Bioaccumulation of Trace Elements from Aqueous Solutions by Selected Terrestrial Moss Species

. 2022 Nov 23 ; 11 (12) : . [epub] 20221123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36552202

Grantová podpora
LM2018124 Research Infrastructures NanoEnviCz; Ministry of Education, Youth and Sports of the Czech Republic

The interrelationship between metal concentrations in mosses and their surroundings prompts research toward examining their accumulation properties, as it is particularly important for their usage in biomonitoring studies that use mosses. In this study, the kinetics of elemental sorption in three moss species (Pleurozium schreberi, Dicranum polysetum, and Sphagnum fallax) were investigated under laboratory conditions. Sorption from metal salt solutions was carried out under static conditions with decreasing elemental concentration. Functional groups responsible for binding metal cations to the internal structures of the mosses were also identified. It was shown that the equilibrium state was reached after about 60 min. Under the conditions of the experiment, in the first 10 min of the process, about 70.4-95.3% of metal ions were sorbed from the solution into the moss gametophytes by P. schreberi (57.1-89.0% by D. polysetum and 54.1-84.5% by S. fallax) with respect to the concentration of this analyte accumulated in the mosses at equilibrium. It can be assumed that the exposure of mosses with little contamination by heavy metals in an urbanized area under active biomonitoring will cause an increase in the concentration of these analytes in proportion to their concentration in atmospheric aerosols. In the case of P. schreberi and D. polysetum, the O-H/N-H band was enormously affected by the adsorption process. On the other hand, FTIR (Fourier transform infrared spectroscopy) analysis of S. fallax after adsorption showed slight changes for most of the bands analyzed. Based on this study, it can be concluded that mosses can be used as, for example, a biomonitor in monitoring of urban ecosystems, but also in the phytoremediation of surface waters.

Zobrazit více v PubMed

Mahapatra B., Dhal N.K., Dash A.K., Panda B.P., Panigrahi K.C.S., Pradhan A. Perspective of Mitigating Atmospheric Heavy Metal Pollution: Using Mosses as Biomonitoring and Indicator Organism. Environ. Sci. Pollut. Res. 2019;26:29620–29638. doi: 10.1007/s11356-019-06270-z. PubMed DOI

Abas A. A Systematic Review on Biomonitoring Using Lichen as the Biological Indicator: A Decade of Practices, Progress and Challenges. Ecol. Indic. 2021;121:107197. doi: 10.1016/j.ecolind.2020.107197. DOI

Winkler A., Contardo T., Lapenta V., Sgamellotti A., Loppi S. Assessing the Impact of Vehicular Particulate Matter on Cultural Heritage by Magnetic Biomonitoring at Villa Farnesina in Rome, Italy. Sci. Total Environ. 2022;823:153729. doi: 10.1016/j.scitotenv.2022.153729. PubMed DOI

Sorrentino M.C., Capozzi F., Wuyts K., Joosen S., Mubiana V.K., Giordano S., Samson R., Spagnuolo V. Mobile Biomonitoring of Atmospheric Pollution: A New Perspective for the Moss-Bag Approach. Plants. 2021;10:2384. doi: 10.3390/plants10112384. PubMed DOI PMC

Spagnuolo V., Giordano S., Pérez-Llamazares A., Ares A., Carballeira A., Fernández J.A., Aboal J.R. Distinguishing Metal Bioconcentration from Particulate Matter in Moss Tissue: Testing Methods of Removing Particles Attached to the Moss Surface. Sci. Total Environ. 2013;463–464:727–733. doi: 10.1016/j.scitotenv.2013.05.061. PubMed DOI

Tretiach M., Pittao E., Crisafulli P., Adamo P. Influence of Exposure Sites on Trace Element Enrichment in Moss-Bags and Characterization of Particles Deposited on the Biomonitor Surface. Sci. Total Environ. 2011;409:822–830. doi: 10.1016/j.scitotenv.2010.10.026. PubMed DOI

