, Development, and Utilization in Construction: A Review. J. Mater. Res. Technol. 2021;10:1058–1074. doi: 10.1016/j.jmrt.2020.12.051. DOI
Ullah R., Qiang Y., Ahmad J., Vatin N.I., El-Shorbagy M.A. Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review. Materials. 2022;15:4131. doi: 10.3390/ma15124131. PubMed DOI PMC
Yang J., Chen B., Su J., Xu G., Zhang D., Zhou J. Effects of Fibers on the Mechanical Properties of UHPC: A Review. J. Traffic Transp. Eng. (Engl. Ed.) 2022;9:363–387. doi: 10.1016/j.jtte.2022.05.001. DOI
Huang H., Gao X., Teng L. Fiber Alignment and Its Effect on Mechanical Properties of UHPC: An Overview. Constr. Build. Mater. 2021;296:123741. doi: 10.1016/j.conbuildmat.2021.123741. DOI
Bahmani H., Mostofinejad D. Microstructure of Ultra-High-Performance Concrete (UHPC)–A Review Study. J. Build. Eng. 2022;50:104118. doi: 10.1016/j.jobe.2022.104118. DOI
Marvila M.T., de Azevedo A.R.G., de Matos P.R., Monteiro S.N., Vieira C.M.F. Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials. 2021;14:4304. doi: 10.3390/ma14154304. PubMed DOI PMC
Singh L.P., Karade S.R., Bhattacharyya S.K., Yousuf M.M., Ahalawat S. Beneficial Role of Nanosilica in Cement Based Materials–A Review. Constr. Build. Mater. 2013;47:1069–1077. doi: 10.1016/j.conbuildmat.2013.05.052. DOI
Mostafa S.A., Faried A.S., Farghali A.A., EL-Deeb M.M., Tawfik T.A., Majer S., Abd Elrahman M. Influence of Nanoparticles from Waste Materials on Mechanical Properties, Durability and Microstructure of UHPC. Materials. 2020;13:4530. doi: 10.3390/ma13204530. PubMed DOI PMC
Fares G., Khan M.I. Nanosilica and Its Future Prospects in Concrete. Adv. Mat. Res. 2013;658:50–55. doi: 10.4028/www.scientific.net/AMR.658.50. DOI
Das N., Nanthagopalan P. State-of-the-Art Review on Ultra High Performance Concrete-Ballistic and Blast Perspective. Cem. Concr. Compos. 2022;127:104383. doi: 10.1016/j.cemconcomp.2021.104383. DOI
Hou P., Kawashima S., Kong D., Corr D.J., Qian J., Shah S.P. Modification Effects of Colloidal NanoSiO2 on Cement Hydration and Its Gel Property. Compos. B Eng. 2013;45:440–448. doi: 10.1016/j.compositesb.2012.05.056. DOI
Björnström J., Martinelli A., Matic A., Börjesson L., Panas I. Accelerating Effects of Colloidal Nano-Silica for Beneficial Calcium–Silicate–Hydrate Formation in Cement. Chem. Phys. Lett. 2004;392:242–248. doi: 10.1016/j.cplett.2004.05.071. DOI
Kontoleontos F., Tsakiridis P.E., Marinos A., Kaloidas V., Katsioti M. Influence of Colloidal Nanosilica on Ultrafine Cement Hydration: Physicochemical and Microstructural Characterization. Constr. Build. Mater. 2012;35:347–360. doi: 10.1016/j.conbuildmat.2012.04.022. DOI
Chen Y.X., Li S., Mezari B., Hensen E.J.M., Yu R., Schollbach K., Brouwers H.J.H., Yu Q. Effect of Highly Dispersed Colloidal Olivine Nano-Silica on Early Age Properties of Ultra-High Performance Concrete. Cem. Concr. Compos. 2022;131:104564. doi: 10.1016/j.cemconcomp.2022.104564. DOI
Li W., Huang Z., Cao F., Sun Z., Shah S.P. Effects of Nano-Silica and Nano-Limestone on Flowability and Mechanical Properties of Ultra-High-Performance Concrete Matrix. Constr. Build. Mater. 2015;95:366–374. doi: 10.1016/j.conbuildmat.2015.05.137. DOI
