Current Advances, Research Needs and Gaps in Mycotoxins Biomonitoring under the HBM4EU-Lessons Learned and Future Trends
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36548723
PubMed Central
PMC9783896
DOI
10.3390/toxins14120826
PII: toxins14120826
Knihovny.cz E-zdroje
- Klíčová slova
- HBM4EU, deoxynivalenol (DON), fumonisin B1 (FB1), human biomonitoring, human health, mycotoxins exposure, risk assessment,
- MeSH
- biologický monitoring MeSH
- hodnocení rizik MeSH
- houby MeSH
- lidé MeSH
- mykotoxiny * toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- mykotoxiny * MeSH
Mycotoxins are natural metabolites produced by fungi that contaminate food and feed worldwide. They can pose a threat to human and animal health, mainly causing chronic effects, e.g., immunotoxic and carcinogenic. Due to climate change, an increase in European population exposure to mycotoxins is expected to occur, raising public health concerns. This urges us to assess the current human exposure to mycotoxins in Europe to allow monitoring exposure and prevent future health impacts. The mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) were considered as priority substances to be studied within the European Human Biomonitoring Initiative (HBM4EU) to generate knowledge on internal exposure and their potential health impacts. Several policy questions were addressed concerning hazard characterization, exposure and risk assessment. The present article presents the current advances attained under the HBM4EU, research needs and gaps. Overall, the knowledge on the European population risk from exposure to DON was improved by using new harmonised data and a newly derived reference value. In addition, mechanistic information on FB1 was, for the first time, organized into an adverse outcome pathway for a congenital anomaly. It is expected that this knowledge will support policy making and contribute to driving new Human Biomonitoring (HBM) studies on mycotoxin exposure in Europe.
Comprehensive Health Research Center CHRC 1600 560 Lisbon Portugal
National Institute for Public Health and the Environment 3720 BA Bilthoven The Netherlands
National Institute of Health Dr Ricardo Jorge 1649 016 Lisboa Portugal
NOVA National School of Public Health NOVA University of Lisbon 1600 560 Lisbon Portugal
RECETOX Faculty of Science Masaryk University Kotlarska 2 611 37 Brno Czech Republic
ToxOmics NOVA Medical School NOVA University of Lisbon 1150 082 Lisboa Portugal
Zobrazit více v PubMed
Bennett J.W., Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC
Wu F., Groopman J.D., Pestka J.J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014;5:351–372. doi: 10.1146/annurev-food-030713-092431. PubMed DOI
Köppen R., Koch M., Siegel D., Merkel S., Maul R., Nehls I. Determination of Mycotoxins in Foods: Current State of Analytical Methods and Limitations. Appl. Microbiol. Biotechnol. 2010;86:1595–1612. doi: 10.1007/s00253-010-2535-1. PubMed DOI
Louro H., Heinälä M., Bessems J., Buekers J., Vermeire T., Woutersen M., Van Engelen J., Borges T., Rousselle C., Ougier E., et al. International Journal of Hygiene and Human Biomonitoring in Health Risk Assessment in Europe: Current Practices and Recommendations for the Future. Int. J. Hyg. Environ. Health. 2019;222:727–737. doi: 10.1016/j.ijheh.2019.05.009. PubMed DOI
Viegas S., Viegas C., Oppliger A. Occupational Exposure to Mycotoxins: Current Knowledge and Prospects. Ann. Work Expo. Health. 2018;62:923–941. doi: 10.1093/annweh/wxy070. PubMed DOI
European Commission (EU) Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. EFSA J. 2006;364:5–24.
EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Scientific Opinion on the Risks for Human and Animal Health Related to the Presence of Modified Forms of Certain Mycotoxins in Food and Feed. EFSA J. 2014;12:3916. doi: 10.2903/j.efsa.2014.3916. DOI
Gruber-Dorninger C., Novak B., Nagl V., Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017;65:7052–7070. doi: 10.1021/acs.jafc.6b03413. PubMed DOI
Ekwomadu T.I., Akinola S.A., Mwanza M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Int. J. Environ. Res. Public Health. 2021;18:11741. doi: 10.3390/ijerph182211741. PubMed DOI PMC
Alvito P., Barcelo J., De Meester J., Rito E., Suman M. Mitigation of Mycotoxins during Food Processing: Sharing Experience among Europe and South East Asia. Sci. Technol. Cereal. Oils Foods. 2021;29:59–70. doi: 10.16210/j.cnki.1007-7561.2021.06.004.en. DOI
Miraglia M., Marvin H.J.P., Kleter G.A., Battilani P., Brera C., Coni E., Cubadda F., Croci L., De Santis B., Dekkers S., et al. Climate Change and Food Safety: An Emerging Issue with Special Focus on Europe. Food Chem. Toxicol. 2009;47:1009–1021. doi: 10.1016/j.fct.2009.02.005. PubMed DOI
Battilani P., Toscano P., Van Der Fels-Klerx H.J., Moretti A., Camardo Leggieri M., Brera C., Rortais A., Goumperis T., Robinson T. Aflatoxin B 1 Contamination in Maize in Europe Increases Due to Climate Change. Sci. Rep. 2016;6:1–7. doi: 10.1038/srep24328. PubMed DOI PMC
Assunção R., Martins C., Viegas S., Viegas C., Jakobsen L.S., Pires S., Alvito P. Climate Change and the Health Impact of Aflatoxins Exposure in Portugal–an Overview. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018;35:1610–1621. doi: 10.1080/19440049.2018.1447691. PubMed DOI
Alvito P., Assunção R. Aflatoxins in Food. Springer; Cham, Switzerland: 2021. Climate Change and the Impact on Aflatoxin Contamination in Foods: Where Are We and What Should Be Expected?
Zingales V., Taroncher M., Martino P.A., Caloni F. Climate Change and Effects on Molds and Mycotoxins. Toxins. 2022;14:445. doi: 10.3390/toxins14070445. PubMed DOI PMC
Bizjak T., Capodiferro M., Deepika D., Dinçkol Ö., Dzhedzheia V., Lopez-Suarez L., Petridis I., Runkel A.A., Schultz D.R., Kontić B. Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review. Int. J. Environ. Res. Public Health. 2022;19:3362. doi: 10.3390/ijerph19063362. PubMed DOI PMC
Choi J., Aarøe Mørck T., Polcher A., Knudsen L.E., Joas A. Review of the State of the Art of Human Biomonitoring for Chemical Substances and Its Application to Human Exposure Assessment for Food Safety. EFSA Support. Publ. 2015;12:724. doi: 10.2903/sp.efsa.2015.EN-724. DOI
World Health Organisation (WHO) Biomarkers and Risk Assessment: Concepts and Principles. Environmental Health Criteria 155. WHO Library Cataloguing in Publication Data; Vammala, Finland: 1993.
European Commission EUR-Lex–52004DC0416–EN 2004. [(accessed on 4 July 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52004DC0416&from=EN.
