Prevalence and Distribution of Three Bumblebee Pathogens from the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO1722
Ministry of Agriculture
PubMed
36555033
PubMed Central
PMC9785318
DOI
10.3390/insects13121121
PII: insects13121121
Knihovny.cz E-zdroje
- Klíčová slova
- Apicystis bombi, Crithida bombi, Nosema bombi, bumblebees, pathogen,
- Publikační typ
- časopisecké články MeSH
Bumblebees are significant pollinators for both wild plants and economically important crops. Due to the worldwide decrease in pollinators, it is crucial to monitor the prevalence and distribution of bumblebee pathogens. Field-caught bumblebee workers and males were examined for the presence of three pathogens during the summer months of the years 2015-2020 (Bombus terrestris/lucorum) and 2015-2017 (Bombus lapidarius). The greatest prevalence was in the case of Crithidia bombi, where significantly more workers (57%) of B. terrestris/lucorum were infected than males (41%). Infection was also confirmed in 37% of B. lapidarius workers. The average prevalence was very similar in the case of Nosema bombi in workers (25%) and males (22%) of B. terrestris/lucorum. In the case of B. lapidarius, 17% of the workers were infected. The lowest number of infected individuals was for Apicystis bombi and the prevalence of infection was significantly higher for males (22%) than workers (8%) of B. terrestris/lucorum. Only 3% of workers and 4% of males of B. terrestris/lucorum were simultaneously infected with three types of pathogens, but no worker was infected with only a combination of N. bombi and A. bombi. The greatest prevalence of C. bombi was found in urban or woodland areas.
Zobrazit více v PubMed
Potts S.G., Imperatriz-Fonseca V., Ngo H.T., Aizen M.A., Biesmeijer J.C., Breeze T.D., Dicks L.V., Garibaldi L.A., Hill R., Steele J., et al. Safeguarding pollinators and their values to human well-being. Nature. 2016;540:220–229. doi: 10.1038/nature20588. PubMed DOI
Velthuis H.H.W., van Doorn A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie. 2006;37:421–451. doi: 10.1051/apido:2006019. DOI
Nieto A., Roberts S.P.M., Kemp J., Rasmont P., Kuhlmann M., Criado M.G., Biesmeijer J.C., Bogusch P., Dathe H.H., De la Rúa P., et al. European Red List of Bees. Publication Office of the European Union; Luxembourg: 2014. pp. 1–84.
Williams P.H., Osborne J.L. Bumblebee vulnerability and conservation world-wide. Apidologie. 2009;40:367–387. doi: 10.1051/apido/2009025. DOI
Goulson D., Whitehorn P., Fowley M. Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecol. Entomol. 2012;37:83–89. doi: 10.1111/j.1365-2311.2011.01334.x. DOI
Cameron S.A., Sadd B.M. Global trends in bumble bee health. Annu. Rev. Entomol. 2020;65:209–232. doi: 10.1146/annurev-ento-011118-111847. PubMed DOI
Schmid-Hempel P., Schmid-Hempel R. Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behav. Ecol. Sociobiol. 1993;33:319–327. doi: 10.1007/BF00172930. DOI
Otterstatter M.C., Thomson J.D. Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia. 2007;154:411–421. doi: 10.1007/s00442-007-0834-8. PubMed DOI
Durrer S., Schmid-Hempel P. Shared use of flowers leads to horizontal pathogen transmission. Proc. Biol. Sci. 1994;258:299–302.
Gegear R.J., Otterstatter M.C., Thomson J.D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B. 2006;273:1073–1078. doi: 10.1098/rspb.2005.3423. PubMed DOI PMC
Fauser A., Sandrock C., Neumann P., Sadd B. Neonicotinoids override a parasite exposure impact on hibernation success of a key bumblebee pollinator. Ecol. Entomol. 2017;42:306–314. doi: 10.1111/een.12385. DOI
Brown M.J.F., Schmid-Hempel R., Schmid-Hempel P. Strong context-dependent virulence in a host-parasite system: Reconciling genetic evidence with theory. J. Anim. Ecol. 2003;72:994–1002. doi: 10.1046/j.1365-2656.2003.00770.x. DOI
Rutrecht S.T., Brown M.J.F. Within colony dynamics of Nosema bombi infections: Disease establishment, epidemiology and potential vertical transmission. Apidologie. 2008;39:504–514. doi: 10.1051/apido:2008031. DOI
Otti O., Schmid-Hempel P. Nosema bombi: A pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 2007;96:118–124. doi: 10.1016/j.jip.2007.03.016. PubMed DOI
Otti O., Schmid-Hempel P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 2008;33:577–582. doi: 10.1111/j.1365-2311.2008.00998.x. DOI
Van Der Steen J.J. Infection and transmission of Nosema bombi in Bombus terrestris colonies and its effect on hibernation, mating and colony founding. Apidologie. 2008;39:273–282. doi: 10.1051/apido:2008006. DOI
Manlik O., Schmid-Hempel R., Schmid-Hempel P. Parasite infection of specific host genotypes relates to changes in prevalence in two natural populations of bumblebees. Infect. Genet. Evol. 2017;56:125–132. doi: 10.1016/j.meegid.2017.11.019. PubMed DOI
