Cerium-Bismuth Oxides/Oxynitrates with Low Toxicity for the Removal and Degradation of Organophosphates and Bisphenols

. 2022 Dec 23 ; 5 (12) : 17956-17968. [epub] 20221129

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36583119

Nanoscale cerium-bismuth oxides/oxynitrates were prepared by a scalable low-temperature method at ambient pressure using water as the sole solvent. Solid solutions were formed up to a 1:1 Ce/Bi molar ratio, while at higher doping levels, bismuth oxynitrate photocatalysts with a pronounced layered structure were formed. Bismuth caused significant changes in the structure and surface properties of nanoceria, such as the formation of defects, oxygen-containing surface groups, and Lewis and Brønsted acid sites. The prepared bifunctional adsorbents/photocatalysts were efficient in the removal of toxic organophosphate (methyl paraoxon) from water by reactive adsorption followed by photocatalytic decomposition of the parent compound and its degradation product (p-nitrophenol). Bi-doped ceria also effectively adsorbed and photodegraded the endocrine disruptors bisphenols A and S and outperformed pure ceria and the P25 photocatalyst in terms of efficiency, durability, and long-term stability. The very low toxicity of Bi-nanoceria to mammalian cells, aquatic organisms, and bacteria has been demonstrated by comprehensive in vivo/in vitro testing, which, in addition to its simple "green" synthesis, high activity, and durability, makes Bi-doped ceria promising for safe use in abatement of toxic chemicals.

Zobrazit více v PubMed

Adeleye A. S.; Conway J. R.; Garner K.; Huang Y.; Su Y.; Keller A. A. Engineered Nanomaterials for Water Treatment and Remediation: Costs, Benefits, and Applicability. Chem. Eng. J. 2016, 286, 640–662. 10.1016/j.cej.2015.10.105. DOI

Richardson S. D.; Kimura S. Y. Emerging Environmental Contaminants: Challenges Facing Our next Generation and Potential Engineering Solutions. Environ. Technol. Innovation 2017, 8, 40–56. 10.1016/j.eti.2017.04.002. DOI

Dulio V.; van Bavel B.; Brorström-Lundén E.; Harmsen J.; Hollender J.; Schlabach M.; Slobodnik J.; Thomas K.; Koschorreck J. Emerging Pollutants in the EU: 10 Years of NORMAN in Support of Environmental Policies and Regulations. Environ. Sci. Eur. 2018, 30, 5.10.1186/s12302-018-0135-3. PubMed DOI PMC

Diamond J. M.; Latimer H. A.; Munkittrick K. R.; Thornton K. W.; Bartell S. M.; Kidd K. A. Prioritizing Contaminants of Emerging Concern for Ecological Screening Assessments. Environ. Toxicol. Chem. 2011, 30, 2385–2394. 10.1002/etc.667. PubMed DOI

Wang L.; Shi C.; Wang L.; Pan X.; Zhang J. J.; Zou J.-J. Rational Design, Synthesis, Adsorption Principles and Applications of Metal Oxide Adsorbents: A Review. Nanoscale 2020, 12, 4790–4815. 10.1039/c9nr09274a. PubMed DOI

Aguilar-Pérez K. M.; Avilés-Castrillo J. I.; Ruiz-Pulido G.; Medina D. I.; Parra-Saldivar R.; Iqbal H. M. N. Nanoadsorbents in Focus for the Remediation of Environmentally-Related Contaminants with Rising Toxicity Concerns. Sci. Total Environ. 2021, 779, 146465.10.1016/j.scitotenv.2021.146465. PubMed DOI

Medhi R.; Marquez M. D.; Lee T. R. Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of Their Synthesis, Properties, and Applications. ACS Appl. Nano Mater. 2020, 3, 6156–6185. 10.1021/acsanm.0c01035. DOI

Luo J.; Fu K.; Yu D.; Hristovski K. D.; Westerhoff P.; Crittenden J. C. Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engg 2021, 1, 623–661. 10.1021/acsestengg.0c00174. PubMed DOI