Kılıç Ö., Belivermiş M., Sıkdokur E., Sezer N., Akyıl Erentürk S., Haciyakupoglu S., Madadzada A., Frontasyeva M. Assessment of 210Po and 210Pb by Moss Biomonitoring Technique in Thrace Region of Turkey. J. Radioanal. Nucl. Chem. 2019;322:699–706. doi: 10.1007/s10967-019-06721-4. DOI

Di Palma A., Capozzi F., Spagnuolo V., Giordano S., Adamo P. Atmospheric Particulate Matter Intercepted by Moss-Bags: Relations to Moss Trace Element Uptake and Land Use. Chemosphere. 2017;176:361–368. doi: 10.1016/j.chemosphere.2017.02.120. PubMed DOI

Spagnuolo V., Zampella M., Giordano S., Adamo P. Cytological Stress and Element Uptake in Moss and Lichen Exposed in Bags in Urban Area. Ecotoxicol. Environ. Saf. 2011;74:1434–1443. doi: 10.1016/j.ecoenv.2011.02.011. PubMed DOI

Branquinho C., Catarino F., Brown D.H., Pereira M.J., Soares A. Improving the Use of Lichens as Biomonitors of Atmospheric Metal Pollution. Sci. Total Environ. 1999;232:67–77. doi: 10.1016/S0048-9697(99)00111-4. PubMed DOI

Aboal J.R., Pérez-Llamazares A., Carballeira A., Giordano S., Fernández J.A. Should Moss Samples Used as Biomonitors of Atmospheric Contamination Be Washed? Atmos. Environ. 2011;45:6837–6840. doi: 10.1016/j.atmosenv.2011.09.004. DOI

Bustamante J., Liñero O., Arrizabalaga I., Carrero J.A., Arana G., Diego A. De Sample Pretreatment to Differentiate between Bioconcentration and Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons in Mosses. Chemosphere. 2015;122:295–300. doi: 10.1016/j.chemosphere.2014.11.069. PubMed DOI

Byun M.Y., Kim D., Youn U.J., Lee S., Lee H. Improvement of Moss Photosynthesis by Humic Acids from Antarctic Tundra Soil. Plant Physiol. Biochem. 2021;159:37–42. doi: 10.1016/j.plaphy.2020.12.007. PubMed DOI

Basile A., Sorbo S., Aprile G., Conte B., Castaldo Cobianchi R. Comparison of the Heavy Metal Bioaccumulation Capacity of an Epiphytic Moss and an Epiphytic Lichen. Environ. Pollut. 2008;151:401–407. doi: 10.1016/j.envpol.2007.07.004. PubMed DOI

Li J., Li X., Zhang P. Micro-Morphology, Ultrastructure and Chemical Composition Changes of Bryum Argenteum from a Desert Biological Soil Crust Following One-Year Desiccation. Bryologist. 2014;117:232–240. doi: 10.1639/0007-2745-117.3.232. DOI

Di Palma A., González A.G., Adamo P., Giordano S., Reski R., Pokrovsky O.S. Biosurface Properties and Lead Adsorption in a Clone of Sphagnum Palustre (Mosses): Towards a Unified Protocol of Biomonitoring of Airborne Heavy Metal Pollution. Chemosphere. 2019;236:124375. doi: 10.1016/j.chemosphere.2019.124375. PubMed DOI

Fortuna L., González A.G., Tretiach M., Pokrovsky O.S. Influence of Secondary Metabolites on Surface Chemistry and Metal Adsorption of a Devitalized Lichen Biomonitor. Environ. Pollut. 2021;273:116500. doi: 10.1016/j.envpol.2021.116500. PubMed DOI

Capozzi F., Sorrentino M.C., Di Palma A., Mele F., Arena C., Adamo P., Spagnuolo V., Giordano S. Implication of Vitality, Seasonality and Specific Leaf Area on PAH Uptake in Moss and Lichen Transplanted in Bags. Ecol. Indic. 2020;108:105727. doi: 10.1016/j.ecolind.2019.105727. DOI

