Electron Correlation or Basis Set Quality: How to Obtain Converged and Accurate NMR Shieldings for the Third-Row Elements?
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LTAUSA18085
Czech Ministry of Education, Youth and Sports
PubMed
36500321
PubMed Central
PMC9737175
DOI
10.3390/molecules27238230
PII: molecules27238230
Knihovny.cz E-resources
- Keywords
- NMR shieldings, basis set dependence, third-row elements,
- MeSH
- Electrons * MeSH
- Phosphorus chemistry MeSH
- Quantum Theory * MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Vibration MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phosphorus MeSH
The quality of theoretical NMR shieldings calculated at the quantum-chemical level depends on various theoretical aspects, of which the basis set type and size are among the most important factors. Nevertheless, not much information is available on the basis set effect on theoretical shieldings of the NMR-active nuclei of the third row. Here, we report on the importance of proper basis set selection to obtain accurate and reliable NMR shielding parameters for nuclei from the third row of the periodic table. All calculations were performed on a set of eleven compounds containing the elements Na, Mg, Al, Si, P, S, or Cl. NMR shielding tensors were calculated using the SCF-HF, DFT-B3LYP, and CCSD(T) methods, combined with the Dunning valence aug-cc-pVXZ, core-valence aug-cc-pCVXZ, Jensen polarized-convergent aug-pcSseg-n and Karlsruhe x2c-Def2 basis set families. We also estimated the complete basis set limit (CBS) values of the NMR parameters. Widely scattered nuclear shieldings were observed for the Dunning polarized-valence basis set, which provides irregular convergence. We show that the use of Dunning core-valence or Jensen basis sets effectively reduces the scatter of theoretical NMR results and leads to their exponential-like convergence to CBS. We also assessed the effect of vibrational, temperature, and relativistic corrections on the predicted shieldings. For systems with single bonds, all corrections are relatively small, amounting to less than 4% of the CCSD(T)/CBS value. Vibrational and temperature corrections were less reliable for H3PO and HSiCH due to the high anharmonicity of the molecules. An abnormally high relativistic correction was observed for phosphorus in PN, reaching ~20% of the CCSD(T)/CBS value, while the correction was less than 7% for other tested molecules.
See more in PubMed
Helgaker T., Jaszunski M., Ruud K. Ab Initio Methods for the Calculation of NMR shielding and Indirect Spin-Spin Coupling Constants. Chem. Rev. 1999;99:293–352. doi: 10.1021/cr960017t. PubMed DOI
Gauss J., Stanton J.F. Gauge-invariant calculation of nuclear magnetic shielding constants at the coupled-cluster singles and doubles level. J. Chem. Phys. 1995;102:251–253. doi: 10.1063/1.469397. DOI
Gauss J., Stanton J.F. Perturbative treatment of triple excitations in coupled-cluster calculations of nuclear magnetic shielding constants. J. Chem. Phys. 1996;104:2574–2583. doi: 10.1063/1.471005. DOI
Kupka T., Stachów M., Nieradka M., Kaminský J., Pluta T. Convergence of nuclear magnetic shieldings in the Kohn-Sham limit for several small molecules. J. Chem. Theor. Comput. 2010;6:1580–1589. doi: 10.1021/ct100109j. PubMed DOI
Gauss J. Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals. Chem. Phys. Lett. 1992;191:614–620. doi: 10.1016/0009-2614(92)85598-5. DOI
Crittenden D.L. A new double-reference correction scheme for accurate and efficient computation of NMR chemical shieldings. Phys. Chem. Chem. Phys. 2022;24:27055–27063. doi: 10.1039/D2CP03992C. PubMed DOI
Nazarski R.B., Wałejko P., Witkowski S. Multi-conformer molecules in solutions: An NMR-based DFT/MP2 conformational study of two glucopyranosides of a vitamin E model compound. Org. Biomol. Chem. 2016;11:3142–3158. doi: 10.1039/C5OB01865J. PubMed DOI
Nazarski R.B. Summary of DFT calculations coupled with current statistical and/or artificial neural network (ANN) methods to assist experimental NMR data in identifying diastereomeric structures. Tetrahedron Lett. 2021;71:152548. doi: 10.1016/j.tetlet.2020.152548. DOI
Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Ditchfield R. Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. chemical shifts. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI
Feller D. Application of systematic sequences of wave functions to the water dimer. J. Chem. Phys. 1992;96:6104–6114. doi: 10.1063/1.462652. DOI
Feller D. The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water. J. Chem. Phys. 1993;98:7059–7071. doi: 10.1063/1.464749. DOI
Kupka T., Ruscic B., Botto R.E. Hartree-Fock and Density Functional Complete Basis-Set (CBS) Predicted Nuclear Shielding Anisotropy and Shielding Tensor Components. Solid State Nucl. Magn. Reson. 2003;2:143–167. doi: 10.1016/S0926-2040(02)00020-6. PubMed DOI
Kupka T., Ruscic B., Botto R.E. Toward Hartree-Fock- and Density Functional Complete Basis-Set Predicted NMR Parameters. J. Phys. Chem. A. 2002;106:10396–10407. doi: 10.1021/jp020987m. DOI
Kupka T., Leszczyńska M., Ejsmont K., Mnich A., Broda M., Thangavel K., Kaminský J. Phosphorus mononitride: A difficult case for theory. Int. J. Quantum Chem. 2019;119:e26032. doi: 10.1002/qua.26032. DOI
Jensen F. The basis set convergence of spin-spin coupling constants calculated by density functional methods. J. Chem. Theor. Comput. 2006;2:1360–1369. doi: 10.1021/ct600166u. PubMed DOI
Jensen F. Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. J. Chem. Theor. Comput. 2008;4:719–727. doi: 10.1021/ct800013z. PubMed DOI
Jensen F. Unifying General and Segmented Contracted Basis Sets. Segmented Polarization Consistent Basis Sets. J. Chem. Theory Comput. 2014;10:1074–1085. doi: 10.1021/ct401026a. PubMed DOI
Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Kendall R.A., Dunning T.H., Jr., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Woon D.E., Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993;98:1358–1371. doi: 10.1063/1.464303. DOI
Van Mourik T., Dunning T.H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. VIII. Standard and Augmented Sextuple Zeta Correlation Consistent Basis Sets for Aluminum Through Argon. Int. J. Quantum Chem. 2000;76:205–221. doi: 10.1002/(SICI)1097-461X(2000)76:2<205::AID-QUA10>3.0.CO;2-C. DOI
Peterson K.A., Woon D.E., Dunning T.H., Jr. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2→H2 + H reaction. J. Chem. Phys. 1994;100:7410–7415. doi: 10.1063/1.466884. DOI
Peterson K.A., Dunning T.H. Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys. 2002;117:10548–10560. doi: 10.1063/1.1520138. DOI
Prascher B.P., Woon D.E., Peterson K.A., Dunning T.H., Wilson A.K. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theor. Chem. Acc. 2011;128:69–82. doi: 10.1007/s00214-010-0764-0. DOI
Jensen F. Polarization consistent basis sets: Principles. J. Chem. Phys. 2001;115:9113–9125. doi: 10.1063/1.1413524. DOI
Jensen F. Polarization consistent basis sets. II. Estimating the Kohn-Sham basis set limit. J. Chem. Phys. 2002;116:7372–7379. doi: 10.1063/1.1465405. DOI
Jensen F. Polarization consistent basis sets. III. The importance of diffuse functions. J. Chem. Phys. 2002;117:9234–9240. doi: 10.1063/1.1515484. DOI
Jensen F. Polarization consistent basis sets. IV. The basis set convergence of equilibrium geometries, harmonic vibrational frequencies, and intensities. J. Chem. Phys. 2003;118:2459–2463. doi: 10.1063/1.1535905. DOI
Jensen F. The optimum contraction of basis sets for calculating spin-spin coupling constants. Theor. Chem. Acc. 2010;126:371–382. doi: 10.1007/s00214-009-0699-5. DOI
Kupka T., Stachow M., Nieradka M., Kaminsky J., Pluta T., Sauer S.P.A. From CCSD(T)/aug-cc-pVTZ-J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations. Magn. Reson. Chem. 2011;49:231–236. doi: 10.1002/mrc.2738. PubMed DOI
Jankowska M., Kupka T., Stobinski L., Faber R., Lacerda E.G., Sauer S.P.A. Spin-Orbit ZORA and Four-Component Dirac-Coulomb Estimation of Relativistic Corrections to Isotropic Nuclear Shieldings and Chemical Shifts of Noble Gas Dimers. J. Comput. Chem. 2016;37:395–403. doi: 10.1002/jcc.24228. PubMed DOI
Kupka T., Stachów M., Chełmecka E., Pasterny K., Stobińska M., Stobiński L., Kaminský J. Efficient modeling of NMR parameters in carbon nanosystems. J. Chem. Theor. Comput. 2013;9:4275–4286. doi: 10.1021/ct4002812. PubMed DOI