Guan X.; Du J.; Meng X.; Sun Y.; Sun B.; Hu Q. Application of Titanium Dioxide in Arsenic Removal from Water: A Review. J. Hazard. Mater. 2012, 215–216, 1–16. 10.1016/j.jhazmat.2012.02.069. PubMed DOI

Nagpal M.; Kakkar R. Use of Metal Oxides for the Adsorptive Removal of Toxic Organic Pollutants. Sep. Purif. Technol. 2019, 211, 522–539. 10.1016/j.seppur.2018.10.016. DOI

Naseem T.; Durrani T. The Role of Some Important Metal Oxide Nanoparticles for Wastewater and Antibacterial Applications: A Review. Environ. Chem. Ecotoxicol. 2021, 3, 59–75. 10.1016/j.enceco.2020.12.001. DOI

Mazurkow J. M.; Yüzbasi N. S.; Domagala K. W.; Pfeiffer S.; Kata D.; Graule T. Nano-Sized Copper (Oxide) on Alumina Granules for Water Filtration: Effect of Copper Oxidation State on Virus Removal Performance. Environ. Sci. Technol. 2020, 54, 1214–1222. 10.1021/acs.est.9b05211. PubMed DOI

Sharma R. K.; Solanki K.; Dixit R.; Sharma S.; Dutta S. Nanoengineered Iron Oxide-Based Sorbents for Separation of Various Water Pollutants: Current Status, Opportunities and Future Outlook. Environ. Sci.: Water Res. Technol. 2021, 7, 818–860. 10.1039/d1ew00108f. DOI

Zeng H.; Yin C.; Qiao T.; Yu Y.; Zhang J.; Li D. As(V) Removal from Water Using a Novel Magnetic Particle Adsorbent Prepared with Iron-Containing Water Treatment Residuals. ACS Sustainable Chem. Eng. 2018, 6, 14734–14742. 10.1021/acssuschemeng.8b03270. DOI

Abodif A. M.; Meng A. M.; Ma L.; Ahmed S.; Belvett A. S. A.; Wei N.; Ning Z. Z.; Ning D. Mechanisms and Models of Adsorption: TiO2-Supported Biochar for Removal of 3,4-Dimethylaniline. ACS Omega 2020, 5, 13630–13640. 10.1021/acsomega.0c00619. PubMed DOI PMC

Mustapha S.; Tijani J. O.; Ndamitso M. M.; Abdulkareem S. A.; Shuaib D. T.; Mohammed A. K.; Sumaila A. The Role of Kaolin and Kaolin/ZnO Nanoadsorbents in Adsorption Studies for Tannery Wastewater Treatment. Sci. Rep. 2020, 10, 13068.10.1038/s41598-020-69808-z. PubMed DOI PMC

Islam M. A.; Morton D. W.; Johnson B. B.; Mainali B.; Angove M. J. Manganese Oxides and Their Application to Metal Ion and Contaminant Removal from Wastewater. J. Water Process Eng. 2018, 26, 264–280. 10.1016/j.jwpe.2018.10.018. DOI

Kim E. J.; Lee C. S.; Chang Y. Y.; Chang Y. S. Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. ACS Appl. Mater. Interfaces 2013, 5, 9628–9634. 10.1021/am402615m. PubMed DOI

Clark A. H.; Beyer K. A.; Hayama S.; Hyde T. I.; Sankar G. Unusual Redox Behavior of Ceria and Its Interaction with Hydrogen. Chem. Mater. 2019, 31, 7744–7751. 10.1021/acs.chemmater.9b02854. DOI

Montini T.; Melchionna M.; Monai M.; Fornasiero P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. 10.1021/acs.chemrev.5b00603. PubMed DOI

Xu C.; Qu X. Cerium Oxide Nanoparticle: A Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Mater. 2014, 6, e9010.1038/am.2013.88. DOI

