Cerium-Bismuth Oxides/Oxynitrates with Low Toxicity for the Removal and Degradation of Organophosphates and Bisphenols
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36583119
PubMed Central
PMC9791653
DOI
10.1021/acsanm.2c03926
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanoscale cerium-bismuth oxides/oxynitrates were prepared by a scalable low-temperature method at ambient pressure using water as the sole solvent. Solid solutions were formed up to a 1:1 Ce/Bi molar ratio, while at higher doping levels, bismuth oxynitrate photocatalysts with a pronounced layered structure were formed. Bismuth caused significant changes in the structure and surface properties of nanoceria, such as the formation of defects, oxygen-containing surface groups, and Lewis and Brønsted acid sites. The prepared bifunctional adsorbents/photocatalysts were efficient in the removal of toxic organophosphate (methyl paraoxon) from water by reactive adsorption followed by photocatalytic decomposition of the parent compound and its degradation product (p-nitrophenol). Bi-doped ceria also effectively adsorbed and photodegraded the endocrine disruptors bisphenols A and S and outperformed pure ceria and the P25 photocatalyst in terms of efficiency, durability, and long-term stability. The very low toxicity of Bi-nanoceria to mammalian cells, aquatic organisms, and bacteria has been demonstrated by comprehensive in vivo/in vitro testing, which, in addition to its simple "green" synthesis, high activity, and durability, makes Bi-doped ceria promising for safe use in abatement of toxic chemicals.
Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68Husinec Řež Czech Republic
Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10 162 00Prague Czech Republic
Zobrazit více v PubMed
Adeleye A. S.; Conway J. R.; Garner K.; Huang Y.; Su Y.; Keller A. A. Engineered Nanomaterials for Water Treatment and Remediation: Costs, Benefits, and Applicability. Chem. Eng. J. 2016, 286, 640–662. 10.1016/j.cej.2015.10.105. DOI
Richardson S. D.; Kimura S. Y. Emerging Environmental Contaminants: Challenges Facing Our next Generation and Potential Engineering Solutions. Environ. Technol. Innovation 2017, 8, 40–56. 10.1016/j.eti.2017.04.002. DOI
Dulio V.; van Bavel B.; Brorström-Lundén E.; Harmsen J.; Hollender J.; Schlabach M.; Slobodnik J.; Thomas K.; Koschorreck J. Emerging Pollutants in the EU: 10 Years of NORMAN in Support of Environmental Policies and Regulations. Environ. Sci. Eur. 2018, 30, 5.10.1186/s12302-018-0135-3. PubMed DOI PMC
Diamond J. M.; Latimer H. A.; Munkittrick K. R.; Thornton K. W.; Bartell S. M.; Kidd K. A. Prioritizing Contaminants of Emerging Concern for Ecological Screening Assessments. Environ. Toxicol. Chem. 2011, 30, 2385–2394. 10.1002/etc.667. PubMed DOI
Wang L.; Shi C.; Wang L.; Pan X.; Zhang J. J.; Zou J.-J. Rational Design, Synthesis, Adsorption Principles and Applications of Metal Oxide Adsorbents: A Review. Nanoscale 2020, 12, 4790–4815. 10.1039/c9nr09274a. PubMed DOI