Schäfer A., Huber C., Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994;100:5829–5835. doi: 10.1063/1.467146. DOI
Franzke Y.J., Spiske L., Pollak P., Weigend F. Segmented Contracted Error-Consistent Basis Sets of Quadruple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations. J. Chem. Theory Comput. 2020;16:5658–5674. doi: 10.1021/acs.jctc.0c00546. PubMed DOI
Franzke Y.J., Weigend F. NMR Shielding Tensors and Chemical Shifts in Scalar-Relativistic Local Exact Two-Component Theory. J. Chem. Theory Comput. 2019;15:1028–1043. doi: 10.1021/acs.jctc.8b01084. PubMed DOI
Franzke Y.J., Treß R., Pazdera T.M., Weigend F. Error-consistent segmented contracted all-electron relativistic basis sets of double- and triple-zeta quality for NMR shielding constants. Phys. Chem. Chem. Phys. 2019;21:16658–16664. doi: 10.1039/C9CP02382H. PubMed DOI
de Jong W.A., Harrison R.J., Dixon D.A. Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J. Chem. Phys. 2001;114:48–53. doi: 10.1063/1.1329891. DOI
Teale A.M., Lutnas O.B., Helgaker T., Tozer D.J., Gauss J. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations. J. Chem. Phys. 2013;138:024111. doi: 10.1063/1.4773016. PubMed DOI
Field-Theodore T.E., Olejniczak M., Jaszuński M., Wilson D.J.D. NMR shielding constants in group 15 trifluorides. Phys. Chem. Chem. Phys. 2018;20:23025–23033. doi: 10.1039/C8CP04056G. PubMed DOI
Stoychev G.L., Auer A.A., Izsák R., Neese F. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J. Chem. Theory Comput. 2018;14:619–637. doi: 10.1021/acs.jctc.7b01006. PubMed DOI
Martinez-Baez E., Feng R., Pearce C.I., Schenter G.K., Clark A.E. Al27 NMR chemical shift of Al(OH)4− calculated from first principles: Assessment of error cancellation in chemically distinct reference and target systems. J. Chem. Phys. 2020;152:134303. doi: 10.1063/1.5144294. PubMed DOI
Lee V.Y., Uhlig F. Organosilicon Compounds. Academic Press; Cambridge, MA, USA: 2017. p. 59.
Bhinderwala F., Evans P., Jones K., Laws B.R., Smith T.G., Morton M., Powers R. Phosphorus NMR and Its Application to Metabolomics. Anal. Chem. 2020;92:9536–9545. doi: 10.1021/acs.analchem.0c00591. PubMed DOI PMC
Ruud K., Astrand P.-O., Taylor P.R. An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules. J. Chem. Phys. 2000;112:2668–2683. doi: 10.1063/1.480841. DOI
Ruud K., Astrand P.-O., Taylor P.R. Zero-point vibrational effects on proton shieldings: Functional-group contributions from ab initio calculations. J. Am. Chem. Soc. 2001;123:4826–4833. doi: 10.1021/ja004160m. PubMed DOI
Vıícha J., Novotný J., Komorovsky S., Straka M., Kaupp M., Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends Across the Periodic Table. Chem. Rev. 2020;120:7065–7103. doi: 10.1021/acs.chemrev.9b00785. PubMed DOI
Lantto P., Standara S., Riedel S., Vaara J., Straka M. Exploring new 129Xe chemical shift ranges in HXeY compounds: Hydrogen more relativistic than xenon. Phys. Chem. Chem. Phys. 2012;14:10944–10952. doi: 10.1039/c2cp41240c. PubMed DOI
Krivdin L.B. Recent advances in computational liquid-phase 77Se NMR. Russ. Chem. Rev. 2021;90:265–279. doi: 10.1070/RCR4960. DOI
Rusakov Y.Y., Krivdin L.B., Sauer S.P.A., Levanova E.P., Levkovskaya G.G. Structural trends of 77Se-1H spin-spin coupling constants and conformational behavior of 2-substituted selenophenes. Magn. Reson. Chem. 2010;48:44–52. doi: 10.1002/mrc.2537. PubMed DOI
Sarotti A.M., Pellegrinet S.C. A Multi-standard Approach for GIAO 13C NMR Calculations. J. Org. Chem. 2009;74:7254–7260. doi: 10.1021/jo901234h. PubMed DOI
Lodewyk M.W., Siebert M.R., Tantillo D.J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012;112:1839–1862. doi: 10.1021/cr200106v. PubMed DOI
Gamov G.A., Kuranova N.N., Pogonin A.E., Aleksandriiskii V.V., Sharnin V.A. Hydrogen bonds determine the signal arrangement in 13C NMR spectra of nicotinate. J. Mol. Struct. 2018;1154:565–569. doi: 10.1016/j.molstruc.2017.10.086. DOI
Alkorta I., Elguero J. Ab initio (GIAO) calculations of absolute nuclear shieldings for representative compounds containing 1(2)H, 6(7)Li, 11B, 13C, 14(15)N, 17O, 19F, 29Si, 31P, 33S and 35Cl nuclei. Struct. Chem. 1998;9:187–202.
