Carbon and zeolite-based composites for radionuclide and heavy metal sorption
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36582714
PubMed Central
PMC9792754
DOI
10.1016/j.heliyon.2022.e12293
PII: S2405-8440(22)03581-2
Knihovny.cz E-zdroje
- Klíčová slova
- Heavy metals, Radionuclides, Sorption, Synthetic zeolites,
- Publikační typ
- časopisecké články MeSH
Zeolites have been investigated as sorbents of heavy metals from water. Since graphene oxide was already reported as promising radionuclide sorbent, we developed composite materials containing both a synthetic zeolite (type A, P or Y) and graphene oxide to be multifunctional sorbents. The extension of multifunctionality of sorbents was done by presence of third component, exfoliated graphite, to have additional properties as conductivity. The changing sorption activities of a composite was studied depending on its composition and functional modification. The composites, characterized by X-ray powder diffraction, Raman, FTIR spectroscopy and scanning electron microscopy, were tested for sorption of selected radionuclides (134Cs+, 85Sr2+) and heavy metals (Pb2+, Cd2+). The dependency on composition was found in connection with a high sorption of Pb2+ and Cd2+. Finally, optimized multifunctional sorbents (Gr-GO-COOH-A in ratio 40:40:20 and Gr:GO:A in ratio 25:25:50) were found to keep interesting high sorption activities for heavy metals and radionuclides with good conductivity properties.
Zobrazit více v PubMed
Ciosek A.L., Luk G.K. Kinetic modelling of the removal of multiple heavy metallic ions from mine waste by natural zeolite sorption. Water. 2017;9:482.
Abdel Rahman R.O., El-Kamash A.M., Hung Y.-T. Applications of nano-zeolite in wastewater treatment: an overview. Water. 2022;137(14):1–30.
Kragovic M., Dakovic A., Markovic M., Krtic J., Gatta G.D., Rotiroti N. Characteization of led sorption by the natural and Fe(III)-modified zeolite. Appl. Surf. Sci. 2013;283:764–774.
Ezzedine Z., Battoneau-Gener I., Pouilloux Y., Hamad H., Saad Z. Synthetic NaX zeolite as a very efficient heavy metals sorbent in batch and dynamic conditions. Coll. Interf. 2018;2:22.
Llanes-Morter M.M., Olguin M.T., Solache-Rios M.J. Lead sorption by a Mexican, clinoptilolite-rich tuff. Environ. Sci. Pollut. Res. 2007;14:397–403. PubMed
Arrelano F., Garcia-Sosa I., Solache-Rios M. Sorption of Co and Cd by zeolite Y. J. Radioanal. Nucl. Chem. Lett. 1995;199:107–113.
Alby D., Charnay C., Heran M., Prelot B., Zajac J. Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity- review. J. Hazard Mater. 2018;344:511–530. PubMed
Barus B.S., Chen K., Cai M., Li R., Chen H., Li C., Wang J., Cheng S.-Y. Heavy metal adsorption and release on polystyrene particles at various salinities. Front. Mar. Sci. 2021;8 1-14.
Xu M., Cai Y., Chen G., Li B., Chen Z., Hu B., Wang X. Efficient selective removal of radionuclides by sorption and catalytic reduction using nanomaterials. Nanomaterials. 2022;12:1443. 1-18. PubMed PMC
Diamantis A.S., Pournara A.D., Koutsouroubi E.D., Moularas C., Deligiannakis Y., Armatas G.S., Hatzidimitriou A.G., Manos M.J., Lazarides T. Detection and sorption of heavy metal ions in aqueous media by a fluorescent Zr(IV) Metal−Organic framework functionalized with 2-picolylamine receptor groups. Inorg. Chem. 2022;61:7847–7858. PubMed
Boulanger N., Kuzenkova A.S., Iakunkov A., Romanchuk A.Y., Trigub A.L., Egorov A.V., Bauters S., Amidani L., Retegan M., Kvashnina K.O., Kalmykov S.N., Talyzin A.V. Enhanced sorption of radionuclides by defect-rich graphene oxide. ACS Appl. Mater. Interfaces. 2020;12:45122–45135. PubMed PMC
Arancibia-Miranda M., Baltazar S.E., Garcia A., Munoz-Lira D., Sepulveda P., Rubio M.A., Altbir D. Nanoscale zero valent supported by Zeolite and Montmorillomite: template effect of the removal of lead ion from an aqueous solution. J. Hazard Mater. 2016;301:371–380. PubMed
Pandey P.K., Shara S.K., Sambi S.S. Removal of lead (II) from waste water on zeolite NaX. J. Environ. Chem. Eng. 2015;3:2604–2610.