Khulbe K.; Karmakar K.; Ghosh S.; Chandra K.; Chakravortty D.; Mugesh G. Nanoceria-Based Phospholipase-Mimetic Cell Membrane Disruptive Antibiofilm Agents. ACS Appl. Bio Mater. 2020, 3, 4316–4328. 10.1021/acsabm.0c00363. PubMed DOI

Janos P.; Kuran P.; Kormunda M.; Stengl V.; Grygar T. M.; Dosek M.; Stastny M.; Ederer J.; Pilarova V.; Vrtoch L. Cerium Dioxide as a New Reactive Sorbent for Fast Degradation of Parathion Methyl and Some Other Organophosphates. J. Rare Earths 2014, 32, 360–370. 10.1016/s1002-0721(14)60079-x. DOI

Janoš P.; Henych J.; Pelant O.; Pilařová V.; Vrtoch L.; Kormunda M.; Mazanec K.; Štengl V. Cerium Oxide for the Destruction of Chemical Warfare Agents: A Comparison of Synthetic Routes. J. Hazard. Mater. 2016, 304, 259–268. 10.1016/j.jhazmat.2015.10.069. PubMed DOI

Henych J.; Št’astný M.; Němečková Z.; Mazanec K.; Tolasz J.; Kormunda M.; Ederer J.; Janoš P. Bifunctional TiO2/CeO2 Reactive Adsorbent/Photocatalyst for Degradation of Bis-p-Nitrophenyl Phosphate and CWAs. Chem. Eng. J. 2021, 414, 128822.10.1016/j.cej.2021.128822. DOI

Henych J.; Janoš P.; Kormunda M.; Tolasz J.; Štengl V. Reactive Adsorption of Toxic Organophosphates Parathion Methyl and DMMP on Nanostructured Ti/Ce Oxides and Their Composites. Arabian J. Chem. 2019, 12, 4258–4269. 10.1016/j.arabjc.2016.06.002. DOI

Mullins D. R. The Surface Chemistry of Cerium Oxide. Surf. Sci. Rep. 2015, 70, 42–85. 10.1016/j.surfrep.2014.12.001. DOI

Paier J.; Penschke C.; Sauer J. Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chem. Rev. 2013, 113, 3949–3985. 10.1021/cr3004949. PubMed DOI

Wang R.; Li H.; Sun H.. Bismuth: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health, 2019; pp 415–423.

Wang Y.; Xie Y.; Zhang C.; Chen W.; Wang J.; Zhang R.; Yang H. Tuning the Oxygen Mobility of CeO2 via Bi-Doping for Diesel Soot Oxidation: Experimental and DFT Studies. J. Environ. Chem. Eng. 2021, 9, 105049.10.1016/j.jece.2021.105049. DOI

Cui B.; Li Y.; Li S.; Xia Y.; Zheng Z.; Liu Y. Q. Bi-Doped Ceria as a Highly Efficient Catalyst for Soot Combustion: Improved Mobility of Lattice Oxygen in CexBi1-xOy Catalysts. Energy Fuels 2020, 34, 9932–9939. 10.1021/acs.energyfuels.0c01090. DOI

Yu K.; Lei D.; Feng Y.; Yu H.; Chang Y.; Wang Y.; Liu Y.; Wang G. C.; Lou L. L.; Liu S.; Zhou W. The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1–Bi O2−δ. J. Catal. 2018, 365, 292–302. 10.1016/j.jcat.2018.06.025. DOI

Sardar K.; Playford H. Y.; Darton R. J.; Barney E. R.; Hannon A. C.; Tompsett D.; Fisher J.; Kashtiban R. J.; Sloan J.; Ramos S.; Cibin G.; Walton R. I. Nanocrystalline Cerium–Bismuth Oxides: Synthesis, Structural Characterization, and Redox Properties. Chem. Mater. 2010, 22, 6191–6201. 10.1021/cm1025848. DOI

Veedu S. N.; Jose S.; Narendranath S. B.; Prathapachandra Kurup M. R.; Periyat P. Visible Light-Driven Photocatalytic Degradation of Methylene Blue Dye over Bismuth-Doped Cerium Oxide Mesoporous Nanoparticles. Environ. Sci. Pollut. Res. 2021, 28, 4147–4155. 10.1007/s11356-020-10750-y. PubMed DOI