Aguilar-Pérez K. M.; Avilés-Castrillo J. I.; Ruiz-Pulido G.; Medina D. I.; Parra-Saldivar R.; Iqbal H. M. N. Nanoadsorbents in Focus for the Remediation of Environmentally-Related Contaminants with Rising Toxicity Concerns. Sci. Total Environ. 2021, 779, 146465.10.1016/j.scitotenv.2021.146465. PubMed DOI
Medhi R.; Marquez M. D.; Lee T. R. Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of Their Synthesis, Properties, and Applications. ACS Appl. Nano Mater. 2020, 3, 6156–6185. 10.1021/acsanm.0c01035. DOI
Luo J.; Fu K.; Yu D.; Hristovski K. D.; Westerhoff P.; Crittenden J. C. Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engg 2021, 1, 623–661. 10.1021/acsestengg.0c00174. PubMed DOI
Guan X.; Du J.; Meng X.; Sun Y.; Sun B.; Hu Q. Application of Titanium Dioxide in Arsenic Removal from Water: A Review. J. Hazard. Mater. 2012, 215–216, 1–16. 10.1016/j.jhazmat.2012.02.069. PubMed DOI
Nagpal M.; Kakkar R. Use of Metal Oxides for the Adsorptive Removal of Toxic Organic Pollutants. Sep. Purif. Technol. 2019, 211, 522–539. 10.1016/j.seppur.2018.10.016. DOI
Naseem T.; Durrani T. The Role of Some Important Metal Oxide Nanoparticles for Wastewater and Antibacterial Applications: A Review. Environ. Chem. Ecotoxicol. 2021, 3, 59–75. 10.1016/j.enceco.2020.12.001. DOI
Mazurkow J. M.; Yüzbasi N. S.; Domagala K. W.; Pfeiffer S.; Kata D.; Graule T. Nano-Sized Copper (Oxide) on Alumina Granules for Water Filtration: Effect of Copper Oxidation State on Virus Removal Performance. Environ. Sci. Technol. 2020, 54, 1214–1222. 10.1021/acs.est.9b05211. PubMed DOI
Sharma R. K.; Solanki K.; Dixit R.; Sharma S.; Dutta S. Nanoengineered Iron Oxide-Based Sorbents for Separation of Various Water Pollutants: Current Status, Opportunities and Future Outlook. Environ. Sci.: Water Res. Technol. 2021, 7, 818–860. 10.1039/d1ew00108f. DOI
Zeng H.; Yin C.; Qiao T.; Yu Y.; Zhang J.; Li D. As(V) Removal from Water Using a Novel Magnetic Particle Adsorbent Prepared with Iron-Containing Water Treatment Residuals. ACS Sustainable Chem. Eng. 2018, 6, 14734–14742. 10.1021/acssuschemeng.8b03270. DOI
Abodif A. M.; Meng A. M.; Ma L.; Ahmed S.; Belvett A. S. A.; Wei N.; Ning Z. Z.; Ning D. Mechanisms and Models of Adsorption: TiO2-Supported Biochar for Removal of 3,4-Dimethylaniline. ACS Omega 2020, 5, 13630–13640. 10.1021/acsomega.0c00619. PubMed DOI PMC
Mustapha S.; Tijani J. O.; Ndamitso M. M.; Abdulkareem S. A.; Shuaib D. T.; Mohammed A. K.; Sumaila A. The Role of Kaolin and Kaolin/ZnO Nanoadsorbents in Adsorption Studies for Tannery Wastewater Treatment. Sci. Rep. 2020, 10, 13068.10.1038/s41598-020-69808-z. PubMed DOI PMC
Islam M. A.; Morton D. W.; Johnson B. B.; Mainali B.; Angove M. J. Manganese Oxides and Their Application to Metal Ion and Contaminant Removal from Wastewater. J. Water Process Eng. 2018, 26, 264–280. 10.1016/j.jwpe.2018.10.018. DOI
Kim E. J.; Lee C. S.; Chang Y. Y.; Chang Y. S. Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. ACS Appl. Mater. Interfaces 2013, 5, 9628–9634. 10.1021/am402615m. PubMed DOI
