Current Advances, Research Needs and Gaps in Mycotoxins Biomonitoring under the HBM4EU-Lessons Learned and Future Trends

. 2022 Nov 24 ; 14 (12) : . [epub] 20221124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36548723

Mycotoxins are natural metabolites produced by fungi that contaminate food and feed worldwide. They can pose a threat to human and animal health, mainly causing chronic effects, e.g., immunotoxic and carcinogenic. Due to climate change, an increase in European population exposure to mycotoxins is expected to occur, raising public health concerns. This urges us to assess the current human exposure to mycotoxins in Europe to allow monitoring exposure and prevent future health impacts. The mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) were considered as priority substances to be studied within the European Human Biomonitoring Initiative (HBM4EU) to generate knowledge on internal exposure and their potential health impacts. Several policy questions were addressed concerning hazard characterization, exposure and risk assessment. The present article presents the current advances attained under the HBM4EU, research needs and gaps. Overall, the knowledge on the European population risk from exposure to DON was improved by using new harmonised data and a newly derived reference value. In addition, mechanistic information on FB1 was, for the first time, organized into an adverse outcome pathway for a congenital anomaly. It is expected that this knowledge will support policy making and contribute to driving new Human Biomonitoring (HBM) studies on mycotoxin exposure in Europe.

Zobrazit více v PubMed

Bennett J.W., Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC

Wu F., Groopman J.D., Pestka J.J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014;5:351–372. doi: 10.1146/annurev-food-030713-092431. PubMed DOI

Köppen R., Koch M., Siegel D., Merkel S., Maul R., Nehls I. Determination of Mycotoxins in Foods: Current State of Analytical Methods and Limitations. Appl. Microbiol. Biotechnol. 2010;86:1595–1612. doi: 10.1007/s00253-010-2535-1. PubMed DOI

Louro H., Heinälä M., Bessems J., Buekers J., Vermeire T., Woutersen M., Van Engelen J., Borges T., Rousselle C., Ougier E., et al. International Journal of Hygiene and Human Biomonitoring in Health Risk Assessment in Europe: Current Practices and Recommendations for the Future. Int. J. Hyg. Environ. Health. 2019;222:727–737. doi: 10.1016/j.ijheh.2019.05.009. PubMed DOI

Viegas S., Viegas C., Oppliger A. Occupational Exposure to Mycotoxins: Current Knowledge and Prospects. Ann. Work Expo. Health. 2018;62:923–941. doi: 10.1093/annweh/wxy070. PubMed DOI

European Commission (EU) Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. EFSA J. 2006;364:5–24.

EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Scientific Opinion on the Risks for Human and Animal Health Related to the Presence of Modified Forms of Certain Mycotoxins in Food and Feed. EFSA J. 2014;12:3916. doi: 10.2903/j.efsa.2014.3916. DOI

Gruber-Dorninger C., Novak B., Nagl V., Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017;65:7052–7070. doi: 10.1021/acs.jafc.6b03413. PubMed DOI

Ekwomadu T.I., Akinola S.A., Mwanza M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Int. J. Environ. Res. Public Health. 2021;18:11741. doi: 10.3390/ijerph182211741. PubMed DOI PMC

Alvito P., Barcelo J., De Meester J., Rito E., Suman M. Mitigation of Mycotoxins during Food Processing: Sharing Experience among Europe and South East Asia. Sci. Technol. Cereal. Oils Foods. 2021;29:59–70. doi: 10.16210/j.cnki.1007-7561.2021.06.004.en. DOI

Miraglia M., Marvin H.J.P., Kleter G.A., Battilani P., Brera C., Coni E., Cubadda F., Croci L., De Santis B., Dekkers S., et al. Climate Change and Food Safety: An Emerging Issue with Special Focus on Europe. Food Chem. Toxicol. 2009;47:1009–1021. doi: 10.1016/j.fct.2009.02.005. PubMed DOI

Battilani P., Toscano P., Van Der Fels-Klerx H.J., Moretti A., Camardo Leggieri M., Brera C., Rortais A., Goumperis T., Robinson T. Aflatoxin B 1 Contamination in Maize in Europe Increases Due to Climate Change. Sci. Rep. 2016;6:1–7. doi: 10.1038/srep24328. PubMed DOI PMC

Assunção R., Martins C., Viegas S., Viegas C., Jakobsen L.S., Pires S., Alvito P. Climate Change and the Health Impact of Aflatoxins Exposure in Portugal–an Overview. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018;35:1610–1621. doi: 10.1080/19440049.2018.1447691. PubMed DOI

Alvito P., Assunção R. Aflatoxins in Food. Springer; Cham, Switzerland: 2021. Climate Change and the Impact on Aflatoxin Contamination in Foods: Where Are We and What Should Be Expected?