Ganzleben C., Antignac J.P., Barouki R., Castaño A., Fiddicke U., Klánová J., Lebret E., Olea N., Sarigiannis D., Schoeters G.R., et al. Human Biomonitoring as a Tool to Support Chemicals Regulation in the European Union. Int. J. Hyg. Environ. Health. 2017;220:94–97. doi: 10.1016/j.ijheh.2017.01.007. PubMed DOI
Ormsby J.-N., Lecoq P., Ougier E., Rousselle C., Ganzleben C. HBM4EU—Prioritisation, Strategy and Criteria, Deliverable Report D4.3; 2017. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-4-3-prioritisation-strategy-and-criteria/
Ougier E., Ganzleben C., Lecoq P., Bessems J., David M., Schoeters G., Lange R., Meslin M., Uhl M., Kolossa-gehring M., et al. Chemical Prioritisation Strategy in the European Human Biomonitoring Initiative (HBM4EU)—Development and Results. Int. J. Hyg. Environ. Health. 2021;236:113778. doi: 10.1016/j.ijheh.2021.113778. PubMed DOI
Schoeters G., Rosa L., Kolossa M., Barouki R., Tarroja E., Uhl M., Klanova J., Melymuk L., Horvat M., Bocca B., et al. HBM4EU—Scoping Documents for 2021 for the First and Second Second Round HBM4EU Priority Substances Deliverable Report D4.9. 2021. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-4-9-scoping-documents-for-2021-for-the-first-and-second-second-round-hbm4eu-priority-substances/
Schoeters G., Lange R., Laguzzi F., Kadikis N., Wasowicz W., Santonen T., Mahiout S., Rudnai P., Katsonouri-Sazeides A., Alvito P., et al. HBM4EU—Scoping Documents for the Second Round Priority Substances Deliverable Report D4.6; 2019. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-4-6-scoping-documents-for-the-second-round-priority-substances/
Ankley G.T., Bennett R.S., Erickson R.J., Hoff D.J., Hornung M.W., Johnson R.D., Mount D.R., Nichols J.W., Russom C.L., Schmieder P.K., et al. Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk Assessment. Environ. Toxicol. Chem. 2010;29:730–741. doi: 10.1002/etc.34. PubMed DOI
EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Knutsen H.K., Alexander J., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Grasl-Kraupp B., et al. Risks to Human and Animal Health Related to the Presence of Deoxynivalenol and Its Acetylated and Modified Forms in Food and Feed. EFSA J. 2017;15:4718. doi: 10.2903/j.efsa.2017.4718. DOI
Ndossi D.G., Frizzell C., Tremoen N.H., Fæste C.K., Verhaegen S., Dahl E., Eriksen G.S., Sørlie M., Connolly L., Ropstad E. An in Vitro Investigation of Endocrine Disrupting Effects of Trichothecenes Deoxynivalenol (DON), T-2 and HT-2 Toxins. Toxicol. Lett. 2012;214:268–278. doi: 10.1016/j.toxlet.2012.09.005. PubMed DOI
IARC . Some Naturally Occurring Susbtances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC; Lyon, France: 1993.
EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Knutsen H.K., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., Grasl-Kraupp B., et al. Appropriateness to Set a Group Health-Based Guidance Value for Fumonisins and Their Modified Forms. EFSA J. 2018;16:5172. doi: 10.2903/j.efsa.2018.5172. PubMed DOI PMC
IARC . Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. Volume 82. IARC; Lyon, France: 2002. PubMed PMC
Turner P.C., White K.L.M., Burley V.J., Hopton R.P., Rajendram A., Fisher J., Cade J.E., Wild C.P. A Comparison of Deoxynivalenol Intake and Urinary Deoxynivalenol in UK Adults. Biomarkers. 2010;15:553–562. doi: 10.3109/1354750X.2010.495787. PubMed DOI