Clark A. H.; Beyer K. A.; Hayama S.; Hyde T. I.; Sankar G. Unusual Redox Behavior of Ceria and Its Interaction with Hydrogen. Chem. Mater. 2019, 31, 7744–7751. 10.1021/acs.chemmater.9b02854. DOI
Montini T.; Melchionna M.; Monai M.; Fornasiero P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. 10.1021/acs.chemrev.5b00603. PubMed DOI
Xu C.; Qu X. Cerium Oxide Nanoparticle: A Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Mater. 2014, 6, e9010.1038/am.2013.88. DOI
Khulbe K.; Karmakar K.; Ghosh S.; Chandra K.; Chakravortty D.; Mugesh G. Nanoceria-Based Phospholipase-Mimetic Cell Membrane Disruptive Antibiofilm Agents. ACS Appl. Bio Mater. 2020, 3, 4316–4328. 10.1021/acsabm.0c00363. PubMed DOI
Janos P.; Kuran P.; Kormunda M.; Stengl V.; Grygar T. M.; Dosek M.; Stastny M.; Ederer J.; Pilarova V.; Vrtoch L. Cerium Dioxide as a New Reactive Sorbent for Fast Degradation of Parathion Methyl and Some Other Organophosphates. J. Rare Earths 2014, 32, 360–370. 10.1016/s1002-0721(14)60079-x. DOI
Janoš P.; Henych J.; Pelant O.; Pilařová V.; Vrtoch L.; Kormunda M.; Mazanec K.; Štengl V. Cerium Oxide for the Destruction of Chemical Warfare Agents: A Comparison of Synthetic Routes. J. Hazard. Mater. 2016, 304, 259–268. 10.1016/j.jhazmat.2015.10.069. PubMed DOI
Henych J.; Št’astný M.; Němečková Z.; Mazanec K.; Tolasz J.; Kormunda M.; Ederer J.; Janoš P. Bifunctional TiO2/CeO2 Reactive Adsorbent/Photocatalyst for Degradation of Bis-p-Nitrophenyl Phosphate and CWAs. Chem. Eng. J. 2021, 414, 128822.10.1016/j.cej.2021.128822. DOI
Henych J.; Janoš P.; Kormunda M.; Tolasz J.; Štengl V. Reactive Adsorption of Toxic Organophosphates Parathion Methyl and DMMP on Nanostructured Ti/Ce Oxides and Their Composites. Arabian J. Chem. 2019, 12, 4258–4269. 10.1016/j.arabjc.2016.06.002. DOI
Mullins D. R. The Surface Chemistry of Cerium Oxide. Surf. Sci. Rep. 2015, 70, 42–85. 10.1016/j.surfrep.2014.12.001. DOI
Paier J.; Penschke C.; Sauer J. Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chem. Rev. 2013, 113, 3949–3985. 10.1021/cr3004949. PubMed DOI
Wang R.; Li H.; Sun H.. Bismuth: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health, 2019; pp 415–423.
Wang Y.; Xie Y.; Zhang C.; Chen W.; Wang J.; Zhang R.; Yang H. Tuning the Oxygen Mobility of CeO2 via Bi-Doping for Diesel Soot Oxidation: Experimental and DFT Studies. J. Environ. Chem. Eng. 2021, 9, 105049.10.1016/j.jece.2021.105049. DOI
Cui B.; Li Y.; Li S.; Xia Y.; Zheng Z.; Liu Y. Q. Bi-Doped Ceria as a Highly Efficient Catalyst for Soot Combustion: Improved Mobility of Lattice Oxygen in CexBi1-xOy Catalysts. Energy Fuels 2020, 34, 9932–9939. 10.1021/acs.energyfuels.0c01090. DOI
Yu K.; Lei D.; Feng Y.; Yu H.; Chang Y.; Wang Y.; Liu Y.; Wang G. C.; Lou L. L.; Liu S.; Zhou W. The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1–Bi O2−δ. J. Catal. 2018, 365, 292–302. 10.1016/j.jcat.2018.06.025. DOI