Santra C.; Auroux A.; Chowdhury B. Bi Doped CeO2 Oxide Supported Gold Nanoparticle Catalysts for the Aerobic Oxidation of Alcohols. RSC Adv. 2016, 6, 45330–45342. 10.1039/c6ra05216a. DOI

Henych J.; Št’astný M.; Ederer J.; Němečková Z.; Pogorzelska A.; Tolasz J.; Kormunda M.; Ryšánek P.; Bażanów B.; Stygar D.; Mazanec K.; Janoš P. How the Surface Chemical Properties of Nanoceria Are Related to Its Enzyme-like, Antiviral and Degradation Activity. Environ. Sci.: Nano 2022, 9, 3485–3501. 10.1039/d2en00173j. DOI

Trögl J.; Benediktová K. Empirical Comparison of Seven Two-Parameter Sigmoid Equations for the Evaluation of the Concentration-Response Curves from Standard Acute Ecotoxicity Assays. Int. J. Environ. Res. 2011, 5, 989–998. 10.22059/IJER.2011.456. DOI

Panuška P.; Nejedlá Z.; Smejkal J.; Aubrecht P.; Liegertová M.; Štofik M.; Havlica J.; Malý J. A Millifluidic Chip for Cultivation of Fish Embryos and Toxicity Testing Fabricated by 3D Printing Technology. RSC Adv. 2021, 11, 20507–20518. 10.1039/D1RA00846C. PubMed DOI PMC

Frolova Y. V.; Kochubey D. I.; Kriventsov V. V.; Moroz E. M.; Neofitides S.; Sadykov V. A.; Zyuzin D. A. The Influence of Bismuth Addition on the Local Structure of CeO2. Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 543, 127–130. 10.1016/j.nima.2005.01.132. DOI

Prekajski M.; Dohčević-Mitrović Z.; Radović M.; Babić B.; Pantić J.; Kremenović A.; Matović B. Nanocrystaline solid solution CeO2-Bi2O3. J. Eur. Ceram. Soc. 2012, 32, 1983–1987. 10.1016/j.jeurceramsoc.2011.12.009. DOI

Mavuso M. A.; Makgwane P. R.; Ray S. S. Heterostructured CeO2-M (M = Co, Cu, Mn, Fe, Ni) Oxide Nanocatalysts for the Visible-Light Photooxidation of Pinene to Aroma Oxygenates. ACS Omega 2020, 5, 9775–9788. 10.1021/acsomega.9b04396. PubMed DOI PMC

Fronzi M.; Piccinin S.; Delley B.; Traversa E.; Stampfl C. Water Adsorption on the Stoichiometric and Reduced CeO2(111) Surface: A First-Principles Investigation. Phys. Chem. Chem. Phys. 2009, 11, 9188–9199. 10.1039/b901831j. PubMed DOI

Vincent A.; Inerbaev T. M.; Babu S.; Karakoti A. S.; Self W. T.; Masunov A. E.; Seal S. Tuning Hydrated Nanoceria Surfaces: Experimental/Theoretical Investigations of Ion Exchange and Implications in Organic and Inorganic Interactions. Langmuir 2010, 26, 7188–7198. 10.1021/la904285g. PubMed DOI PMC

Christensen A. N.; Chevallier M. A.; Skibsted J.; Iversen B. B. Synthesis and Characterization of Basic Bismuth(III) Nitrates. J. Chem. Soc., Dalton Trans. 2000, 3, 265–270. 10.1039/a908055d. DOI

Han Q.; Pang J.; Wang X.; Wu X.; Zhu J. Synthesis of Unique Flowerlike Bi2O2(OH)(NO3) Hierarchical Microstructures with High Surface Area and Superior Photocatalytic Performance. Chem.—Eur. J. 2017, 23, 3891–3897. 10.1002/chem.201604085. PubMed DOI

