A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35479895
PubMed Central
PMC9033994
DOI
10.1039/d1ra00846c
PII: d1ra00846c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Zebrafish (Danio rerio) serves as a popular animal model for in vivo acute toxicity evaluation with the Fish embryo test (FET). Over the last few years there has been an effort to develop various systems for a high-throughput zebrafish embryo cultivation and FET. In this paper, we present a novel design of a millifluidic system fabricated by 3D printing technology and we evaluate its functional properties on Danio rerio embryos cultivation and toxicity testing. The development and the optimization of the millifluidic chip was performed by experimental measurements supported by numerical simulations of mass and momentum transport. The cultivation chip with two inlets and one outlet consisted of two individual channels placed on top of each other and separated by a partition with cultivation chambers. An individual embryo removal functionality, which can be used during the cultivation experiments for selective unloading of any of the cultivated embryos out of the chip, was added to the chip design. This unique property raises the possibility of detailed studies of the selected embryos by additional methods. Long-term (96 hours) perfusion cultivation experiments showed a normal development of zebrafish embryos in the chip. Model toxicity tests were further performed with diluted ethanol as a teratogen. Compared to the FET assays, an increased toxic effect of the ethanol on the embryos cultivated in the chip was observed when the median lethal dose and the percentage of the morphological end-points were evaluated. We conclude that the presented 3D printed chip is suitable for long-term zebrafish embryo cultivations and toxicity testing and can be further developed for the automated assays.
Zobrazit více v PubMed
OECD, Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD, 2013
Lieschke G. J. Currie P. D. Nat. Rev. Genet. 2007;8:353–367. doi: 10.1038/nrg2091. PubMed DOI
Lohi O. Parikka M. Rämet M. Acta Paediatr. 2013;102:104–110. doi: 10.1111/j.1651-2227.2012.02835.x. PubMed DOI
Spitsbergen J. M. Kent M. L. Toxicol. Pathol. 2003;31:62–87. PubMed PMC
Chakraborty C. Hsu C. Wen Z. Lin C. Agoramoorthy G. Curr. Drug Metab. 2009;10:116–124. doi: 10.2174/138920009787522197. PubMed DOI
Zon L. I. Peterson R. T. Nat. Rev. Drug Discovery. 2005;4:35–44. doi: 10.1038/nrd1606. PubMed DOI
Bambino K. and Chu J., in Current Topics in Developmental Biology, Elsevier, 2017, vol. 124, pp. 331–367 PubMed PMC
High-throughput Behavioral Screening – ViewPoint, http://www.viewpoint.fr/en/a/drug-screening, accessed May 4, 2020
Sackmann E. K. Fulton A. L. Beebe D. J. Nature. 2014;507:181–189. doi: 10.1038/nature13118. PubMed DOI
Luo T. Fan L. Zhu R. Sun D. Micromachines. 2019;10:104. doi: 10.3390/mi10020104. PubMed DOI PMC
Lagoy R. C. Albrecht D. R. Sci. Rep. 2018;8:6217. doi: 10.1038/s41598-018-24504-x. PubMed DOI PMC
Yanik M. F. Rohde C. B. Pardo-Martin C. Annu. Rev. Biomed. Eng. 2011;13:185–217. doi: 10.1146/annurev-bioeng-071910-124703. PubMed DOI
Life Chip Scientific Equipment Company Ltd., http://www.lifechipz.com/, accessed May 4, 2020
Yang F. Gao C. Wang P. Zhang G.-J. Chen Z. Lab Chip. 2016;16:1106–1125. doi: 10.1039/C6LC00044D. PubMed DOI
Zhu F. Skommer J. Macdonald N. P. Friedrich T. Kaslin J. Wlodkowic D. Biomicrofluidics. 2015;9:046502. doi: 10.1063/1.4927379. PubMed DOI PMC
Fuad N. M. Kaslin J. Wlodkowic D. Biomicrofluidics. 2017;11:051101. doi: 10.1063/1.5001848. DOI
Khalili A. Rezai P. Briefings Funct. Genomics. 2019;18:419–432. doi: 10.1093/bfgp/elz006. PubMed DOI