Zingales V., Taroncher M., Martino P.A., Caloni F. Climate Change and Effects on Molds and Mycotoxins. Toxins. 2022;14:445. doi: 10.3390/toxins14070445. PubMed DOI PMC

Bizjak T., Capodiferro M., Deepika D., Dinçkol Ö., Dzhedzheia V., Lopez-Suarez L., Petridis I., Runkel A.A., Schultz D.R., Kontić B. Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review. Int. J. Environ. Res. Public Health. 2022;19:3362. doi: 10.3390/ijerph19063362. PubMed DOI PMC

Choi J., Aarøe Mørck T., Polcher A., Knudsen L.E., Joas A. Review of the State of the Art of Human Biomonitoring for Chemical Substances and Its Application to Human Exposure Assessment for Food Safety. EFSA Support. Publ. 2015;12:724. doi: 10.2903/sp.efsa.2015.EN-724. DOI

World Health Organisation (WHO) Biomarkers and Risk Assessment: Concepts and Principles. Environmental Health Criteria 155. WHO Library Cataloguing in Publication Data; Vammala, Finland: 1993.

European Commission EUR-Lex–52004DC0416–EN 2004. [(accessed on 4 July 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52004DC0416&from=EN.

Ganzleben C., Antignac J.P., Barouki R., Castaño A., Fiddicke U., Klánová J., Lebret E., Olea N., Sarigiannis D., Schoeters G.R., et al. Human Biomonitoring as a Tool to Support Chemicals Regulation in the European Union. Int. J. Hyg. Environ. Health. 2017;220:94–97. doi: 10.1016/j.ijheh.2017.01.007. PubMed DOI

Ormsby J.-N., Lecoq P., Ougier E., Rousselle C., Ganzleben C. HBM4EU—Prioritisation, Strategy and Criteria, Deliverable Report D4.3; 2017. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-4-3-prioritisation-strategy-and-criteria/

Ougier E., Ganzleben C., Lecoq P., Bessems J., David M., Schoeters G., Lange R., Meslin M., Uhl M., Kolossa-gehring M., et al. Chemical Prioritisation Strategy in the European Human Biomonitoring Initiative (HBM4EU)—Development and Results. Int. J. Hyg. Environ. Health. 2021;236:113778. doi: 10.1016/j.ijheh.2021.113778. PubMed DOI

Schoeters G., Rosa L., Kolossa M., Barouki R., Tarroja E., Uhl M., Klanova J., Melymuk L., Horvat M., Bocca B., et al. HBM4EU—Scoping Documents for 2021 for the First and Second Second Round HBM4EU Priority Substances Deliverable Report D4.9. 2021. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-4-9-scoping-documents-for-2021-for-the-first-and-second-second-round-hbm4eu-priority-substances/

Schoeters G., Lange R., Laguzzi F., Kadikis N., Wasowicz W., Santonen T., Mahiout S., Rudnai P., Katsonouri-Sazeides A., Alvito P., et al. HBM4EU—Scoping Documents for the Second Round Priority Substances Deliverable Report D4.6; 2019. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-4-6-scoping-documents-for-the-second-round-priority-substances/

Ankley G.T., Bennett R.S., Erickson R.J., Hoff D.J., Hornung M.W., Johnson R.D., Mount D.R., Nichols J.W., Russom C.L., Schmieder P.K., et al. Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk Assessment. Environ. Toxicol. Chem. 2010;29:730–741. doi: 10.1002/etc.34. PubMed DOI

EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Knutsen H.K., Alexander J., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Grasl-Kraupp B., et al. Risks to Human and Animal Health Related to the Presence of Deoxynivalenol and Its Acetylated and Modified Forms in Food and Feed. EFSA J. 2017;15:4718. doi: 10.2903/j.efsa.2017.4718. DOI

Ndossi D.G., Frizzell C., Tremoen N.H., Fæste C.K., Verhaegen S., Dahl E., Eriksen G.S., Sørlie M., Connolly L., Ropstad E. An in Vitro Investigation of Endocrine Disrupting Effects of Trichothecenes Deoxynivalenol (DON), T-2 and HT-2 Toxins. Toxicol. Lett. 2012;214:268–278. doi: 10.1016/j.toxlet.2012.09.005. PubMed DOI

IARC . Some Naturally Occurring Susbtances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC; Lyon, France: 1993.

EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Knutsen H.K., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., Grasl-Kraupp B., et al. Appropriateness to Set a Group Health-Based Guidance Value for Fumonisins and Their Modified Forms. EFSA J. 2018;16:5172. doi: 10.2903/j.efsa.2018.5172. PubMed DOI PMC

IARC . Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. Volume 82. IARC; Lyon, France: 2002. PubMed PMC

Turner P.C., White K.L.M., Burley V.J., Hopton R.P., Rajendram A., Fisher J., Cade J.E., Wild C.P. A Comparison of Deoxynivalenol Intake and Urinary Deoxynivalenol in UK Adults. Biomarkers. 2010;15:553–562. doi: 10.3109/1354750X.2010.495787. PubMed DOI

Warth B., Sulyok M., Berthiller F., Schuhmacher R., Krska R. New Insights into the Human Metabolism of the Fusarium Mycotoxins Deoxynivalenol and Zearalenone. Toxicol. Lett. 2013;220:88–94. doi: 10.1016/j.toxlet.2013.04.012. PubMed DOI

Fæste C.K., Ivanova L., Sayyari A., Hansen U., Sivertsen T., Uhlig S. Prediction of Deoxynivalenol Toxicokinetics in Humans by in Vitro-to-in Vivo Extrapolation and Allometric Scaling of in Vivo Animal Data. Arch. Toxicol. 2018;92:2195–2216. doi: 10.1007/s00204-018-2220-1. PubMed DOI

Vidal A., Claeys L., Mengelers M., Vanhoorne V., Vervaet C., Huybrechts B., De Saeger S., De Boevre M. Humans Significantly Metabolize and Excrete the Mycotoxin Deoxynivalenol and Its Modified Form Deoxynivalenol-3-Glucoside within 24 Hours. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-23526-9. PubMed DOI PMC

Mengelers M., Zeilmaker M., Vidal A., De Boevre M., De Saeger S., Hoogenveen R. Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-Glucoside in Human Volunteers: Renal Excretion Profiles. Toxins. 2019;11:466. doi: 10.3390/toxins11080466. PubMed DOI PMC

Heyndrickx E., Sioen I., Huybrechts B., Callebaut A., De Henauw S., De Saeger S. Human Biomonitoring of Multiple Mycotoxins in the Belgian Population: Results of the BIOMYCO Study. Environ. Int. 2015;84:82–89. doi: 10.1016/j.envint.2015.06.011. PubMed DOI

Vidal A., Mengelers M., Yang S., De Saeger S., De Boevre M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018;17:1127–1155. doi: 10.1111/1541-4337.12367. PubMed DOI

Martins C., Vidal A., De Boevre M., De Saeger S., Nunes C., Torres D., Goios A., Lopes C., Assunção R., Alvito P. Exposure Assessment of Portuguese Population to Multiple Mycotoxins: The Human Biomonitoring Approach. Int. J. Hyg. Environ. Health. 2019;222:913–925. doi: 10.1016/j.ijheh.2019.06.010. PubMed DOI

van den Brand A.D., Hoogenveen R., Mengelers M.J.B., Zeilmaker M., Eriksen G.S., Uhlig S., Brantsæter A.L., Dirven H.A.A.M., Husøy T. Modelling the Renal Excretion of the Mycotoxin Deoxynivalenol in Humans in an Everyday Situation. Toxins. 2021;13:675. doi: 10.3390/toxins13100675. PubMed DOI PMC

Schrenk D., Bignami M., Bodin L., Chipman J.K., del Mazo J., Grasl-Kraupp B., Hogstrand C., Leblanc J., Nielsen E. Assessment of Information as Regards the Toxicity of Fumonisins for Pigs, Poultry and Horses. EFSA J. 2022;20:e07534. doi: 10.2903/j.efsa.2022.7534. PubMed DOI PMC

Riley R.T., Torres O., Showker J.L., Zitomer N.C., Matute J., Voss K.A., Gelineau-van Waes J.B., Maddox J.R., Gregory S.G., Ashley-Koch A.E. The Kinetics of Urinary Fumonisin B1 Excretion in Humans Consuming Maize-Based Diets. Mol. Nutr. Food Res. 2012;56:1445–1455. doi: 10.1002/mnfr.201200166. PubMed DOI PMC