Yang L. M.; Zhang G. Y.; Liu Y.; Xu Y. Y.; Liu C. M.; Liu J. W. A {110} facet predominated Bi6O6(OH)3(NO3)3·1.5H2O photocatalyst: selective hydrothermal synthesis and its superior photocatalytic activity for degradation of phenol. RSC Adv. 2015, 5, 79715–79723. 10.1039/c5ra15629g. DOI

Lu B.; Zhu Y. Synthesis and Photocatalysis Performances of Bismuth Oxynitrate Photocatalysts with Layered Structures. Phys. Chem. Chem. Phys. 2014, 16, 16509–16514. 10.1039/c4cp01489h. PubMed DOI

Sun S.; Xiao W.; You C.; Zhou W.; Garba Z. N.; Wang L.; Yuan Z. Methods for Preparing and Enhancing Photocatalytic Activity of Basic Bismuth Nitrate. J. Clean. Prod. 2021, 294, 126350.10.1016/j.jclepro.2021.126350. DOI

Henry N.; Evain M.; Deniard P.; Jobic S.; Mentré O.; Abraham F. [Bi6O4.5(OH)3.5]2(NO3)11: a new anhydrous bismuth basic nitrate. Synthesis and structure determination from twinned crystals. J. Solid State Chem. 2003, 176, 127–136. 10.1016/s0022-4596(03)00357-8. DOI

Denisov V. N.; Ivlev A. N.; Lipin A. S.; Mavrin B. N.; Orlov V. G. Raman spectra and lattice dynamics of single-crystal. J. Phys.: Condens. Matter 1997, 9, 4967–4978. 10.1088/0953-8984/9/23/020. DOI

Malligavathy M.; Pathinettam Padiyan D. Role of PH in the Hydrothermal Synthesis of Phase Pure Alpha Bi2O3 Nanoparticles and Its Structural Characterization. Adv. Mater. Processes 2021, 2, 51–55. 10.5185/amp.2017/112. DOI

Ho C.-H.; Chan C.-H.; Huang Y.-S.; Tien L.-C.; Chao L.-C. The study of optical band edge property of bismuth oxide nanowires α-Bi_2O_3. Opt. Express 2013, 21, 11965.10.1364/oe.21.011965. PubMed DOI

Pye C. C.; Gunasekara C. M.; Rudolph W. W. An Ab Initio Investigation of Bismuth Hydration. Can. J. Chem. 2007, 85, 945–950. 10.1139/v07-108. DOI

Pang J.; Han Q.; Liu W.; Shen Z.; Wang X.; Zhu J. Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4· 2H2O with superior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5· 3H2O with ultrahigh adsorption capacity for methyl orange. Appl. Surf. Sci. 2017, 422, 283–294. 10.1016/j.apsusc.2017.06.022. DOI

Frost R. L.; Čejka J.; Sejkora J.; Plášil J.; Reddy B. J.; Keeffe E. C. Raman Spectroscopic Study of a Hydroxy-Arsenate Mineral Containing Bismuth-Atelestite Bi2O(OH)(AsO4). Spectrochim. Acta, Part A 2011, 78, 494–496. 10.1016/j.saa.2010.11.016. PubMed DOI

Fruth V.; Popa M.; Berger D.; Ionica C. M.; Jitianu M. Phases Investigation in the Antimony Doped Bi2O3 System. J. Eur. Ceram. Soc. 2004, 24, 1295–1299. 10.1016/s0955-2219(03)00506-5. DOI

Ziegler P.; Grigoraviciute I.; Gibson K.; Glaser J.; Kareiva A.; Meyer H. J. On the characterization of BiMO2NO3 (M=Pb, Ca, Sr, Ba) materials related with the Sillén X1 structure. J. Solid State Chem. 2004, 177, 3610–3615. 10.1016/j.jssc.2004.03.027. DOI

