Extensive testing of a multi-locus sequence typing scheme for Giardia duodenalis assemblage A confirms its good discriminatory power

. 2022 Dec 26 ; 15 (1) : 489. [epub] 20221226

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36572928

Grantová podpora
773830 Horizon 2020
773830 Horizon 2020
773830 Horizon 2020
773830 Horizon 2020
773830 Horizon 2020
773830 Horizon 2020
773830 Horizon 2020
773830 Horizon 2020

Odkazy

PubMed 36572928
PubMed Central PMC9791779
DOI 10.1186/s13071-022-05615-x
PII: 10.1186/s13071-022-05615-x
Knihovny.cz E-zdroje

BACKGROUND: The flagellated parasite Giardia duodenalis is a major and global cause of diarrhoeal disease. Eight genetically very distinct groups, known as assemblages A to H, have been recognized in the G. duodenalis species complex, two of which (assemblages A and B) infect humans and other mammalian hosts. Informative typing schemes are essential to understand transmission pathways, characterize outbreaks and trace zoonotic transmission. In this study, we evaluated a published multi-locus sequence typing (MLST) scheme for G. duodenalis assemblage A, which is based on six polymorphic markers. METHODS: We genotyped 60 human-derived and 11 animal-derived G. duodenalis isolates collected in Europe and on other continents based on the published protocol. After retrieving previously published genotyping data and excluding isolates whose sequences showed allelic sequence heterozygosity, we analysed a dataset comprising 146 isolates. RESULTS: We identified novel variants at five of the six markers and identified 78 distinct MLST types in the overall dataset. Phylogenetic interpretation of typing data confirmed that sub-assemblage AII only comprises human-derived isolates, whereas sub-assemblage AI comprises all animal-derived isolates and a few human-derived isolates, suggesting limited zoonotic transmission. Within sub-assemblage AII, isolates from two outbreaks, which occurred in Sweden and Italy, respectively, had unique and distinct MLST types. Population genetic analysis showed a lack of clustering by geographical origin of the isolates. CONCLUSION: The MLST scheme evaluated provides sufficient discriminatory power for epidemiological studies of G. duodenalis assemblage A.

Zobrazit více v PubMed

Adam RD. Giardia duodenalis: biology and pathogenesis. Clin Microbiol Rev. 2021;34:0002419. doi: 10.1128/CMR.00024-19. PubMed DOI PMC

Einarsson E, Ma'ayeh S, Svard SG. An up-date on Giardia and giardiasis. Curr Opin Microbiol. 2016;34:47–52. doi: 10.1016/j.mib.2016.07.019. PubMed DOI

Certad G, Viscogliosi E, Chabe M, Caccio SM. Pathogenic mechanisms of Cryptosporidium and Giardia. Trends Parasitol. 2017;33:561–576. doi: 10.1016/j.pt.2017.02.006. PubMed DOI

Rogawski ET, Bartelt LA, Platts-Mills JA, Seidman JC, Samie A, Havt A, et al. Determinants and impact of Giardia infection in the first 2 years of life in the MAL-ED birth cohort. J Pediatr Infect Dis Soc. 2017;6:153–160. doi: 10.1093/jpids/piw082. PubMed DOI PMC

Stark D, Barratt JL, van Hal S, Marriott D, Harkness J, Ellis JT. Clinical significance of enteric protozoa in the immunosuppressed human population. Clin Microbiol Rev. 2009;22:634–50. doi: 10.1128/CMR.00017-09. PubMed DOI PMC

Mmbaga BT, Houpt ER. Cryptosporidium and Giardia infections in children: a review. Pediatr Clin North Am. 2017;64:837–850. doi: 10.1016/j.pcl.2017.03.014. PubMed DOI

Ryan U, Caccio SM. Zoonotic potential of Giardia. Int J Parasitol. 2013;43:943–956. doi: 10.1016/j.ijpara.2013.06.001. PubMed DOI

Cai W, Ryan U, Xiao L, Feng Y. Zoonotic giardiasis: an update. Parasitol Res. 2021;120:4199–4218. doi: 10.1007/s00436-021-07325-2. PubMed DOI

Monis PT, Andrews RH, Mayrhofer G, Ey PL. Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin. Infect Genet Evol. 2003;3:29–38. doi: 10.1016/S1567-1348(02)00149-1. PubMed DOI

Caccio SM, Lalle M, Svard SG. Host specificity in the Giardia duodenalis species complex. Infect Genet Evol. 2018;66:335–345. doi: 10.1016/j.meegid.2017.12.001. PubMed DOI

Caccio SM, Beck R, Lalle M, Marinculic A, Pozio E. Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol. 2008;38:1523–1531. doi: 10.1016/j.ijpara.2008.04.008. PubMed DOI

Lebbad M, Mattsson JG, Christensson B, Ljungstrom B, Backhans A, Andersson JO, et al. From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Vet Parasitol. 2010;168:231–239. doi: 10.1016/j.vetpar.2009.11.003. PubMed DOI

Ankarklev J, Lebbad M, Einarsson E, Franzen O, Ahola H, Troell K, et al. A novel high-resolution multilocus sequence typing of Giardia intestinalis assemblage a isolates reveals zoonotic transmission, clonal outbreaks and recombination. Infect Genet Evol. 2018;60:7–16. doi: 10.1016/j.meegid.2018.02.012. PubMed DOI

Resi D, Varani S, Sannella AR, De Pascali AM, Ortalli M, Liguori G, et al. A large outbreak of giardiasis in a municipality of the Bologna province, north-eastern Italy, November 2018 to April 2019. Euro Surveill. 2021 doi: 10.2807/1560-7917.ES.2021.26.35.2001331. PubMed DOI PMC

Woschke A, Faber M, Stark K, Holtfreter M, Mockenhaupt F, Richter J, et al. Suitability of current typing procedures to identify epidemiologically linked human Giardia duodenalis isolates. PLoS Negl Trop Dis. 2021;15:e0009277. doi: 10.1371/journal.pntd.0009277. PubMed DOI PMC

Millar C, Moore J, Lowery C, McCorry K, Dooley J. Successful PCR amplification of genomic DNA from Cryptosporidium parvum oocysts extracted from a human faecal sample: a rapid and simple method suited for outbreak analysis. Int J Hyg Environ Health. 2001;204:191–194. doi: 10.1078/1438-4639-00090. PubMed DOI

Sprong H, Caccio SM, van der Giessen JW. network Z, partners: Identification of zoonotic genotypes of Giardia duodenalis. PLoS Negl Trop Dis. 2009;3:e558. doi: 10.1371/journal.pntd.0000558. PubMed DOI PMC

Weisz F, Lalle M, Nohynkova E, Sannella AR, Dluhosova J, Caccio SM. Testing the impact of whole genome amplification on genome comparison using the polyploid flagellated Giardia duodenalis as a model. Exp Parasitol. 2019;207:107776. doi: 10.1016/j.exppara.2019.107776. PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carrico JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13:87. doi: 10.1186/1471-2105-13-87. PubMed DOI PMC

Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev. 2011;24:110–140. doi: 10.1128/CMR.00033-10. PubMed DOI PMC

Efstratiou A, Ongerth J, Karanis P. Evolution of monitoring for Giardia and Cryptosporidium in water. Water Res. 2017;123:96–112. doi: 10.1016/j.watres.2017.06.042. PubMed DOI

Ryan U, Hijjawi N, Feng Y, Xiao L. Giardia: an under-reported foodborne parasite. Int J Parasitol. 2019;49:1–11. doi: 10.1016/j.ijpara.2018.07.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...