Nielsen J.K.S., Vikström A.C., Turner P., Knudsen L.E. Deoxynivalenol Transport across the Human Placental Barrier. Food Chem. Toxicol. 2011;49:2046–2052. doi: 10.1016/j.fct.2011.05.016. PubMed DOI

Sundheim L., Lillegaard I., Fæste C., Brantsæter A.-L., Brodal G., Eriksen G. Deoxynivalenol Exposure in Norway, Risk Assessments for Different Human Age Groups. Toxins. 2017;9:46. doi: 10.3390/toxins9020046. PubMed DOI PMC

WHO . Technical Report Series: Evaluation of Certain Food Additives and Contaminants. WHO; Geneva, Switzerland: 2011.

Missmer S.A., Suarez L., Felkner M., Wang E., Jr A.H.M., Rothman K.J., Hendricks K.A. Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas—Mexico Border. Environ. Health Perspect. 2006;114:237–241. doi: 10.1289/ehp.8221. PubMed DOI PMC

Marasas W.F.O., Riley R.T., Hendricks K.A., Stevens V.L., Sadler T.W., Gelineau-van Waes J.B., Missmer S.A., Cabrera J., Torres O., Gelderblom W.C.A., et al. Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and In Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. J. Nutr. 2004;134:711–716. doi: 10.1093/jn/134.4.711. PubMed DOI

Flynn T.J., Stack M.E., Troy A.L., Chirtel S.J. Assessment of the Embryotoxic Potential of the Total Hydrolysis Product of Fumonisin B1 Using Cultured Organogenesis-Staged Rat Embryos. Food Chem. Toxicol. 1997;35:1135–1141. doi: 10.1016/S0278-6915(97)85466-X. PubMed DOI

Gelineau-van Waes J., Rainey M.A., Maddox J.R., Voss K.A., Sachs A.J., Gardner N.M., Wilberding J.D., Riley R.T. Increased Sphingoid Base-1-Phosphates and Failure of Neural Tube Closure after Exposure to Fumonisin or FTY720. Birth Defects Res. Part A Clin. Mol. Teratol. 2012;94:790–803. doi: 10.1002/bdra.23074. PubMed DOI

Gelineau-van Waes J., Starr L., Maddox J., Aleman F., Voss K.A., Wilberding J., Riley R.T. Maternal Fumonisin Exposure and Risk for Neural Tube Defects: Mechanisms in an In Vivo Mouse Model. Birth Defects Res. 2005;73:487–497. doi: 10.1002/bdra.20148. PubMed DOI

Liao Y., Yang J., Chen S., Wu S., Huang S., Lin J., Chen L., Tang P. Inhibition of Fumonisin B 1 Cytotoxicity by Nanosilicate Platelets during Mouse Embryo Development. PLoS ONE. 2014;9:e112290. doi: 10.1371/journal.pone.0112290. PubMed DOI PMC

Sadler T.W., Merrill A.H., Stevens V.L., Sullards M.C., Wang E., Wang P., Hill C., Carolina N. Prevention of Fumonisin B1-Induced Neural Tube Defects by Folic Acid. Teratology. 2002;176:169–176. doi: 10.1002/tera.10089. PubMed DOI

Voss K.A., Riley R.T., Gelineau-van Waes J.B. Fetotoxicity and Neural Tube Defects in CD1 Mice Exposed to the Mycotoxin Fumonisin B1. Mycotoxins. 2006;2006:67–72. doi: 10.2520/myco1975.2006.Suppl4_67. PubMed DOI

Voss K.A., Riley R.T., Gelineau-van Waes J.B. Fumonisin B 1 Induced Neural Tube Defects Were Not Increased in LM/Bc Mice Fed Folate-Deficient Diet. Mol. Nutr. Food Res. 2014;58:1190–1198. doi: 10.1002/mnfr.201300720. PubMed DOI

Voss K.A., Riley R.T., Snook M.E., Gelineau-van Waes J. Reproductive and Sphingolipid Metabolic Effects of Fumonisin B 1 and Its Alkaline Hydrolysis Product in LM / Bc Mice: Hydrolyzed Fumonisin B 1 Did Not Cause Neural Tube Defects. Toxicol. Sci. 2009;112:459–467. doi: 10.1093/toxsci/kfp215. PubMed DOI

van den Brand A.D., Bajard L., Steffensen I.-L., Brantsæter A.L., Dirven H.A.A.M., Louisse J., Peijnenburg A., Ndaw S., Mantovani A., De Santis B., et al. Providing Biological Plausibility for Exposure–Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins. 2022;14:279. doi: 10.3390/toxins14040279. PubMed DOI PMC