Warth B., Sulyok M., Berthiller F., Schuhmacher R., Krska R. New Insights into the Human Metabolism of the Fusarium Mycotoxins Deoxynivalenol and Zearalenone. Toxicol. Lett. 2013;220:88–94. doi: 10.1016/j.toxlet.2013.04.012. PubMed DOI
Fæste C.K., Ivanova L., Sayyari A., Hansen U., Sivertsen T., Uhlig S. Prediction of Deoxynivalenol Toxicokinetics in Humans by in Vitro-to-in Vivo Extrapolation and Allometric Scaling of in Vivo Animal Data. Arch. Toxicol. 2018;92:2195–2216. doi: 10.1007/s00204-018-2220-1. PubMed DOI
Vidal A., Claeys L., Mengelers M., Vanhoorne V., Vervaet C., Huybrechts B., De Saeger S., De Boevre M. Humans Significantly Metabolize and Excrete the Mycotoxin Deoxynivalenol and Its Modified Form Deoxynivalenol-3-Glucoside within 24 Hours. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-23526-9. PubMed DOI PMC
Mengelers M., Zeilmaker M., Vidal A., De Boevre M., De Saeger S., Hoogenveen R. Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-Glucoside in Human Volunteers: Renal Excretion Profiles. Toxins. 2019;11:466. doi: 10.3390/toxins11080466. PubMed DOI PMC
Heyndrickx E., Sioen I., Huybrechts B., Callebaut A., De Henauw S., De Saeger S. Human Biomonitoring of Multiple Mycotoxins in the Belgian Population: Results of the BIOMYCO Study. Environ. Int. 2015;84:82–89. doi: 10.1016/j.envint.2015.06.011. PubMed DOI
Vidal A., Mengelers M., Yang S., De Saeger S., De Boevre M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018;17:1127–1155. doi: 10.1111/1541-4337.12367. PubMed DOI
Martins C., Vidal A., De Boevre M., De Saeger S., Nunes C., Torres D., Goios A., Lopes C., Assunção R., Alvito P. Exposure Assessment of Portuguese Population to Multiple Mycotoxins: The Human Biomonitoring Approach. Int. J. Hyg. Environ. Health. 2019;222:913–925. doi: 10.1016/j.ijheh.2019.06.010. PubMed DOI
van den Brand A.D., Hoogenveen R., Mengelers M.J.B., Zeilmaker M., Eriksen G.S., Uhlig S., Brantsæter A.L., Dirven H.A.A.M., Husøy T. Modelling the Renal Excretion of the Mycotoxin Deoxynivalenol in Humans in an Everyday Situation. Toxins. 2021;13:675. doi: 10.3390/toxins13100675. PubMed DOI PMC
Schrenk D., Bignami M., Bodin L., Chipman J.K., del Mazo J., Grasl-Kraupp B., Hogstrand C., Leblanc J., Nielsen E. Assessment of Information as Regards the Toxicity of Fumonisins for Pigs, Poultry and Horses. EFSA J. 2022;20:e07534. doi: 10.2903/j.efsa.2022.7534. PubMed DOI PMC
Riley R.T., Torres O., Showker J.L., Zitomer N.C., Matute J., Voss K.A., Gelineau-van Waes J.B., Maddox J.R., Gregory S.G., Ashley-Koch A.E. The Kinetics of Urinary Fumonisin B1 Excretion in Humans Consuming Maize-Based Diets. Mol. Nutr. Food Res. 2012;56:1445–1455. doi: 10.1002/mnfr.201200166. PubMed DOI PMC
Nielsen J.K.S., Vikström A.C., Turner P., Knudsen L.E. Deoxynivalenol Transport across the Human Placental Barrier. Food Chem. Toxicol. 2011;49:2046–2052. doi: 10.1016/j.fct.2011.05.016. PubMed DOI
Sundheim L., Lillegaard I., Fæste C., Brantsæter A.-L., Brodal G., Eriksen G. Deoxynivalenol Exposure in Norway, Risk Assessments for Different Human Age Groups. Toxins. 2017;9:46. doi: 10.3390/toxins9020046. PubMed DOI PMC
WHO . Technical Report Series: Evaluation of Certain Food Additives and Contaminants. WHO; Geneva, Switzerland: 2011.
