Distributed Assessment of Virtual Insulin-Pump Settings Using SmartCGMS and DMMS.R for Diabetes Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2022-015
University of West Bohemia
PubMed
36502149
PubMed Central
PMC9739839
DOI
10.3390/s22239445
PII: s22239445
Knihovny.cz E-zdroje
- Klíčová slova
- controller, diabetes, in silico, insulin pump, smartcgms,
- MeSH
- diabetes mellitus 1. typu * MeSH
- hypoglykemika terapeutické užití MeSH
- inzulin terapeutické užití MeSH
- inzulinové infuzní systémy MeSH
- krevní glukóza * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hypoglykemika MeSH
- inzulin MeSH
- krevní glukóza * MeSH
Diabetes is a heterogeneous group of diseases that share a common trait of elevated blood glucose levels. Insulin lowers this level by promoting glucose utilization, thus avoiding short- and long-term organ damage due to the elevated blood glucose level. A patient with diabetes uses an insulin pump to dose insulin. The pump uses a controller to compute and dose the correct amount of insulin to keep blood glucose levels in a safe range. Insulin-pump controller development is an ongoing process aiming at fully closed-loop control. Controllers entering the market must be evaluated for safety. We propose an evaluation method that exploits an FDA-approved diabetic patient simulator. The method evaluates a Cartesian product of individual insulin-pump parameters with a fine degree of granularity. As this is a computationally intensive task, the simulator executes on a distributed cluster. We identify safe and risky combinations of insulin-pump parameter settings by applying the binomial model and decision tree to this product. As a result, we obtain a tool for insulin-pump settings and controller safety assessment. In this paper, we demonstrate the tool with the Low-Glucose Suspend and OpenAPS controllers. For average ± standard deviation, LGS and OpenAPS exhibited 1.7 ± 0.6% and 3.2 ± 1.8% of local extrema (i.e., good insulin-pump settings) out of all the entire Cartesian products, respectively. A continuous region around the best-discovered settings (i.e., the global extremum) of the insulin-pump settings spread across 4.0 ± 1.1% and 4.1 ± 1.3% of the Cartesian products, respectively.
Zobrazit více v PubMed
Jameson J., Fauci A., Kasper D., Hauser S., Longo D., Loscalzo J. Harrison’s Principles of Internal Medicine (Vol.1 & Vol.2) 20th ed. McGraw-Hill Education; New York, NY, USA: 2018.
Hall J., Hall M. Guyton and Hall Textbook of Medical Physiology. Elsevier; Amsterdam, The Netherlands: 2020. Guyton Physiology.
Chia C.W., Egan J.M., Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ. Res. 2018;123:886–904. doi: 10.1161/CIRCRESAHA.118.312806. PubMed DOI PMC
Wright E.E., Subramanian S. Evolving Use of Continuous Glucose Monitoring Beyond Intensive Insulin Treatment. Diabetes Technol. Ther. 2021;23:S-12–S-18. doi: 10.1089/dia.2021.0191. PubMed DOI
Zaharieva D.P., Turksoy K., McGaugh S.M., Pooni R., Vienneau T., Ly T., Riddell M.C. Lag time remains with newer real-time continuous glucose monitoring technology during aerobic exercise in adults living with type 1 diabetes. Diabetes Technol. Ther. 2019;21:313–321. doi: 10.1089/dia.2018.0364. PubMed DOI PMC
Koutny T. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level. Comput. Methods Programs Biomed. 2016;133:45–54. doi: 10.1016/j.cmpb.2016.05.011. PubMed DOI
Heinemann L. Continuous glucose monitoring (CGM) or blood glucose monitoring (BGM): Interactions and implications. J. Diabetes Sci. Technol. 2018;12:873–879. doi: 10.1177/1932296818768834. PubMed DOI PMC
Nimri R., Nir J., Phillip M. Insulin pump therapy. Am. J. Ther. 2020;27:e30–e41. doi: 10.1097/MJT.0000000000001097. PubMed DOI
Bergenstal R.M., Klonoff D.C., Garg S.K., Bode B.W., Meredith M., Slover R.H., Ahmann A.J., Welsh J.B., Lee S.W., Kaufman F.R. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N. Engl. J. Med. 2013;369:224–232. doi: 10.1056/NEJMoa1303576. PubMed DOI
Buckingham B.A., Bailey T.S., Christiansen M., Garg S., Weinzimer S., Bode B., Anderson S.M., Brazg R., Ly T.T., Kaufman F.R. Evaluation of a predictive low-glucose management system in-clinic. Diabetes Technol. Ther. 2017;19:288–292. doi: 10.1089/dia.2016.0319. PubMed DOI
Alshalalfah A.L., Hamad G.B., Mohamed O.A. Towards safe and robust closed-loop artificial pancreas using adaptive weighted PID control strategy; Proceedings of the 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS); Montreal, QC, Canada. 16–19 June 2020; pp. 146–149.
Rosales N., De Battista H., Garelli F. Hypoglycemia prevention: PID-type controller adaptation for glucose rate limiting in Artificial Pancreas System. Biomed. Signal Process. Control. 2022;71:103106. doi: 10.1016/j.bspc.2021.103106. DOI
Wu S., Furutani E., Sugawara T., Asaga T., Shirakami G. Glycemic control for critically ill patients using zone model predictive control. IEEJ Trans. Electr. Electron. Eng. 2021;16:275–281. doi: 10.1002/tee.23294. DOI
Abuin P., Sereno J.E., Ferramosca A., Gonzalez A.H. Closed-loop MPC-based artificial pancreas: Handling circadian variability of insulin sensitivity; Proceedings of the 2020 Argentine Conference on Automatic Control (AADECA); Buenos Aires, Argentina. 28–30 October 2020; pp. 1–6.