Sarigiannis D., Karkitsios S., Frydas I., Karakoltzidis A., Renieri E., Huuskonen P., Santonen T., Horvat M., Tratnik J.S., Baken K., et al. HBM4EU Final Report on AOPs, Deliverable Report D13.6. 2022. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-13-6-final-report-on-aops/

Turner N., Lim X.Y., Toop H.D., Osborne B., Brandon A.E., Taylor E.N., Fiveash C.E., Govindaraju H., Teo J.D., Mcewen H.P., et al. A Selective Inhibitor of Ceramide Synthase 1 Reveals a Novel Role in Fat Metabolism. Nat. Commun. 2018;9:1–14. doi: 10.1038/s41467-018-05613-7. PubMed DOI PMC

Wang E., Norred W.P., Bacon C.W., Rileygll R.T., Merrill A.H., Sl J. Inhibition of Sphingolipid Biosynthesis by Fumonisins. J. Biol. Chem. 1991;266:14486–14490. doi: 10.1016/S0021-9258(18)98712-0. PubMed DOI

Riley R.T., Enongene E., Voss K.A., Norred W.P., Meredith F.I., Sharma R.P., Spitsbergen J., Williams D.E., Carlson D.B., Merrill A.H. Sphingolipid Perturbations as Mechanisms for Fumonisin Carcinogenesis. Environ. Health Perspect. 2001;109:301–308. doi: 10.1289/ehp.01109s2301. PubMed DOI PMC

Riley R.T., Merrill A.H. Ceramide Synthase Inhibition by Fumonisins: A Perfect Storm of Perturbed Sphingolipid Metabolism, Signaling, and Disease. J. Lipid Res. 2019;60:1183–1189. doi: 10.1194/jlr.S093815. PubMed DOI PMC

Chatterjee S., Smith E.R., Hanada K., Stevens V.L., Mayor S. GPI Anchoring Leads to Sphingolipid-Dependent Retention of Endocytosed Proteins in the Recycling Endosomal Compartment. EMBO J. 2001;20:1583–1592. doi: 10.1093/emboj/20.7.1583. PubMed DOI PMC

Hait N.C., Wise L.E., Allegood J.C., O’Brien M., Avni D., Reeves T., Knapp P., Lu J., Luo C., Miles M.F., et al. Active, Phosphorylated Fingolimod Inhibits Histone Deacetylases and Facilitates Fear Extinction Memory. Nat Neurosci. 2014;17:971–980. doi: 10.1038/nn.3728. PubMed DOI PMC

Gardner N.M., Riley R.T., Showker J.L., Voss K.A., Sachs A.J., Maddox J.R., Gelineau-van Waes J.B. Elevated Nuclear Sphingoid Base-1-Phosphates and Decreased Histone Deacetylase Activity after Fumonisin B1 Treatment in Mouse Embryonic Fibroblasts. Toxicol. Appl. Pharmacol. 2016;298:56–65. doi: 10.1016/j.taap.2016.02.018. PubMed DOI

Mustieles V., Rodríguez-Carrillo A., Olea N., Fernández M.F. Selection Criteria and Inventory of Effect Biomarkers for the 2nd Set of Substances Deliverable Report D14.5. 2020. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-14-5-selection-criteria-and-inventory-of-effect-biomarkers-for-the-2nd-set-of-substances/

Rodríguez-Carrillo A., Mustieles V., Olea N., Fernández M.F., Cynthia S., Legoff L., Smagulova F., David A., Bonefeld-Jørgensen E.C., Wielsoe M., et al. Report on the State of Development of Task 14.3: Identification of Needs for the Implementation of Both Classical and New Biomarkers of Effect and Decision Criteria for Their Validation Additional Deliverable Report AD14.6. 2020. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/additional-deliverable-14-6-report-on-the-state-of-development-of-task-14-3-identification-of-needs-for-the-implementation-of-both-classical-and-new-biomarkers-of-effect-and-decision-criteria-for-the/

Wangia R.N., Githanga D.P., Xue K.S., Tang L., Anzala O.A., Wang J.S. Validation of Urinary Sphingolipid Metabolites as Biomarker of Effect for Fumonisins Exposure in Kenyan Children. Biomarkers. 2019;24:1–32. doi: 10.1080/1354750X.2019.1587510. PubMed DOI