Said A.M., Zeidan M.S., Bassuoni M.T., Tian Y. Properties of Concrete Incorporating Nano-Silica. Constr. Build. Mater. 2012;36:838–844. doi: 10.1016/j.conbuildmat.2012.06.044. DOI
Senff L., Labrincha J.A., Ferreira V.M., Hotza D., Repette W.L. Effect of Nano-Silica on Rheology and Fresh Properties of Cement Pastes and Mortars. Constr. Build. Mater. 2009;23:2487–2491. doi: 10.1016/j.conbuildmat.2009.02.005. DOI
Zapata L.E., Portela G., Suárez O.M., Carrasquillo O. Rheological Performance and Compressive Strength of Superplasticized Cementitious Mixtures with Micro/Nano-SiO2 Additions. Constr. Build. Mater. 2013;41:708–716. doi: 10.1016/j.conbuildmat.2012.12.025. DOI
Aly M., Hashmi M.S.J., Olabi A.G., Messeiry M., Abadir E.F., Hussain A.I. Effect of Colloidal Nano-Silica on the Mechanical and Physical Behaviour of Waste-Glass Cement Mortar. Mater. Des. 2012;33:127–135. doi: 10.1016/j.matdes.2011.07.008. DOI
Jalal M., Mansouri E., Sharifipour M., Pouladkhan A.R. Mechanical, Rheological, Durability and Microstructural Properties of High Performance Self-Compacting Concrete Containing SiO2 Micro and Nanoparticles. Mater. Des. 2012;34:389–400. doi: 10.1016/j.matdes.2011.08.037. DOI
Naji Givi A., Abdul Rashid S., Aziz F.N.A., Salleh M.A.M. Experimental Investigation of the Size Effects of SiO2 Nano-Particles on the Mechanical Properties of Binary Blended Concrete. Compos. B Eng. 2010;41:673–677. doi: 10.1016/j.compositesb.2010.08.003. DOI
Ji T. Preliminary Study on the Water Permeability and Microstructure of Concrete Incorporating Nano-SiO2. Cem. Concr. Res. 2005;35:1943–1947. doi: 10.1016/j.cemconres.2005.07.004. DOI
Gaitero J.J., Campillo I., Guerrero A. Reduction of the Calcium Leaching Rate of Cement Paste by Addition of Silica Nanoparticles. Cem. Concr. Res. 2008;38:1112–1118. doi: 10.1016/j.cemconres.2008.03.021. DOI
Kong D., Du X., Wei S., Zhang H., Yang Y., Shah S.P. Influence of Nano-Silica Agglomeration on Microstructure and Properties of the Hardened Cement-Based Materials. Constr. Build. Mater. 2012;37:707–715. doi: 10.1016/j.conbuildmat.2012.08.006. DOI
Zyganitidis I., Stefanidou M., Kalfagiannis N., Logothetidis S. Nanomechanical Characterization of Cement-Based Pastes Enriched with SiO2 Nanoparticles. Mater. Sci. Eng. B. 2011;176:1580–1584. doi: 10.1016/j.mseb.2011.05.005. DOI
Shekari A.H., Razzaghi M.S. Influence of Nano Particles on Durability and Mechanical Properties of High Performance Concrete. Procedia Eng. 2011;14:3036–3041. doi: 10.1016/j.proeng.2011.07.382. DOI
Gesoglu M., Güneyisi E., Asaad D.S., Muhyaddin G.F. Properties of Low Binder Ultra-High Performance Cementitious Composites: Comparison of Nanosilica and Microsilica. Constr. Build. Mater. 2016;102:706–713. doi: 10.1016/j.conbuildmat.2015.11.020. DOI
Ghafari E., Costa H., Júlio E., Portugal A., Durães L. The Effect of Nanosilica Addition on Flowability, Strength and Transport Properties of Ultra High Performance Concrete. Mater. Des. 2014;59:1–9. doi: 10.1016/j.matdes.2014.02.051. DOI
Ramadoss P., Nagamani K. Impact Characteristics of High-Performance Steel Fiber Reinforced Concrete under Repeated Dynamic Loading. Int. J. Civ. Eng. 2014;12:513–520.