Henry N.; Evain M.; Deniard P.; Jobic S.; Abraham F.; Mentré O. [Bi2O2]2+ Layers in Bi2O2(OH)(NO3): Synthesis And Structure Determination. Z. Naturforsch., B: J. Chem. Sci. 2005, 60, 322–327. 10.1515/znb-2005-0315. DOI

Cheng H.; Huang B.; Lu J.; Wang Z.; Xu B.; Qin X.; Zhang X.; Dai Y. Synergistic Effect of Crystal and Electronic Structures on the Visible-Light-Driven Photocatalytic Performances of Bi2O3 Polymorphs. Phys. Chem. Chem. Phys. 2010, 12, 15468–15475. 10.1039/c0cp01189d. PubMed DOI

Maslakov K. I.; Teterin Y. A.; Popel A. J.; Teterin A. Y.; Ivanov K. E.; Kalmykov S. N.; Petrov V. G.; Petrov P. K.; Farnan I. XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl. Surf. Sci. 2018, 448, 154–162. 10.1016/j.apsusc.2018.04.077. DOI

Št’astný M.; Issa G.; Popelková D.; Ederer J.; Kormunda M.; Kříženecká S.; Henych J. Nanostructured Manganese Oxides as Highly Active Catalysts for Enhanced Hydrolysis of Bis(4-Nitrophenyl)Phosphate and Catalytic Decomposition of Methanol. Catal. Sci. Technol. 2021, 11, 1766–1779. 10.1039/D0CY02112A. DOI

Zaki M. I.; Hasan M. A.; Al-Sagheer F. A.; Pasupulety L. In Situ FTIR Spectra of Pyridine Adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General Considerations for the Identification of Acid Sites on Surfaces of Finely Divided Metal Oxides. Colloids Surf., A 2001, 190, 261–274. 10.1016/s0927-7757(01)00690-2. DOI

Zaki M. I.; Hussein G. A. M.; Mansour S. A. A.; El-Ammawy H. A. Adsorption and Surface Reactions of Pyridine on Pure and Doped Ceria Catalysts as Studied by Infrared Spectroscopy. J. Mol. Catal. 1989, 51, 209–220. 10.1016/0304-5102(89)80101-4. DOI

Marsh J. L.; Wayman A. E.; Smiddy N. M.; Campbell D. J.; Parker J. C.; Bosma W. B.; Remsen E. E. Infrared Spectroscopic Analysis of the Adsorption of Pyridine Carboxylic Acids on Colloidal Ceria. Langmuir 2017, 33, 13224–13233. 10.1021/acs.langmuir.7b03338. PubMed DOI

Wilson C.; Cooper N. J.; Briggs M. E.; Cooper A. I.; Adams D. J. Investigating the Breakdown of the Nerve Agent Simulant Methyl Paraoxon and Chemical Warfare Agents GB and VX Using Nitrogen Containing Bases. Org. Biomol. Chem. 2018, 16, 9285–9291. 10.1039/c8ob02475h. PubMed DOI

Ragunathan K. G.; Schneider H. J. Binuclear Lanthanide Complexes as Catalysts for the Hydrolysis of Bis(p-Nitrophenyl)-Phosphate and Double-Stranded DNA. Angew. Chem., Int. Ed. Engl. 1996, 35, 1219–1221. 10.1002/anie.199612191. DOI

Masula K.; Bhongiri Y.; Raghav Rao G.; Vijay Kumar P.; Pola S.; Basude M. Evolution of photocatalytic activity of CeO2-Bi2O3 composite material for wastewater degradation under visible-light irradiation. Opt. Mater. 2022, 126, 112201.10.1016/j.optmat.2022.112201. DOI

López-Ramón M. V.; Ocampo-Pérez R.; Bautista-Toledo M. I.; Rivera-Utrilla J.; Moreno-Castilla C.; Sánchez-Polo M. Removal of Bisphenols A and S by Adsorption on Activated Carbon Clothes Enhanced by the Presence of Bacteria. Sci. Total Environ. 2019, 669, 767–776. 10.1016/j.scitotenv.2019.03.125. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...