Kimmel C. B. Ballard W. W. Kimmel S. R. Ullmann B. Schilling T. F. Dev. Dyn. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI
Lammer E. Kamp H. G. Hisgen V. Koch M. Reinhard D. Salinas E. R. Wendler K. Zok S. Braunbeck Th. Toxicol. in Vitro. 2009;23:1436–1442. doi: 10.1016/j.tiv.2009.05.014. PubMed DOI
Wielhouwer E. M. Ali S. Al-Afandi A. Blom M. T. Olde Riekerink M. B. Poelma C. Westerweel J. Oonk J. Vrouwe E. X. Buesink W. vanMil H. G. J. Chicken J. van't Oever R. Richardson M. K. Lab Chip. 2011;11:1815. doi: 10.1039/C0LC00443J. PubMed DOI
Yang F. Chen Z. Pan J. Li X. Feng J. Yang H. Biomicrofluidics. 2011;5:024115. doi: 10.1063/1.3605509. PubMed DOI PMC
Li Y. Yang F. Chen Z. Shi L. Zhang B. Pan J. Li X. Sun D. Yang H. PLoS One. 2014;9:e94792. doi: 10.1371/journal.pone.0094792. PubMed DOI PMC
Li Y. Yang X. Chen Z. Zhang B. Pan J. Li X. Yang F. Sun D. Biomicrofluidics. 2015;9:024105. doi: 10.1063/1.4913699. PubMed DOI PMC
Choudhury D. van Noort D. Iliescu C. Zheng B. Poon K.-L. Korzh S. Korzh V. Yu H. Lab Chip. 2012;12:892–900. doi: 10.1039/C1LC20351G. PubMed DOI
Akagi J. Khoshmanesh K. Evans B. Hall C. J. Crosier K. E. Cooper J. M. Crosier P. S. Wlodkowic D. PLoS One. 2012;7:e36630. doi: 10.1371/journal.pone.0036630. PubMed DOI PMC
Zhu F. Wigh A. Friedrich T. Devaux A. Bony S. Nugegoda D. Kaslin J. Wlodkowic D. Environ. Sci. Technol. 2015;49:14570–14578. doi: 10.1021/acs.est.5b03838. PubMed DOI
Becker H. Talanta. 2002;56:267–287. doi: 10.1016/S0039-9140(01)00594-X. PubMed DOI
Zhu Z. Geng Y. Yuan Z. Ren S. Liu M. Meng Z. Pan D. Micromachines. 2019;10:168. doi: 10.3390/mi10030168. PubMed DOI PMC
Zhu F. Baker D. Skommer J. Sewell M. Wlodkowic D. Cytometry. 2015;87:446–450. doi: 10.1002/cyto.a.22662. PubMed DOI
Waheed S. Cabot J. M. Macdonald N. P. Lewis T. Guijt R. M. Paull B. Breadmore M. C. Lab Chip. 2016;16:1993–2013. doi: 10.1039/C6LC00284F. PubMed DOI
Yazdi A. A. Popma A. Wong W. Nguyen T. Pan Y. Xu J. Microfluid. Nanofluid. 2016;20:50. doi: 10.1007/s10404-016-1715-4. DOI
Beauchamp M. J. Nordin G. P. Woolley A. T. Anal. Bioanal. Chem. 2017;409:4311–4319. doi: 10.1007/s00216-017-0398-3. PubMed DOI PMC
The GIMP Development Team, GIMP, 2020
Gao X.-P. Feng F. Zhang X.-Q. Liu X.-X. Wang Y.-B. She J.-X. He Z.-H. He M.-F. Int. J. Toxicol. 2014;33:98–105. doi: 10.1177/1091581814523142. PubMed DOI
Zhu F. Friedrich T. Nugegoda D. Kaslin J. Wlodkowic D. Biomicrofluidics. 2015;9:061103. doi: 10.1063/1.4939031. PubMed DOI PMC
de Almeida Monteiro Melo Ferraz M. Henning H. H. W. Ferreira da Costa P. Malda J. Le Gac S. Bray F. van Duursen M. B. M. Brouwers J. F. van de Lest C. H. A. Bertijn I. Kraneburg L. Vos P. L. A. M. Stout T. A. E. Gadella B. M. Environ. Sci. Technol. Lett. 2018;5:80–85. doi: 10.1021/acs.estlett.7b00495. PubMed DOI PMC
van den Driesche S. Lucklum F. Bunge F. Vellekoop M. Micromachines. 2018;9:71. doi: 10.3390/mi9020071. PubMed DOI PMC
Nejedlá Z. Poustka D. Herma R. Liegertová M. Štofik M. Smejkal J. Šícha V. Kaule P. Malý J. RSC Adv. 2021;11:16252–16267. doi: 10.1039/D1RA00305D. PubMed DOI PMC
Akagi J. Khoshmanesh K. Hall C. J. Cooper J. M. Crosier K. E. Crosier P. S. Wlodkowic D. Sens. Actuators, B. 2013;189:11–20. doi: 10.1016/j.snb.2012.11.036. DOI
Chang T.-Y. Pardo-Martin C. Allalou A. Wählby C. Yanik M. F. Lab Chip. 2012;12:711–716. doi: 10.1039/C1LC20849G. PubMed DOI PMC
Ali S. Champagne D. L. Alia A. Richardson M. K. PLoS One. 2011;6:e20037. doi: 10.1371/journal.pone.0020037. PubMed DOI PMC
Blader P. Strähle U. Dev. Biol. 1998;201:185–201. doi: 10.1006/dbio.1998.8995. PubMed DOI
Reimers M. J. Flockton A. R. Tanguay R. L. Neurotoxicol. Teratol. 2004;26:769–781. doi: 10.1016/j.ntt.2004.06.012. PubMed DOI