Prochnow E., Auer A.A. Quantitative prediction of gas-phase 15N and 31P nuclear magnetic shielding constants. J. Chem. Phys. 2010;132:064109. doi: 10.1063/1.3310282. PubMed DOI
NIST. [(accessed on 1 January 2020)]; Available online: https://cccbdb.nist.gov/geom2x.asp.
Antušek A., Jaszuński M. Coupled cluster study of NMR shielding constants and spin-rotation constants in SiH4, PH3 and H2S molecules. Mol. Phys. 2006;104:1463–1474.
Lu T., Hao Q., Wilke J.J., Yamaguchi Y., Fang D.-C., Schaefer H.F. Silylidene (SiCH2) and its isomers: Anharmonic rovibrational analyses for silylidene, silaacetylene, and silavinylidene. J. Mol. Struct. 2012;1009:103–110. doi: 10.1016/j.molstruc.2011.10.032. DOI
Blicharska B., Kupka T. Theoretical DFT and experimental NMR studies on uracil and 5-fluorouracil. J. Mol. Struct. 2002;613:153–166. doi: 10.1016/S0022-2860(02)00171-0. DOI
Kupka T., Pasterna G., Lodowski P., Szeja W. GIAO-DFT Prediction of Accurate NMR Parameters in Selected Glucose Derivatives. Magn. Reson. Chem. 1999;37:421–429. doi: 10.1002/(SICI)1097-458X(199906)37:6<421::AID-MRC479>3.0.CO;2-W. DOI
Vincent J., Mignot G., Chalmin F., Ladoire S., Bruchard M., Chevriaux A., Martin F., Apetoh L., Rébé C., Ghiringhelli F. 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell–Dependent Antitumor Immunity. Cancer Res. 2010;70:3052–3061. doi: 10.1158/0008-5472.CAN-09-3690. PubMed DOI
Rzepiela K., Buczek A., Kupka T., Broda M.A. Factors Governing the Chemical Stability and NMR Parameters of Uracil Tautomers and Its 5-Halogen Derivatives. Molecules. 2020;25:3931. doi: 10.3390/molecules25173931. PubMed DOI PMC
Rzepiela K., Buczek A., Kupka T., Broda M.A. On the aromaticity of uracil and its 5-halogeno derivatives as revealed by theoretically derived geometric and magnetic indexes. Struct. Chem. 2021;32:275–283. doi: 10.1007/s11224-020-01682-x. DOI
Jarzembska K.N., Kubsik M., Kamiński R., Woźniak K., Dominiak P.M. From a Single Molecule to Molecular Crystal Architectures: Structural and Energetic Studies of Selected Uracil Derivatives. Cryst. Growth Des. 2012;12:2508–2524.
Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI
Chesnut D.B., Moore K.D. Locally dense basis sets for chemical shift calculations. J. Comput. Chem. 1989;10:648–659. doi: 10.1002/jcc.540100507. DOI
Reid D.M., Kobayashi R., Collins M.A. Systematic study of locally dense basis sets for NMR shielding constants. J. Chem. Theor. Comp. 2014;10:146–152. doi: 10.1021/ct4007579. PubMed DOI
Provasi P.F., Aucar G.A., Sauer S.P.A. The use of locally dense basis sets in the calculation of indirect nuclear spin–spin coupling constants: The vicinal coupling constants in H3C–CH2X (X = H, F, Cl, Br, I) J. Chem. Phys. 2000;112:6201–6208. doi: 10.1063/1.481219. DOI
Semenov V.A., Krivdin L.B. DFT computational schemes for 1H and 13C NMR chemical shifts of natural products, exemplified by strychnine. Magn. Reson. Chem. 2020;58:56–64. doi: 10.1002/mrc.4922. PubMed DOI
Krivdin L.B. Computational NMR of heavy nuclei involving 109Ag, 113Cd, 119Sn, 125Te, 195Pt, 199Hg, 205Tl, and 207Pb. Russ. Chem. Rev. 2021;90:1166–1212.
Faber R., Kaminský J., Sauer S.P.A. Rovibrational and Temperature Effects in Theoretical Studies of NMR Parameters. In: Jackowski K., Jaszuński M., editors. New Developments in NMR. Gas Phase NMR. Volume 6. The Royal Society of Chemistry; Piccadilly, UK: 2016. pp. 218–266.