Chen Y.E., Cui J.M., Yang J.C., Zhang Z.W., Yuan M., Song C., Yang H., Liu H.M., Wang C.Q., Zhang H.Y., et al. Biomonitoring Heavy Metal Contaminations by Moss Visible Parameters. J. Hazard. Mater. 2015;296:201–209. doi: 10.1016/j.jhazmat.2015.04.060. PubMed DOI

Świsłowski P., Nowak A., Rajfur M. Is Your Moss Alive during Active Biomonitoring Study? Plants. 2021;10:2389. doi: 10.3390/plants10112389. PubMed DOI PMC

Boquete M.T., Aboal J.R., Carballeira A., Fernández J.A. Do Mosses Exist Outside of Europe? A Biomonitoring Reflection. Sci. Total Environ. 2017;593–594:567–570. doi: 10.1016/j.scitotenv.2017.03.196. PubMed DOI

Boquete M.T., Bermúdez-Crespo J., Aboal J.R., Carballeira A., Fernández J.Á. Assessing the Effects of Heavy Metal Contamination on the Proteome of the Moss Pseudoscleropodium Purum Cross-Transplanted between Different Areas. Environ. Sci. Pollut. Res. 2014;21:2191–2200. doi: 10.1007/s11356-013-2141-8. PubMed DOI

Elvira N.J., Medina N.G., Leo M., Cala V., Estébanez B. Copper Content and Resistance Mechanisms in the Terrestrial Moss Ptychostomum Capillare: A Case Study in an Abandoned Copper Mine in Central Spain. Arch. Environ. Contam. Toxicol. 2020;79:49–59. doi: 10.1007/s00244-020-00739-6. PubMed DOI

Bellini E., Betti C., Toppi L.S. Di Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications. Plants. 2021;10:770. doi: 10.3390/plants10040770. PubMed DOI PMC

ICP Vegetation Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey; 2020. [(accessed on 22 October 2022)]. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf.

Świsłowski P., Kosior G., Rajfur M. The Influence of Preparation Methodology on the Concentrations of Heavy Metals in Pleurozium Schreberi Moss Samples Prior to Use in Active Biomonitoring Studies. Environ. Sci. Pollut. Res. 2021;28:10068–10076. doi: 10.1007/s11356-020-11484-7. PubMed DOI PMC

Sari A., Mendil D., Tuzen M., Soylak M. Biosorption of Cd(II) and Cr(III) from Aqueous Solution by Moss (Hylocomium Splendens) Biomass: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2008;144:1–9. doi: 10.1016/j.cej.2007.12.020. DOI

Henriques F.S. Leaf Chlorophyll Fluorescence: Background and Fundamentals for Plant Biologists. Bot. Rev. 2009;75:249–270. doi: 10.1007/s12229-009-9035-y. DOI

Baker N.R., Harbinson J., Kramer D.M. Determining the Limitations and Regulation of Photosynthetic Energy Transduction in Leaves. Plant Cell Environ. 2007;30:1107–1125. doi: 10.1111/j.1365-3040.2007.01680.x. PubMed DOI

Šraj Kržič N., Gaberščik A. Photochemical Efficiency of Amphibious Plants in an Intermittent Lake. Aquat. Bot. 2005;83:281–288. doi: 10.1016/j.aquabot.2005.05.012. DOI

Laisk A., Oja V., Eichelmann H., Dall’Osto L. Action Spectra of Photosystems II and i and Quantum Yield of Photosynthesis in Leaves in State 1. Biochim. Biophys. Acta Bioenerg. 2014;1837:315–325. doi: 10.1016/j.bbabio.2013.12.001. PubMed DOI

Thermo Fisher Scientific Inc . iCE 3000 Series AA Spectrometers Operator’s Manual. Thermo Fisher Scientific Inc.; Waltham, MA, USA: 2011. [(accessed on 22 October 2022)]. Available online: http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.