Salem S., Salem A. A novel design for clean and economical manufacturing new nano-porous zeolite based adsorbent by alkali cement kiln dust for lead uptake from wastewater. J. Clean. Prod. 2017;143:440–451.
Yang H.-M., Park C.W., Kim I., Yoon I.-H., Sihn Y. Sulfur-modified chabazite s a ow-cost ion exchanger for the highly selective and simultaneous removal of cesium and strontium. Appl. Surf. Sci. 2021;536
Faghihian H., Moayed M., Firooz A., Iravani M. Synthsis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium and thermodynamic studies. J. Colloid Interface Sci. 2013;393:445–451. PubMed
Liu J., Huang Z.J., Sun J., Zou Y.X., Gong B.N. Enhancing the removal performance of Cd(II) from aqueous solutions by NaA zeolite through doped thiourea reduced GO which is trapped within zeolite crystals. J. Alloys Compd. 2020;815
Shi Y., Ren X., Zheng H., Zhang Y., Zuo Q. Hierarchical 13X zeolite/reduced graphene oxide porous materials for trace Pb(II) capturing from drinking water. Microporous Mesoporous Mater. 2022;329
Bubenikova M., Ecorchard P., Szatmary L., Mrozek O., Salacova P., Tolasz J. Sorption of Sr(II) onto nanocomposites of graphene oxide-polymeric matrix. J. Radioanal. Nucl. Chem. 2018;315:263–272.
Zheng D., Hu H., Liu X., Hu S. Application of graphene in electrochemical sensing. Curr. Opin. Colloid. In. 2015;20(5-6):383–405.
Svancara I., Kalcher K., Walcarius A., Vytras K. 2012. Electroanalysis with Carbon Paste Electrodes.
Švančara I., Vytřas K., Barek J., Zima J. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 2001;31(4):311–345.
Lehto J., Koivula R., Leinonen H., Tusa E., Harjula R. Removal of radionuclides from fukushima daiichi waste effluents. Separ. Purif. Rev. 2019:1–21. 00.
Ahmad J.U., Goni M.A. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 2010;166:347–357. PubMed
Gusain R., Kumar N., Fosso-Kankeu E., Ray S.S. Efficient removal of Pb(II) and Cd (II) from industrial mine water by a hierarchical MoS2-SH-MWCNT nanocomposite. ACS Omega. 2019;4:13922–13935. PubMed PMC
Bessa R.D., Costa L.D., Oliveira C.P., Bohn F., Do Nascimento R.F., Sasaki J.M., Rodrigues-Loiola A. Kaolin-based magnetic zeolite A and P as water softeners. Microporous Mesoporous Mater. 2017;245:64–72.
Bortollato L.B., Boca Santa R.A.A., Morcira J.C., Machado D.B., Martins M.A.P.M., Fiori M.A., Kuhnen N.C., Riella H.G. Synthesis and characterization of Y zeolites from alternative silicon and aluminum sources. Microporous Mesoporous Mater. 2017;248:214–221.
V. Stengl V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem. Eur J. 2012;18:14047–14054. PubMed
Stengl V., Henych J., Vomacka M. Slusna, doping of TiO2-GO and TiO2-rGO with noble metals: synthesis, characterization and photocatalytic performance for azo dye dicoloration. Photochem. Photobiol. 2013;89:1038–1046. PubMed
Ederer J., Janos P., Ecorchard P., Stengl V., Belcicka Z., Stastny M., Pop-Georgievski O., Dohnal V. Quantitative determination of acidic groups in functionalized graphene by direct titration. React. Funct. Polym. 2016;103:44–53.
Rondón W., Freire D., Benzo Z., Sifontes A.B., Gonzáles Y., Valero M., Brito J.L. Application of 3A zeolite prepared from Venezuelan kaolin for removal of Pb (II) from wastewater and its determination by flame atomic absorption spectrometry. Am. J. Anal. Chem. 2013;4:584–593.
Tian Q., Sasaki K. Application of fly ash-based materials for stabilization/solidificatio by cesium and strontium. Environ. Sci. Pollut. Control Ser. 2019;26:23542–23554. PubMed
Jangkorn S., Youngme S., praipitat P. Comparative lead adsorptions in synthetic wastewater by synthesized zeolite A of recycled industrial wastes from sugar factory and power plant. Heliyon. 2022;8 PubMed PMC