Missmer S.A., Suarez L., Felkner M., Wang E., Jr A.H.M., Rothman K.J., Hendricks K.A. Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas—Mexico Border. Environ. Health Perspect. 2006;114:237–241. doi: 10.1289/ehp.8221. PubMed DOI PMC
Marasas W.F.O., Riley R.T., Hendricks K.A., Stevens V.L., Sadler T.W., Gelineau-van Waes J.B., Missmer S.A., Cabrera J., Torres O., Gelderblom W.C.A., et al. Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and In Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. J. Nutr. 2004;134:711–716. doi: 10.1093/jn/134.4.711. PubMed DOI
Flynn T.J., Stack M.E., Troy A.L., Chirtel S.J. Assessment of the Embryotoxic Potential of the Total Hydrolysis Product of Fumonisin B1 Using Cultured Organogenesis-Staged Rat Embryos. Food Chem. Toxicol. 1997;35:1135–1141. doi: 10.1016/S0278-6915(97)85466-X. PubMed DOI
Gelineau-van Waes J., Rainey M.A., Maddox J.R., Voss K.A., Sachs A.J., Gardner N.M., Wilberding J.D., Riley R.T. Increased Sphingoid Base-1-Phosphates and Failure of Neural Tube Closure after Exposure to Fumonisin or FTY720. Birth Defects Res. Part A Clin. Mol. Teratol. 2012;94:790–803. doi: 10.1002/bdra.23074. PubMed DOI
Gelineau-van Waes J., Starr L., Maddox J., Aleman F., Voss K.A., Wilberding J., Riley R.T. Maternal Fumonisin Exposure and Risk for Neural Tube Defects: Mechanisms in an In Vivo Mouse Model. Birth Defects Res. 2005;73:487–497. doi: 10.1002/bdra.20148. PubMed DOI
Liao Y., Yang J., Chen S., Wu S., Huang S., Lin J., Chen L., Tang P. Inhibition of Fumonisin B 1 Cytotoxicity by Nanosilicate Platelets during Mouse Embryo Development. PLoS ONE. 2014;9:e112290. doi: 10.1371/journal.pone.0112290. PubMed DOI PMC
Sadler T.W., Merrill A.H., Stevens V.L., Sullards M.C., Wang E., Wang P., Hill C., Carolina N. Prevention of Fumonisin B1-Induced Neural Tube Defects by Folic Acid. Teratology. 2002;176:169–176. doi: 10.1002/tera.10089. PubMed DOI
Voss K.A., Riley R.T., Gelineau-van Waes J.B. Fetotoxicity and Neural Tube Defects in CD1 Mice Exposed to the Mycotoxin Fumonisin B1. Mycotoxins. 2006;2006:67–72. doi: 10.2520/myco1975.2006.Suppl4_67. PubMed DOI
Voss K.A., Riley R.T., Gelineau-van Waes J.B. Fumonisin B 1 Induced Neural Tube Defects Were Not Increased in LM/Bc Mice Fed Folate-Deficient Diet. Mol. Nutr. Food Res. 2014;58:1190–1198. doi: 10.1002/mnfr.201300720. PubMed DOI
Voss K.A., Riley R.T., Snook M.E., Gelineau-van Waes J. Reproductive and Sphingolipid Metabolic Effects of Fumonisin B 1 and Its Alkaline Hydrolysis Product in LM / Bc Mice: Hydrolyzed Fumonisin B 1 Did Not Cause Neural Tube Defects. Toxicol. Sci. 2009;112:459–467. doi: 10.1093/toxsci/kfp215. PubMed DOI
van den Brand A.D., Bajard L., Steffensen I.-L., Brantsæter A.L., Dirven H.A.A.M., Louisse J., Peijnenburg A., Ndaw S., Mantovani A., De Santis B., et al. Providing Biological Plausibility for Exposure–Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins. 2022;14:279. doi: 10.3390/toxins14040279. PubMed DOI PMC
Sarigiannis D., Karkitsios S., Frydas I., Karakoltzidis A., Renieri E., Huuskonen P., Santonen T., Horvat M., Tratnik J.S., Baken K., et al. HBM4EU Final Report on AOPs, Deliverable Report D13.6. 2022. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-13-6-final-report-on-aops/