Yan H., Sun W., Chen H. The Effect of Silica Fume and Steel Fiber on the Dynamic Mechanical Performance of High-Strength Concrete. Cem. Concr. Res. 1999;29:423–426. doi: 10.1016/S0008-8846(98)00235-X. DOI
Rao G.A. Investigations on the Performance of Silica Fume-Incorporated Cement Pastes and Mortars. Cem. Concr. Res. 2003;33:1765–1770. doi: 10.1016/S0008-8846(03)00171-6. DOI
Pi Z., Xiao H., Li H. Influence of Interfacial Microstructure on Pullout Behavior and Failure Mechanism of Steel Fibers Embedded in Cement-Based Materials. Constr. Build. Mater. 2021;304:124688. doi: 10.1016/j.conbuildmat.2021.124688. DOI
Su Y., Li J., Wu C., Wu P., Li Z.-X. Influences of Nano-Particles on Dynamic Strength of Ultra-High Performance Concrete. Compos. B Eng. 2016;91:595–609. doi: 10.1016/j.compositesb.2016.01.044. DOI
Drdlová M., Buchar J., Krátký J., Řídký R. Blast Resistance Characteristics of Concrete with Different Types of Fibre Reinforcement. Struct. Concr. 2015;16:508–517. doi: 10.1002/suco.201400080. DOI
Tabatabaei Z.S., Volz J.S., Baird J., Gliha B.P., Keener D.I. Experimental and Numerical Analyses of Long Carbon Fiber Reinforced Concrete Panels Exposed to Blast Loading. Int. J. Impact. Eng. 2013;57:70–80. doi: 10.1016/j.ijimpeng.2013.01.006. DOI
Wu C., Oehlers D.J., Rebentrost M., Leach J., Whittaker A.S. Blast Testing of Ultra-High Performance Fibre and FRP-Retrofitted Concrete Slabs. Eng. Struct. 2009;31:2060–2069. doi: 10.1016/j.engstruct.2009.03.020. DOI
Lai J., Guo X., Zhu Y. Repeated Penetration and Different Depth Explosion of Ultra-High Performance Concrete. Int. J. Impact. Eng. 2015;84:1–12. doi: 10.1016/j.ijimpeng.2015.05.006. DOI
Feng J., Gao X., Li J., Dong H., Yao W., Wang X., Sun W. Influence of Fiber Mixture on Impact Response of Ultra-High-Performance Hybrid Fiber Reinforced Cementitious Composite. Compos. B Eng. 2019;163:487–496. doi: 10.1016/j.compositesb.2018.12.141. DOI
Dapper P.R., Ehrendring H.Z., Pacheco F., Christ R., Menegussi G.C., de Oliveira M.F., Tutikian B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability. 2021;13:13410. doi: 10.3390/su132313410. DOI
Tai Y.S. Flat Ended Projectile Penetrating Ultra-High Strength Concrete Plate Target. Theor. Appl. Fract. Mech. 2009;51:117–128. doi: 10.1016/j.tafmec.2009.04.005. DOI
Soliman N.A., Tagnit-Hamou A. Using Particle Packing and Statistical Approach to Optimize Eco-Efficient Ultra-High-Performance Concrete. ACI Mater. J. 2017;114:847–858. doi: 10.14359/51701001. DOI
Zhang T., Wu H., Fang Q., Huang T., Gong Z.M., Peng Y. UHP-SFRC Panels Subjected to Aircraft Engine Impact: Experiment and Numerical Simulation. Int. J. Impact. Eng. 2017;109:276–292. doi: 10.1016/j.ijimpeng.2017.07.012. DOI
Sovják R., Vavřiník T., Máca P., Zatloukal J., Konvalinka P., Song Y. Experimental Investigation of Ultra-High Performance Fiber Reinforced Concrete Slabs Subjected to Deformable Projectile Impact. Procedia Eng. 2013;65:120–125. doi: 10.1016/j.proeng.2013.09.021. DOI
Kravanja S., Sovják R. Ultra-High-Performance Fibre-Reinforced Concrete under High-Velocity Projectile Impact. Part I. Experiments. Acta Polytech. 2018;58:232. doi: 10.14311/AP.2018.58.0232. DOI
Mára M., Talone C., Sovják R., Fornůsek J., Zatloukal J., Kheml P., Konvalinka P. Experimental Investigation of Thin-Walled UHPFRCC Modular Barrier for Blast and Ballistic Protection. Appl. Sci. 2020;10:8716. doi: 10.3390/app10238716. DOI
Mára M., Kheml P., Carrera K., Fornůsek J., Sovják R. Effect of Corundum and Basalt Aggregates on the Ballistic Resistance of UHP-SFRC. Crystals. 2021;11:1529. doi: 10.3390/cryst11121529. DOI
Pontiroli C., Erzar B., Buzaud E. Computational Modelling of Concrete and Concrete Structures. CRC Press; Boca Raton, FL, USA: 2014. Concrete Behaviour under Ballistic Impacts; pp. 685–693.
Qin F., Wu H. Concrete Structures under Projectile Impact. 1st ed. Springer; Singapore: 2017. pp. 9–31.
Bocian L., Novotny R., Soukal F., Palovcik J., Brezina M., Koplik J. Influence of Anticorrosive Surface Treatment of Steel Reinforcement Fibers on the Properties of Ultra-High Performance Cement Composite. Materials. 2022;15:8401. doi: 10.3390/ma15238401. PubMed DOI PMC