Sardar K.; Playford H. Y.; Darton R. J.; Barney E. R.; Hannon A. C.; Tompsett D.; Fisher J.; Kashtiban R. J.; Sloan J.; Ramos S.; Cibin G.; Walton R. I. Nanocrystalline Cerium–Bismuth Oxides: Synthesis, Structural Characterization, and Redox Properties. Chem. Mater. 2010, 22, 6191–6201. 10.1021/cm1025848. DOI
Veedu S. N.; Jose S.; Narendranath S. B.; Prathapachandra Kurup M. R.; Periyat P. Visible Light-Driven Photocatalytic Degradation of Methylene Blue Dye over Bismuth-Doped Cerium Oxide Mesoporous Nanoparticles. Environ. Sci. Pollut. Res. 2021, 28, 4147–4155. 10.1007/s11356-020-10750-y. PubMed DOI
Santra C.; Auroux A.; Chowdhury B. Bi Doped CeO2 Oxide Supported Gold Nanoparticle Catalysts for the Aerobic Oxidation of Alcohols. RSC Adv. 2016, 6, 45330–45342. 10.1039/c6ra05216a. DOI
Henych J.; Št’astný M.; Ederer J.; Němečková Z.; Pogorzelska A.; Tolasz J.; Kormunda M.; Ryšánek P.; Bażanów B.; Stygar D.; Mazanec K.; Janoš P. How the Surface Chemical Properties of Nanoceria Are Related to Its Enzyme-like, Antiviral and Degradation Activity. Environ. Sci.: Nano 2022, 9, 3485–3501. 10.1039/d2en00173j. DOI
Trögl J.; Benediktová K. Empirical Comparison of Seven Two-Parameter Sigmoid Equations for the Evaluation of the Concentration-Response Curves from Standard Acute Ecotoxicity Assays. Int. J. Environ. Res. 2011, 5, 989–998. 10.22059/IJER.2011.456. DOI
Panuška P.; Nejedlá Z.; Smejkal J.; Aubrecht P.; Liegertová M.; Štofik M.; Havlica J.; Malý J. A Millifluidic Chip for Cultivation of Fish Embryos and Toxicity Testing Fabricated by 3D Printing Technology. RSC Adv. 2021, 11, 20507–20518. 10.1039/D1RA00846C. PubMed DOI PMC
Frolova Y. V.; Kochubey D. I.; Kriventsov V. V.; Moroz E. M.; Neofitides S.; Sadykov V. A.; Zyuzin D. A. The Influence of Bismuth Addition on the Local Structure of CeO2. Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 543, 127–130. 10.1016/j.nima.2005.01.132. DOI
Prekajski M.; Dohčević-Mitrović Z.; Radović M.; Babić B.; Pantić J.; Kremenović A.; Matović B. Nanocrystaline solid solution CeO2-Bi2O3. J. Eur. Ceram. Soc. 2012, 32, 1983–1987. 10.1016/j.jeurceramsoc.2011.12.009. DOI
Mavuso M. A.; Makgwane P. R.; Ray S. S. Heterostructured CeO2-M (M = Co, Cu, Mn, Fe, Ni) Oxide Nanocatalysts for the Visible-Light Photooxidation of Pinene to Aroma Oxygenates. ACS Omega 2020, 5, 9775–9788. 10.1021/acsomega.9b04396. PubMed DOI PMC
Fronzi M.; Piccinin S.; Delley B.; Traversa E.; Stampfl C. Water Adsorption on the Stoichiometric and Reduced CeO2(111) Surface: A First-Principles Investigation. Phys. Chem. Chem. Phys. 2009, 11, 9188–9199. 10.1039/b901831j. PubMed DOI
Vincent A.; Inerbaev T. M.; Babu S.; Karakoti A. S.; Self W. T.; Masunov A. E.; Seal S. Tuning Hydrated Nanoceria Surfaces: Experimental/Theoretical Investigations of Ion Exchange and Implications in Organic and Inorganic Interactions. Langmuir 2010, 26, 7188–7198. 10.1021/la904285g. PubMed DOI PMC
Christensen A. N.; Chevallier M. A.; Skibsted J.; Iversen B. B. Synthesis and Characterization of Basic Bismuth(III) Nitrates. J. Chem. Soc., Dalton Trans. 2000, 3, 265–270. 10.1039/a908055d. DOI