Tien D.P.T., Khiem L.H., Trinh T.T.T., Frontasyeva M.V., Sang N.T.M., Nguyen S.A. Comparing Atmospheric Trace Element Accumulation of Three Moss Species. Sci. Technol. Dev. J. 2020;23:752–757. doi: 10.32508/stdj.v23i4.2417. DOI

Kłos A., Rajfur M., Šrámek I., Wacławek M. Use of Lichen and Moss in Assessment of Forest Contamination with Heavy Metals in Praded and Glacensis Euroregions (Poland and Czech Republic) Water. Air. Soil Pollut. 2011;222:367–376. doi: 10.1007/s11270-011-0830-9. PubMed DOI PMC

BROWN D.H., BATES J.W. Bryophytes and Nutrient Cycling. Bot. J. Linn. Soc. 1990;104:129–147. doi: 10.1111/j.1095-8339.1990.tb02215.x. DOI

Kłos A., Gordzielik E., Jówiak M.A., Rajfur M. Sorption of Cadmium and Zinc in Selected Species of Epigeic Mosses. Bull. Environ. Contam. Toxicol. 2014;92:323–328. doi: 10.1007/s00128-014-1210-0. PubMed DOI PMC

Kłos A., Rajfur M. Influence of Hydrogen Cations on Kinetics and Equilibria of Heavy-Metal Sorption by Algae-Sorption of Copper Cations by the Alga Palmaria Palmata (Linnaeus) Weber & Mohr (Rhodophyta) J. Appl. Phycol. 2013;25:1387–1394. doi: 10.1007/s10811-012-9970-6. PubMed DOI PMC

Stanković J.D., Sabovljević A.D., Sabovljević M.S. Bryophytes and Heavy Metals: A Review. Acta Bot. Croat. 2018;77:109–118. doi: 10.2478/botcro-2018-0014. DOI

Ćosić M., Vujičić M.M., Sabovljević M.S., Sabovljević A.D. What Do We Know about Salt Stress in Bryophytes? Plant Biosyst. 2019;153:478–489. doi: 10.1080/11263504.2018.1508091. DOI

Cruz de Carvalho R., Bernardes da Silva A., Branquinho C., Marques da Silva J. Influence of Dehydration Rate on Cell Sucrose and Water Relations Parameters in an Inducible Desiccation Tolerant Aquatic Bryophyte. Environ. Exp. Bot. 2015;120:18–22. doi: 10.1016/j.envexpbot.2015.07.002. DOI

Koster K.L., Balsamo R.A., Espinoza C., Oliver M.J. Desiccation Sensitivity and Tolerance in the Moss Physcomitrella Patens: Assessing Limits and Damage. Plant Growth Regul. 2010;62:293–302. doi: 10.1007/s10725-010-9490-9. DOI

Debén S., Fernández J.A., Carballeira A., Aboal J.R. Using Devitalized Moss for Active Biomonitoring of Water Pollution. Environ. Pollut. 2016;210:315–322. doi: 10.1016/j.envpol.2016.01.009. PubMed DOI

Printarakul N., Meeinkuirt W. The Bryophyte Community as Bioindicator of Heavy Metals in a Waterfall Outflow. Sci. Rep. 2022;12:6942. doi: 10.1038/s41598-022-10980-9. PubMed DOI PMC

Kłos A., Rajfur M., Wacławek M., Wacławek W. Ion Equilibrium in Lichen Surrounding. Bioelectrochemistry. 2005;66:95–103. doi: 10.1016/j.bioelechem.2004.04.006. PubMed DOI

Fasani E., Li M., Varotto C., Furini A., Dalcorso G. Metal Detoxification in Land Plants: From Bryophytes to Vascular Plants. STATE of the Art and Opportunities. Plants. 2022;11:237. doi: 10.3390/plants11030237. PubMed DOI PMC