Riley R.T., Torres O., Matute J., Gregory S.G., Ashley-koch A.E., Showker J.L., Mitchell T., Voss K.A., Maddox J.R., Gelineau-van Waes J.B. Evidence for Fumonisin Inhibition of Ceramide Synthase in Humans Consuming Maize-Based Foods and Living in High Exposure Communities in Guatemala. Mol. Nutr. Food Res. 2015;59:2209–2224. doi: 10.1002/mnfr.201500499. PubMed DOI PMC

Al-Jaal B.A., Jaganjac M., Barcaru A., Horvatovich P., Latiff A. Aflatoxin, Fumonisin, Ochratoxin, Zearalenone and Deoxynivalenol Biomarkers in Human Biological Fluids: A Systematic Literature Review, 2001–2018. Food Chem. Toxicol. 2019;129:211–228. doi: 10.1016/j.fct.2019.04.047. PubMed DOI

Shephard G.S., Van Der Westhuizen L., Sewram V. Biomarkers of Exposure to Fumonisin Mycotoxins: A Review. Food Addit. Contam. 2007;24:1196–1201. doi: 10.1080/02652030701513818. PubMed DOI

Apel P., Beausoleil C., Lamkarkach F., Meslin M., Voss J.U., Mengelers M., Lange R., David M., Rousselle C., Zeman F., et al. HBM4EU 3rd Substance Specific Derivation of EU-Wide Health-Based Guidance Values Deliverable Report D5.9. 2022. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-5-9-3rd-substance-specific-derivation-of-eu-wide-health-based-guidance-values/

Carballo D., Pallarés N., Ferrer E., Barba F.J., Berrada H. Assessment of Human Exposure to Deoxynivalenol, Ochratoxin A, Zearalenone and Their Metabolites Biomarker in Urine Samples Using LC-ESI-qTOF. Toxins. 2021;13:530. doi: 10.3390/toxins13080530. PubMed DOI PMC

Coppa C.F.S.C., Cirelli A.C., Gonçalves B.L., Barnabé E.M.B., Petta T., Franco L.T., Javanmardi F., Khaneghah A.M., Lee S.H.I., Corassin C.H., et al. Mycotoxin Occurrence in Breast Milk and Exposure Estimation of Lactating Mothers Using Urinary Biomarkers in São Paulo, Brazil. Environ. Pollut. 2021;279:116938. doi: 10.1016/j.envpol.2021.116938. PubMed DOI

Eriksen G.S., Knutsen H.K., Sandvik M., Brantsæter A.L. Urinary Deoxynivalenol as a Biomarker of Exposure in Different Age, Life Stage and Dietary Practice Population Groups. Environ. Int. 2021;157:106804. doi: 10.1016/j.envint.2021.106804. PubMed DOI

Eriksen G.S., Pettersson H., Lindberg J.E. Absorption, Metabolism and Excretion of 3-Acetyl Don in Pigs. Arch. Anim. Nutr. 2003;57:335–345. doi: 10.1080/00039420310001607699. PubMed DOI

Sabbioni G., Castaño A., Esteban López M., Göen T., Mol H., Riou M., Tagne-Fotso R. Literature Review and Evaluation of Biomarkers, Matrices and Analytical Methods for Chemicals Selected in the Research Program Human Biomonitoring for the European Union (HBM4EU) Environ. Int. 2022;169:107458. doi: 10.1016/j.envint.2022.107458. PubMed DOI

Vidal A., Bouzaghnane N., De Saeger S., De Boevre M. Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins. 2020;12:139. doi: 10.3390/toxins12020139. PubMed DOI PMC

Mahiout S., Santonen T., Joksić A.Š., Gerofke A., Scholten B., Martins C., Louro H., Tarazona J., Niemann L., Woutersen M., et al. Human Biomonitoring in Risk Assessment: 4th Set of Examples on the Use of HBM in Risk Assessments of HBM4EU Priority Chemicals Deliverable Report D5.11. 2022. [(accessed on 12 July 2022)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-5-11-human-biomonitoring-in-risk-assessment-4th-set-of-examples-on-the-use-of-hbm-in-risk-assessments-of-hbm4eu-priority-chemicals/

Lorenz N., Dänicke S., Edler L., Gottschalk C., Lassek E., Marko D., Rychlik M., Mally A. A Critical Evaluation of Health Risk Assessment of Modified Mycotoxins with a Special Focus on Zearalenone. Mycotoxin Res. 2019;35:27–46. doi: 10.1007/s12550-018-0328-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...