Turner N., Lim X.Y., Toop H.D., Osborne B., Brandon A.E., Taylor E.N., Fiveash C.E., Govindaraju H., Teo J.D., Mcewen H.P., et al. A Selective Inhibitor of Ceramide Synthase 1 Reveals a Novel Role in Fat Metabolism. Nat. Commun. 2018;9:1–14. doi: 10.1038/s41467-018-05613-7. PubMed DOI PMC
Wang E., Norred W.P., Bacon C.W., Rileygll R.T., Merrill A.H., Sl J. Inhibition of Sphingolipid Biosynthesis by Fumonisins. J. Biol. Chem. 1991;266:14486–14490. doi: 10.1016/S0021-9258(18)98712-0. PubMed DOI
Riley R.T., Enongene E., Voss K.A., Norred W.P., Meredith F.I., Sharma R.P., Spitsbergen J., Williams D.E., Carlson D.B., Merrill A.H. Sphingolipid Perturbations as Mechanisms for Fumonisin Carcinogenesis. Environ. Health Perspect. 2001;109:301–308. doi: 10.1289/ehp.01109s2301. PubMed DOI PMC
Riley R.T., Merrill A.H. Ceramide Synthase Inhibition by Fumonisins: A Perfect Storm of Perturbed Sphingolipid Metabolism, Signaling, and Disease. J. Lipid Res. 2019;60:1183–1189. doi: 10.1194/jlr.S093815. PubMed DOI PMC
Chatterjee S., Smith E.R., Hanada K., Stevens V.L., Mayor S. GPI Anchoring Leads to Sphingolipid-Dependent Retention of Endocytosed Proteins in the Recycling Endosomal Compartment. EMBO J. 2001;20:1583–1592. doi: 10.1093/emboj/20.7.1583. PubMed DOI PMC
Hait N.C., Wise L.E., Allegood J.C., O’Brien M., Avni D., Reeves T., Knapp P., Lu J., Luo C., Miles M.F., et al. Active, Phosphorylated Fingolimod Inhibits Histone Deacetylases and Facilitates Fear Extinction Memory. Nat Neurosci. 2014;17:971–980. doi: 10.1038/nn.3728. PubMed DOI PMC
Gardner N.M., Riley R.T., Showker J.L., Voss K.A., Sachs A.J., Maddox J.R., Gelineau-van Waes J.B. Elevated Nuclear Sphingoid Base-1-Phosphates and Decreased Histone Deacetylase Activity after Fumonisin B1 Treatment in Mouse Embryonic Fibroblasts. Toxicol. Appl. Pharmacol. 2016;298:56–65. doi: 10.1016/j.taap.2016.02.018. PubMed DOI
Mustieles V., Rodríguez-Carrillo A., Olea N., Fernández M.F. Selection Criteria and Inventory of Effect Biomarkers for the 2nd Set of Substances Deliverable Report D14.5. 2020. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-14-5-selection-criteria-and-inventory-of-effect-biomarkers-for-the-2nd-set-of-substances/
Rodríguez-Carrillo A., Mustieles V., Olea N., Fernández M.F., Cynthia S., Legoff L., Smagulova F., David A., Bonefeld-Jørgensen E.C., Wielsoe M., et al. Report on the State of Development of Task 14.3: Identification of Needs for the Implementation of Both Classical and New Biomarkers of Effect and Decision Criteria for Their Validation Additional Deliverable Report AD14.6. 2020. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/additional-deliverable-14-6-report-on-the-state-of-development-of-task-14-3-identification-of-needs-for-the-implementation-of-both-classical-and-new-biomarkers-of-effect-and-decision-criteria-for-the/
Wangia R.N., Githanga D.P., Xue K.S., Tang L., Anzala O.A., Wang J.S. Validation of Urinary Sphingolipid Metabolites as Biomarker of Effect for Fumonisins Exposure in Kenyan Children. Biomarkers. 2019;24:1–32. doi: 10.1080/1354750X.2019.1587510. PubMed DOI
Riley R.T., Torres O., Matute J., Gregory S.G., Ashley-koch A.E., Showker J.L., Mitchell T., Voss K.A., Maddox J.R., Gelineau-van Waes J.B. Evidence for Fumonisin Inhibition of Ceramide Synthase in Humans Consuming Maize-Based Foods and Living in High Exposure Communities in Guatemala. Mol. Nutr. Food Res. 2015;59:2209–2224. doi: 10.1002/mnfr.201500499. PubMed DOI PMC