Han Q.; Pang J.; Wang X.; Wu X.; Zhu J. Synthesis of Unique Flowerlike Bi2O2(OH)(NO3) Hierarchical Microstructures with High Surface Area and Superior Photocatalytic Performance. Chem.—Eur. J. 2017, 23, 3891–3897. 10.1002/chem.201604085. PubMed DOI
Yang L. M.; Zhang G. Y.; Liu Y.; Xu Y. Y.; Liu C. M.; Liu J. W. A {110} facet predominated Bi6O6(OH)3(NO3)3·1.5H2O photocatalyst: selective hydrothermal synthesis and its superior photocatalytic activity for degradation of phenol. RSC Adv. 2015, 5, 79715–79723. 10.1039/c5ra15629g. DOI
Lu B.; Zhu Y. Synthesis and Photocatalysis Performances of Bismuth Oxynitrate Photocatalysts with Layered Structures. Phys. Chem. Chem. Phys. 2014, 16, 16509–16514. 10.1039/c4cp01489h. PubMed DOI
Sun S.; Xiao W.; You C.; Zhou W.; Garba Z. N.; Wang L.; Yuan Z. Methods for Preparing and Enhancing Photocatalytic Activity of Basic Bismuth Nitrate. J. Clean. Prod. 2021, 294, 126350.10.1016/j.jclepro.2021.126350. DOI
Henry N.; Evain M.; Deniard P.; Jobic S.; Mentré O.; Abraham F. [Bi6O4.5(OH)3.5]2(NO3)11: a new anhydrous bismuth basic nitrate. Synthesis and structure determination from twinned crystals. J. Solid State Chem. 2003, 176, 127–136. 10.1016/s0022-4596(03)00357-8. DOI
Denisov V. N.; Ivlev A. N.; Lipin A. S.; Mavrin B. N.; Orlov V. G. Raman spectra and lattice dynamics of single-crystal. J. Phys.: Condens. Matter 1997, 9, 4967–4978. 10.1088/0953-8984/9/23/020. DOI
Malligavathy M.; Pathinettam Padiyan D. Role of PH in the Hydrothermal Synthesis of Phase Pure Alpha Bi2O3 Nanoparticles and Its Structural Characterization. Adv. Mater. Processes 2021, 2, 51–55. 10.5185/amp.2017/112. DOI
Ho C.-H.; Chan C.-H.; Huang Y.-S.; Tien L.-C.; Chao L.-C. The study of optical band edge property of bismuth oxide nanowires α-Bi_2O_3. Opt. Express 2013, 21, 11965.10.1364/oe.21.011965. PubMed DOI
Pye C. C.; Gunasekara C. M.; Rudolph W. W. An Ab Initio Investigation of Bismuth Hydration. Can. J. Chem. 2007, 85, 945–950. 10.1139/v07-108. DOI
Pang J.; Han Q.; Liu W.; Shen Z.; Wang X.; Zhu J. Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4· 2H2O with superior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5· 3H2O with ultrahigh adsorption capacity for methyl orange. Appl. Surf. Sci. 2017, 422, 283–294. 10.1016/j.apsusc.2017.06.022. DOI
Frost R. L.; Čejka J.; Sejkora J.; Plášil J.; Reddy B. J.; Keeffe E. C. Raman Spectroscopic Study of a Hydroxy-Arsenate Mineral Containing Bismuth-Atelestite Bi2O(OH)(AsO4). Spectrochim. Acta, Part A 2011, 78, 494–496. 10.1016/j.saa.2010.11.016. PubMed DOI
Fruth V.; Popa M.; Berger D.; Ionica C. M.; Jitianu M. Phases Investigation in the Antimony Doped Bi2O3 System. J. Eur. Ceram. Soc. 2004, 24, 1295–1299. 10.1016/s0955-2219(03)00506-5. DOI
Ziegler P.; Grigoraviciute I.; Gibson K.; Glaser J.; Kareiva A.; Meyer H. J. On the characterization of BiMO2NO3 (M=Pb, Ca, Sr, Ba) materials related with the Sillén X1 structure. J. Solid State Chem. 2004, 177, 3610–3615. 10.1016/j.jssc.2004.03.027. DOI
