Inline Quality Monitoring of Reverse Extruded Aluminum Parts with Cathodic Dip-Paint Coating (KTL)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
European Union
CZ.02.1.01/0.0/0.0/17_049/0008425
European Union
856670
European Union
CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund
PubMed
36560017
PubMed Central
PMC9787559
DOI
10.3390/s22249646
PII: s22249646
Knihovny.cz E-zdroje
- Klíčová slova
- coating, extrusion, failure, neural networks, quality control,
- MeSH
- algoritmy * MeSH
- hliník * MeSH
- lidé MeSH
- nátěrové hmoty MeSH
- průmysl MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hliník * MeSH
Perfectly coated surfaces are an essential quality feature in the automotive and consumer goods industries. They are the result of an optimized, controlled coating process. Because entire assemblies could be rejected if Out-of-Specification (OOS) parts are installed, this has a severe economic impact. This paper presents a novel, line-integrated multi-camera system with intelligent algorithms for anomaly detection on small KTL-coated aluminum parts. The system also aims to automatize the previously used human inspection to a sophisticated and automated vision system that efficiently detects defects and anomalies on coated parts.
Benseler Beschichtungen GmbH and Co KG 70806 Kornwestheim Germany
Fraunhofer Institute for Machine Tools and Forming Technology IWU 09126 Chemnitz Germany
Zobrazit více v PubMed
Qualitätsmanagement in der Automobilindustrie: Dekorative Oberflächen von Anbau- und Funktionsteilen im außen- und Innenbereich von Automobilen; Beurteilungsbedingungen, Merkmalsdefinition und Fehleransprache, Annahmekriterien (Quality Management in the Automotive Industry: Decorative Surfaces of Add-On and Functional Parts in the Exterior and Interior of Automobiles; Assessment Conditions, Definition of Characteristics and Defect Approach, Acceptance Criteria) Heinrich Druck + Medien GmbH; Frankfurt am Main, Germany: 2008.
Lesch F. Ph.D. Dissertation. Friedrich-Alexander-Universität; Nürnberg, Germany: 2014. Einfluss von Substrateigenschaften auf die Abscheidung Übergangsmetallsalzhaltiger Korrosionsschutzmaterialien (Influence of Substrate Properties on the Deposition of Corrosion Protection Materials Containing Transition Metal Salts)
Machine Vision: Part1: Basics, Terms, and Definitions; Part 2: Guideline for the Preparation of a Requirement Specification and a System Specification; Part 3: Acceptance Test of Classifying Machine Vision Systems. Beuth Verlag GmbH; Berlin, Germany,: 2021.
Zhong S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2019;14:273–281. doi: 10.1007/s11465-018-0495-9. DOI
Helmut Fischer GmbH X-ray XRF Fluorescence. [(accessed on 21 July 2022)]. Available online: www.helmut-fischer.com/product-categories/x-ray-xrf.
Giurlani W., Berretti E., Innocenti M., Lavacchi A. Measuring the Thickness of Metal Coatings: A Review of the Methods. Coatings. 2020;10:1211. doi: 10.3390/coatings10121211. DOI
Tandiya A., Akthar S., Moussa M., Tarray C. Automotive Semi-specular Surface Defect Detection System; Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV); Toronto, ON, Canada. 8–10 May 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 285–291.
Satorres Martínez S., Ortega Vázquez C., Gámez García J., Gómez Ortega J. Quality inspection of machined metal parts using an image fusion technique. Measurement. 2017;111:374–383. doi: 10.1016/j.measurement.2017.08.002. DOI
Kozamernik N., Bračun D. Visual Inspection System for Anomaly Detection on KTL Coatings Using Variational Autoencoders. Procedia CIRP. 2020;93:1558–1563. doi: 10.1016/j.procir.2020.04.114. DOI
Völz H.G. Industrial Color Testing: Fundamentals and Techniques. 2nd ed. Wiley-VCH; Weinheim, Germany: 2001.
Vargas W.E., Niklasson G.A. Applicability conditions of the Kubelka-Munk theory. Appl. Opt. 1997;36:5580–5586. doi: 10.1364/AO.36.005580. PubMed DOI
Dingemans L.M., Papadakis V.M., Liu P., Adam A.J.L., Groves R.M. Quantitative coating thickness determination using a coefficient-independent hyperspectral scattering model. J. Eur. Opt. Soc.-Rapid Publ. 2017;13:40. doi: 10.1186/s41476-017-0068-2. DOI
Luo M.R., editor. Encyclopedia of Color Science and Technology. Springer; New York, NY, USA: 2016.
Colorimetry. Part 4, CIE 1976 L*a*b* Colour Space. Deutsches Institut für Normung; Berlin, Germany: 2020.
Herrle T.F. Entwicklung und Erprobung eines Online-Lackmischverfahrens für die Automobilserienlackierung (Development and Testing of an Online Paint Mixing Process for Automotive Series Coatings) Cuvillier; Göttingen, Germany: 2012.
Beau Lotto R., Purves D. The empirical basis of color perception. Conscious. Cogn. 2002;11:609–629. doi: 10.1016/S1053-8100(02)00014-4. PubMed DOI
Nischwitz A., Fischer M., Haberäcker P., Socher G. Band I: Computergrafik. 3rd ed. Vieweg + Teubner; Wiesbaden, Germany: 2011.
Saravanan G., Yamuna G., Nandhini S. Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models; Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP); Melmaruvathur, India. 6–8 April 2016; Piscataway, NJ, USA: IEEE; 2016. pp. 462–466.
Viliūnas V., Vaitkevičius H., Stanikūnas R., Švegžda A., Bliznikas Z. LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria. Light. Res. Technol. 2011;43:321–330. doi: 10.1177/1477153510394115. DOI
Gjakova L., Löser R., Klimant P., Dix M. Decreasing the commissioning time of optical multi-camera inspection systems by simulating surface coverage using the example of formed bipolar plates. Eng. Proc. 2022;26:17.
Putz M., Wiener T., Pierer A., Hoffmann M. A multi-sensor approach for failure identification during production enabled by parallel data monitoring. CIRP Ann. 2018;67:491–494. doi: 10.1016/j.cirp.2018.04.079. DOI
Pierer A., Wiener T., Gjakova L., Koziorek J. Zero-error-production through inline-quality control of presshardened automotive parts by multi-camera systems. IOP Conf. Ser. Mater. Sci. Eng. 2021;1157:12074. doi: 10.1088/1757-899X/1157/1/012074. DOI
Mehrotra R., Namuduri K.R., Ranganathan N. Gabor filter-based edge detection. Pattern Recognit. 1992;25:1479–1494. doi: 10.1016/0031-3203(92)90121-X. DOI
Haralick R.M., Shanmugam K., Dinstein I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973;SMC-3:610–621. doi: 10.1109/TSMC.1973.4309314. DOI