Al-Jaal B.A., Jaganjac M., Barcaru A., Horvatovich P., Latiff A. Aflatoxin, Fumonisin, Ochratoxin, Zearalenone and Deoxynivalenol Biomarkers in Human Biological Fluids: A Systematic Literature Review, 2001–2018. Food Chem. Toxicol. 2019;129:211–228. doi: 10.1016/j.fct.2019.04.047. PubMed DOI
Shephard G.S., Van Der Westhuizen L., Sewram V. Biomarkers of Exposure to Fumonisin Mycotoxins: A Review. Food Addit. Contam. 2007;24:1196–1201. doi: 10.1080/02652030701513818. PubMed DOI
Apel P., Beausoleil C., Lamkarkach F., Meslin M., Voss J.U., Mengelers M., Lange R., David M., Rousselle C., Zeman F., et al. HBM4EU 3rd Substance Specific Derivation of EU-Wide Health-Based Guidance Values Deliverable Report D5.9. 2022. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-5-9-3rd-substance-specific-derivation-of-eu-wide-health-based-guidance-values/
Carballo D., Pallarés N., Ferrer E., Barba F.J., Berrada H. Assessment of Human Exposure to Deoxynivalenol, Ochratoxin A, Zearalenone and Their Metabolites Biomarker in Urine Samples Using LC-ESI-qTOF. Toxins. 2021;13:530. doi: 10.3390/toxins13080530. PubMed DOI PMC
Coppa C.F.S.C., Cirelli A.C., Gonçalves B.L., Barnabé E.M.B., Petta T., Franco L.T., Javanmardi F., Khaneghah A.M., Lee S.H.I., Corassin C.H., et al. Mycotoxin Occurrence in Breast Milk and Exposure Estimation of Lactating Mothers Using Urinary Biomarkers in São Paulo, Brazil. Environ. Pollut. 2021;279:116938. doi: 10.1016/j.envpol.2021.116938. PubMed DOI
Eriksen G.S., Knutsen H.K., Sandvik M., Brantsæter A.L. Urinary Deoxynivalenol as a Biomarker of Exposure in Different Age, Life Stage and Dietary Practice Population Groups. Environ. Int. 2021;157:106804. doi: 10.1016/j.envint.2021.106804. PubMed DOI
Eriksen G.S., Pettersson H., Lindberg J.E. Absorption, Metabolism and Excretion of 3-Acetyl Don in Pigs. Arch. Anim. Nutr. 2003;57:335–345. doi: 10.1080/00039420310001607699. PubMed DOI
Sabbioni G., Castaño A., Esteban López M., Göen T., Mol H., Riou M., Tagne-Fotso R. Literature Review and Evaluation of Biomarkers, Matrices and Analytical Methods for Chemicals Selected in the Research Program Human Biomonitoring for the European Union (HBM4EU) Environ. Int. 2022;169:107458. doi: 10.1016/j.envint.2022.107458. PubMed DOI
Vidal A., Bouzaghnane N., De Saeger S., De Boevre M. Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins. 2020;12:139. doi: 10.3390/toxins12020139. PubMed DOI PMC
Mahiout S., Santonen T., Joksić A.Š., Gerofke A., Scholten B., Martins C., Louro H., Tarazona J., Niemann L., Woutersen M., et al. Human Biomonitoring in Risk Assessment: 4th Set of Examples on the Use of HBM in Risk Assessments of HBM4EU Priority Chemicals Deliverable Report D5.11. 2022. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-5-11-human-biomonitoring-in-risk-assessment-4th-set-of-examples-on-the-use-of-hbm-in-risk-assessments-of-hbm4eu-priority-chemicals/
Lorenz N., Dänicke S., Edler L., Gottschalk C., Lassek E., Marko D., Rychlik M., Mally A. A Critical Evaluation of Health Risk Assessment of Modified Mycotoxins with a Special Focus on Zearalenone. Mycotoxin Res. 2019;35:27–46. doi: 10.1007/s12550-018-0328-z. PubMed DOI PMC