Rios Y.Y., García-Rodríguez J., Sanchez E.N., Alanis A.Y., Ruiz-Velázquez E., Garcia A.P. Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Trans. 2022;126:203–212. doi: 10.1016/j.isatra.2021.07.045. PubMed DOI
Chen Y., Lawford M., Wang H., Wassyng A. Insulin Pump Software Certification; Proceedings of the Third International Symposium on Foundations of Health Informatics Engineering and Systems; Macau, China. 21–23 August 2013; Berlin/Heidelberg, Germany: Springer; 2013. pp. 87–106. Lecture Notes in Computer Science.
The Epsilon Group. [(accessed on 26 October 2022)]. Available online: https://tegvirginia.com/
Visentin R., Campos-Náñez E., Schiavon M., Lv D., Vettoretti M., Breton M., Kovatchev B.P., Dalla Man C., Cobelli C. The UVA/Padova type 1 diabetes simulator goes from single meal to single day. J. Diabetes Sci. Technol. 2018;12:273–281. doi: 10.1177/1932296818757747. PubMed DOI PMC
Koutny T., Ubl M. SmartCGMS as a Testbed for a Blood-Glucose Level Prediction and/or Control Challenge with (an FDA-Accepted) Diabetic Patient Simulation. Procedia Comput. Sci. 2020;177:354–362. doi: 10.1016/j.procs.2020.10.048. DOI
Advani A. Positioning time in range in diabetes management. Diabetologia. 2020;63:242–252. doi: 10.1007/s00125-019-05027-0. PubMed DOI
Nwadiugwu M.C., Bastola D.R., Haas C., Russell D. Identifying glycemic variability in diabetes patient cohorts and evaluating disease outcomes. J. Clin. Med. 2021;10:1477. doi: 10.3390/jcm10071477. PubMed DOI PMC
Kesavadev J., Srinivasan S., Saboo B., Krishna B M., Krishnan G. The do-it-yourself artificial pancreas: A comprehensive review. Diabetes Ther. 2020;11:1217–1235. doi: 10.1007/s13300-020-00823-z. PubMed DOI PMC
OpenAPS—#WeAreNotWaiting to Reduce the Burden of Type 1 Diabetes. [(accessed on 28 October 2022)]. Available online: https://openaps.org/
Li C., Raghunathan A., Jha N.K. Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system; Proceedings of the 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services; Columbia, MO, USA. 13–15 June 2011; pp. 150–156.
Paul N., Kohno T., Klonoff D.C. A review of the security of insulin pump infusion systems. J. Diabetes Sci. Technol. 2011;5:1557–1562. doi: 10.1177/193229681100500632. PubMed DOI PMC
Tutubalin P., Novikova S., Semenova A., Komissarova E., Arutyunova N., Sotnikov S., Alexandrov A. Status of creation of hardware-software complex of automatic control of the insulin delivery. J. Phys. Conf. Ser. 2019;1368:042006. doi: 10.1088/1742-6596/1368/4/042006. DOI
Leach P.J., Mealling M., Salz R. A Universally Unique IDentifier (UUID) URN Namespace. RFC Editor; Wilmington, DE, USA: 2005. RFC 4122.
Koutny T., Ubl M. Parallel software architecture for the next generation of glucose monitoring. Procedia Comput. Sci. 2018;141:279–286. doi: 10.1016/j.procs.2018.10.197. DOI
Koutny T. EMBEC & NBC 2017. Springer; Berlin/Heidelberg, Germany: 2017. Crosswalk—A time-ordered metric; pp. 884–887.
Kovatchev B.P., Breton M., Dalla Man C., Cobelli C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 2009;3:44–55. doi: 10.1177/193229680900300106. PubMed DOI PMC
Man C.D., Micheletto F., Lv D., Breton M., Kovatchev B., Cobelli C. The UVA/PADOVA type 1 diabetes simulator: New features. J. Diabetes Sci. Technol. 2014;8:26–34. doi: 10.1177/1932296813514502. PubMed DOI PMC
Xie J. SimGlucose v0.2.1. [(accessed on 21 November 2022)]. Available online: https://github.com/jxx123/simglucose.
Ostertagová E. Modelling using polynomial regression. Procedia Eng. 2012;48:500–506. doi: 10.1016/j.proeng.2012.09.545. DOI
Fürnkranz J. Encyclopedia of Machine Learning. Springer; Boston, MA, USA: 2010. Decision Tree; pp. 263–267.
Breiman L., Friedman R., Olshen R., Stone C. Classification and Regression Trees. Wadsworth; Belmont, CA, USA: 1984.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Ho T.K. Random Decision Forests; Proceedings of the Third International Conference on Document Analysis and Recognition; Montreal, QC, Canada. 14–16 August 1995; Washington, DC, USA: IEEE Computer Society; 1995. pp. 278–282.
Ubl M., Koutny T. A Novel Approach to Multi-Compartmental Model Implementation to Achieve Metabolic Model Identifiability on Patient’s CGM Data. Procedia Comput. Sci. 2022;210:116–123. doi: 10.1016/j.procs.2022.10.127. DOI