Lewis S.P., Lewis A.T., Lewis P.D. Prediction of Glycoprotein Secondary Structure Using ATR-FTIR. Vib. Spectrosc. 2013;69:21–29. doi: 10.1016/j.vibspec.2013.09.001. DOI

Maksimova V., Klavina L., Bikovens O., Zicmanis A., Purmalis O. Structural Characterization and Chemical Classification of Some Bryophytes Found in Latvia. Chem. Biodivers. 2013;10:1284–1294. doi: 10.1002/cbdv.201300014. PubMed DOI

Hu T., Jin W.-Y., Cheng C.-G. Classification of Five Kinds of Moss Plants with the Use of Fourier Transform Infrared Spectroscopy and Chemometrics. Spectroscopy. 2011;25:271–285. doi: 10.1155/2011/908150. DOI

Silvestri D., Wacławek S., Sobel B., Torres–Mendieta R., Pawlyta M., Padil V.V.T., Filip J., Černík M. Modification of NZVI with a Bio-Conjugate Containing Amine and Carbonyl Functional Groups for Catalytic Activation of Persulfate. Sep. Purif. Technol. 2021;257:117880. doi: 10.1016/j.seppur.2020.117880. DOI

Silvestri D., Wacławek S., Venkateshaiah A., Krawczyk K., Sobel B., Padil V.V.T., Černík M., Varma R.S. Synthesis of Ag Nanoparticles by a Chitosan-Poly(3-Hydroxybutyrate) Polymer Conjugate and Their Superb Catalytic Activity. Carbohydr. Polym. 2020;232:115806it. doi: 10.1016/j.carbpol.2019.115806. PubMed DOI

Merck KGaA. IR Spectrum Table; Merck KGaA: Darmstadt, Germany. [(accessed on 22 October 2022)]. Available online: https://www.sigmaaldrich.com/CZ/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table.

Hou Y., Kondoh H., Shimojo M., Sako E.O., Ozaki N., Kogure T., Ohta T. Inorganic Nanocrystal Self-Assembly via the Inclusion Interaction of β-Cyclodextrins: Toward 3D Spherical Magnetite. J. Phys. Chem. B. 2005;109:4845–4852. doi: 10.1021/jp0476646. PubMed DOI

Vinod V.T.P., Sashidhar R.B. Bioremediation of Industrial Toxic Metals with Gum Kondagogu (Cochlospermum Gossypium): A Natural Carbohydrate Biopolymer. Indian J. Biotechnol. 2011;10:113–120.

Vinod V.T.P., Sashidhar R.B.B., Sreedhar B. Biosorption of Nickel and Total Chromium from Aqueous Solution by Gum Kondagogu (Cochlospermum Gossypium): A Carbohydrate Biopolymer. J. Hazard. Mater. 2010;178:851–860. doi: 10.1016/j.jhazmat.2010.02.016. PubMed DOI

González A.G., Pokrovsky O.S. Metal Adsorption on Mosses: Toward a Universal Adsorption Model. J. Colloid Interface Sci. 2014;415:169–178. doi: 10.1016/j.jcis.2013.10.028. PubMed DOI

Nag S., Biswas S. Cellulose-Based Adsorbents for Heavy Metal Removal. Springer; Cham, Switzerland: 2021. pp. 113–142. DOI

Maruyama T., Terashima Y., Takeda S., Okazaki F., Goto M. Selective Adsorption and Recovery of Precious Metal Ions Using Protein-Rich Biomass as Efficient Adsorbents. Process Biochem. 2014;49:850–857. doi: 10.1016/j.procbio.2014.02.016. DOI

Balabanova B., Lazarova M., Boev B., Barbu-Tudoran L., Suciu M. Contaminant Levels and Ecological Effects. Springer; Cham, Switzerland: 2021. Proposing Chemometric Tool for Efficacy Surface Dust Deposition Tracking in Moss Tissue Cross Bioindication Process of Metals in Environment; pp. 131–169.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...