Henry N.; Evain M.; Deniard P.; Jobic S.; Abraham F.; Mentré O. [Bi2O2]2+ Layers in Bi2O2(OH)(NO3): Synthesis And Structure Determination. Z. Naturforsch., B: J. Chem. Sci. 2005, 60, 322–327. 10.1515/znb-2005-0315. DOI
Cheng H.; Huang B.; Lu J.; Wang Z.; Xu B.; Qin X.; Zhang X.; Dai Y. Synergistic Effect of Crystal and Electronic Structures on the Visible-Light-Driven Photocatalytic Performances of Bi2O3 Polymorphs. Phys. Chem. Chem. Phys. 2010, 12, 15468–15475. 10.1039/c0cp01189d. PubMed DOI
Maslakov K. I.; Teterin Y. A.; Popel A. J.; Teterin A. Y.; Ivanov K. E.; Kalmykov S. N.; Petrov V. G.; Petrov P. K.; Farnan I. XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl. Surf. Sci. 2018, 448, 154–162. 10.1016/j.apsusc.2018.04.077. DOI
Št’astný M.; Issa G.; Popelková D.; Ederer J.; Kormunda M.; Kříženecká S.; Henych J. Nanostructured Manganese Oxides as Highly Active Catalysts for Enhanced Hydrolysis of Bis(4-Nitrophenyl)Phosphate and Catalytic Decomposition of Methanol. Catal. Sci. Technol. 2021, 11, 1766–1779. 10.1039/D0CY02112A. DOI
Zaki M. I.; Hasan M. A.; Al-Sagheer F. A.; Pasupulety L. In Situ FTIR Spectra of Pyridine Adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General Considerations for the Identification of Acid Sites on Surfaces of Finely Divided Metal Oxides. Colloids Surf., A 2001, 190, 261–274. 10.1016/s0927-7757(01)00690-2. DOI
Zaki M. I.; Hussein G. A. M.; Mansour S. A. A.; El-Ammawy H. A. Adsorption and Surface Reactions of Pyridine on Pure and Doped Ceria Catalysts as Studied by Infrared Spectroscopy. J. Mol. Catal. 1989, 51, 209–220. 10.1016/0304-5102(89)80101-4. DOI
Marsh J. L.; Wayman A. E.; Smiddy N. M.; Campbell D. J.; Parker J. C.; Bosma W. B.; Remsen E. E. Infrared Spectroscopic Analysis of the Adsorption of Pyridine Carboxylic Acids on Colloidal Ceria. Langmuir 2017, 33, 13224–13233. 10.1021/acs.langmuir.7b03338. PubMed DOI
Wilson C.; Cooper N. J.; Briggs M. E.; Cooper A. I.; Adams D. J. Investigating the Breakdown of the Nerve Agent Simulant Methyl Paraoxon and Chemical Warfare Agents GB and VX Using Nitrogen Containing Bases. Org. Biomol. Chem. 2018, 16, 9285–9291. 10.1039/c8ob02475h. PubMed DOI
Ragunathan K. G.; Schneider H. J. Binuclear Lanthanide Complexes as Catalysts for the Hydrolysis of Bis(p-Nitrophenyl)-Phosphate and Double-Stranded DNA. Angew. Chem., Int. Ed. Engl. 1996, 35, 1219–1221. 10.1002/anie.199612191. DOI
Masula K.; Bhongiri Y.; Raghav Rao G.; Vijay Kumar P.; Pola S.; Basude M. Evolution of photocatalytic activity of CeO2-Bi2O3 composite material for wastewater degradation under visible-light irradiation. Opt. Mater. 2022, 126, 112201.10.1016/j.optmat.2022.112201. DOI
López-Ramón M. V.; Ocampo-Pérez R.; Bautista-Toledo M. I.; Rivera-Utrilla J.; Moreno-Castilla C.; Sánchez-Polo M. Removal of Bisphenols A and S by Adsorption on Activated Carbon Clothes Enhanced by the Presence of Bacteria. Sci. Total Environ. 2019, 669, 767–776. 10.1016/j.scitotenv.2019.03.125. PubMed DOI