Jaszuński M., Repisky M., Demissie T.B., Komorovsky S., Malkin E., Ruud K., Garbacz P., Jackowski K., Makulski W. Spin-rotation and NMR shielding constants in HCl. J. Chem. Phys. 2013;139:234302. doi: 10.1063/1.4840295. PubMed DOI
Yoshizawa T., Hada M. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method. J. Chem. Phys. 2017;147:154104. doi: 10.1063/1.5001256. PubMed DOI
Stoychev G.L., Auer A.A., Neese F. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. J. Chem. Theory Comput. 2018;14:4756–4771. doi: 10.1021/acs.jctc.8b00624. PubMed DOI
Jameson C.J., Jameson A.K. Absolute shielding scale for 29Si. Chem. Phys. Lett. 1988;149:300–305. doi: 10.1016/0009-2614(88)85030-9. DOI
Jameson C.J., de Dios A.C., Jameson A.K. The 31P shielding in phosphine. J. Chem. Phys. 1991;95:9042–9053. doi: 10.1063/1.461183. DOI
Lantto P., Jackowski K., Makulski W., Olejniczak M., Jaszuński M. NMR Shielding Constants in PH3, Absolute Shielding Scale, and the Nuclear Magnetic Moment of 31P. J. Phys. Chem. A. 2011;115:10617–10623. doi: 10.1021/jp2052739. PubMed DOI
Kudo K., Fukui H. Calculation of nuclear magnetic shieldings using an analytically differentiated relativistic shielding formula. J. Chem. Phys. 2005;123:114102. doi: 10.1063/1.2032408. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian, Inc.; Wallingford, CT, USA: 2016. Gaussian 16 Rev. C.01.
Stanton J.F., Gauss J., Cheng L., Harding M.E., Matthews D.A., Szalay P.G. CFOUR. [(accessed on 1 January 2020)]. Available online: http://www.cfour.de. PubMed
Bouř P. Program S4. Czech Academy of Sciences; Prague, Czech Republic: 2009.
Feller D. The Role of Databases in Support of Computational Chemistry Calculations. J. Comput. Chem. 1996;17:1571–1586. doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P. DOI
Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007;47:1045–1052. doi: 10.1021/ci600510j. PubMed DOI
Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019;59:4814–4820. doi: 10.1021/acs.jcim.9b00725. PubMed DOI
EMSL, Basis Set Exchange. [(accessed on 1 January 2020)]; Available online: https://bse.pnl.gov/bse/portal.
Helgaker T., Klopper W., Koch H., Noga J. Basis-set convergence of correlated calculations on water. J. Chem. Phys. 1997;106:9639–9646. doi: 10.1063/1.473863. DOI
Kupka T., Lim C. Polarization-consistent versus correlation-consistent basis sets in predicting molecular and spectroscopic properties. J. Phys. Chem. A. 2007;111:1927–1932. doi: 10.1021/jp065008v. PubMed DOI
Papoušek D., Aliev M.R. Molecular Vibrational-Rotational Spectra: Theory and Applications of High Resolution Infrared, Microwave, and Raman Spectroscopy of Polyatomic Molecules. Elsevier Scientific Pub. Co.; Amsterdam, The Netherlands: 1982.
Kaminský J., Buděšínský M., Taubert S., Bouř P., Straka M. Fullerene C70 characterization by 13C NMR and the importance of the solvent and dynamics in spectral simulations. Phys. Chem. Chem. Phys. 2013;15:9223–9230. doi: 10.1039/c3cp50657f. PubMed DOI
Danecek P., Bour P. Comparison of the Numerical Stability of Methods for Anharmonic Calculations of Vibrational Molecular Energies. J. Comput. Chem. 2007;28:1617–1624. doi: 10.1002/jcc.20654. PubMed DOI
Repisky M., Komorovsky S., Kadek M., Konecny L., Ekström U., Malkin E., Kaupp M., Ruud K., Malkina O.L., Malkin V.G. ReSpect: Relativistic spectroscopy DFT program package. J. Chem. Phys. 2020;152:184101. doi: 10.1063/5.0005094. PubMed DOI
Komorovský S., Repiský M., Malkina O.L., Malkin V.G., Malkin Ondík I., Kaupp M. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation. J. Chem. Phys. 2008;128:104101. doi: 10.1063/1.2837472. PubMed DOI
Komorovsky S., Repisky M., Malkina O.L., Malkin V.G. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals. J. Chem. Phys. 2010;132:154101. doi: 10.1063/1.3359849. PubMed DOI