McNeil D.J., McCormick E., Heimann A.C., Kammerer M., Douglas M.R., Goslee S.C., Grozinger C.M., Hines H.M. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 2020;10:22306. doi: 10.1038/s41598-020-78119-2. PubMed DOI PMC
Manlik O., Mundra S., Schmid-Hempel R., Schmid-Hempel P. Impact of climate change on parasite infection of an important pollinator depends on host genotypes. Glob. Chang. Biol. 2022 doi: 10.1111/gcb.16460. in press . PubMed DOI PMC
Brown M.J.F. Microsporidia: An emerging threat to bumblebees? Trends Parasitol. 2017;33:754–762. doi: 10.1016/j.pt.2017.06.001. PubMed DOI
Colla S.R., Otterstatter M.C., Gegear R.J., Thomson J.D. Plight of the bumble bee: Pathogen spillover from commercial to wild populations. Biol. Conserv. 2006;129:461–467. doi: 10.1016/j.biocon.2005.11.013. DOI
Jones C.M., Brown M.J.F., Ings T. Parasites and genetic diversity in an invasive bumblebee. J. Anim. Ecol. 2014;83:1428–1440. doi: 10.1111/1365-2656.12235. PubMed DOI PMC
Graystock P., Meeus I., Smagghe G., Goulson D., Hughes W.O.H. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology. 2015;143:358–365. doi: 10.1017/S0031182015001614. PubMed DOI
Arese E.L., Soulages J.L. Insect fat body: Energy, metabolism and regulation. Annu. Rev. Entomol. 2010;55:207–225. doi: 10.1146/annurev-ento-112408-085356. PubMed DOI PMC
Aizen M.A., Smith-Ramírez C., Morales C.L., Vieli L., Sáez A., Barahona-Segovia R.M., Arbetman M.P., Montalva J., Garibaldi L.A., Inouye D.W., et al. Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. J. Appl. Ecol. 2019;56:100–106. doi: 10.1111/1365-2664.13121. DOI
Shykoff J.A., Schmid-Hempel P. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie. 1991;22:117–125. doi: 10.1051/apido:19910204. DOI
Popp M., Erler S., Lattorff H.M. Seasonal variability of prevalence and occurrence of multiple infections shape the population structure of Crithidia bombi, an intestinal parasite of bumblebees (Bombus spp.) MicrobiologyOpen. 2012;4:362–372. doi: 10.1002/mbo3.35. PubMed DOI PMC
Graystock P., Goulson D., Hughes W.O. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ. 2014;2:e522. doi: 10.7717/peerj.522. PubMed DOI PMC
Gallot-Lavallée M., Schmid-Hempel R., Vandame R., Vergara C.H., Schmid-Hempel P. Large scale patterns of abundance and distribution of parasites in Mexican bumblebees. J. Invertebr. Pathol. 2016;133:73–82. doi: 10.1016/j.jip.2015.12.004. PubMed DOI
Jabal-Uriel C., Martín-Hernández R., Ornosa C., Higes M., Berriatua E., de la Rua P. Short communication: First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum) from Spain. Span. J. Agric. Res. 2017;15:e05SC01. doi: 10.5424/sjar/2017151-9998. DOI
Parsche S., Lattorff M.H.G. The relative contributions of host density and genetic diversity on prevalence of a multi-host parasite in bumblebees. Biol. J. Linn. Soc. 2018;125:900–910. doi: 10.1093/biolinnean/bly151. DOI
Ocepek M.P., Toplak I., Zajc U., Bevk D. The pathogens spillover and incidence correlation in bumblebees and honeybees in Slovenia. Pathogens. 2021;10:884. doi: 10.3390/pathogens10070884. PubMed DOI PMC
Schmid-Hempel R., Tognazzo M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 2010;57:337–345. doi: 10.1111/j.1550-7408.2010.00480.x. PubMed DOI
Meeus I., de Graaf D.C., Jans K., Smagghe G. Multiplex PCR detection of slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-range primers. J. Appl. Microbiol. 2010;109:107–115. doi: 10.1111/j.1365-2672.2009.04635.x. PubMed DOI
Klee J., Tay W.T., Paxton R.J. Specific and sensitive detection of Nosema bombi (Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA gene sequences. J. Invertebr. Pathol. 2006;91:98–104. doi: 10.1016/j.jip.2005.10.012. PubMed DOI
ArcGIS Pro. [(accessed on 8 July 2022)]. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.
Copernicus. [(accessed on 24 August 2022)]. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018.
Gillespie S. Factors affecting parasite prevalence among wild bumblebees. Ecol. Entomol. 2010;35:737–747. doi: 10.1111/j.1365-2311.2010.01234.x. DOI
Huth-Schwarz A., Settele J., Moritz R.F., Kraus F.B. Factors influencing Nosema bombi infections in natural populations of Bombus terrestris (Hymenoptera: Apidae) J. Invertebr. Pathol. 2012;110:48–53. doi: 10.1016/j.jip.2012.02.003. PubMed DOI
Alizon S., de Roode J.C., Michalakis Y. Multiple infections and the evolution of virulence. Ecol. Lett. 2013;16:556–567. doi: 10.1111/ele.12076. PubMed DOI
Mráz P., Hýbl M., Kopecký M., Bohatá A., Hoštičková I., Šipoš J., Vočadlová K., Čurn V. Screening of honey bee pathogens in the Czech Republic and their prevalence in various habitats. Insects. 2021;12:1051. doi: 10.3390/insects12121051. PubMed DOI PMC
Theodorou P., Radzevičiūtė R., Settele J., Schweiger O., Murray T., Paxton R. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B Biol. Sci. 2016;283:20160561. doi: 10.1098/rspb.2016.0561. PubMed DOI PMC