A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology

. 2021 Jun 03 ; 11 (33) : 20507-20518. [epub] 20210608

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35479895

Zebrafish (Danio rerio) serves as a popular animal model for in vivo acute toxicity evaluation with the Fish embryo test (FET). Over the last few years there has been an effort to develop various systems for a high-throughput zebrafish embryo cultivation and FET. In this paper, we present a novel design of a millifluidic system fabricated by 3D printing technology and we evaluate its functional properties on Danio rerio embryos cultivation and toxicity testing. The development and the optimization of the millifluidic chip was performed by experimental measurements supported by numerical simulations of mass and momentum transport. The cultivation chip with two inlets and one outlet consisted of two individual channels placed on top of each other and separated by a partition with cultivation chambers. An individual embryo removal functionality, which can be used during the cultivation experiments for selective unloading of any of the cultivated embryos out of the chip, was added to the chip design. This unique property raises the possibility of detailed studies of the selected embryos by additional methods. Long-term (96 hours) perfusion cultivation experiments showed a normal development of zebrafish embryos in the chip. Model toxicity tests were further performed with diluted ethanol as a teratogen. Compared to the FET assays, an increased toxic effect of the ethanol on the embryos cultivated in the chip was observed when the median lethal dose and the percentage of the morphological end-points were evaluated. We conclude that the presented 3D printed chip is suitable for long-term zebrafish embryo cultivations and toxicity testing and can be further developed for the automated assays.

Zobrazit více v PubMed

OECD, Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD, 2013

Lieschke G. J. Currie P. D. Nat. Rev. Genet. 2007;8:353–367. doi: 10.1038/nrg2091. PubMed DOI

Lohi O. Parikka M. Rämet M. Acta Paediatr. 2013;102:104–110. doi: 10.1111/j.1651-2227.2012.02835.x. PubMed DOI

Spitsbergen J. M. Kent M. L. Toxicol. Pathol. 2003;31:62–87. PubMed PMC

Chakraborty C. Hsu C. Wen Z. Lin C. Agoramoorthy G. Curr. Drug Metab. 2009;10:116–124. doi: 10.2174/138920009787522197. PubMed DOI

Zon L. I. Peterson R. T. Nat. Rev. Drug Discovery. 2005;4:35–44. doi: 10.1038/nrd1606. PubMed DOI

Bambino K. and Chu J., in Current Topics in Developmental Biology, Elsevier, 2017, vol. 124, pp. 331–367 PubMed PMC

High-throughput Behavioral Screening – ViewPoint, http://www.viewpoint.fr/en/a/drug-screening, accessed May 4, 2020

Sackmann E. K. Fulton A. L. Beebe D. J. Nature. 2014;507:181–189. doi: 10.1038/nature13118. PubMed DOI

Luo T. Fan L. Zhu R. Sun D. Micromachines. 2019;10:104. doi: 10.3390/mi10020104. PubMed DOI PMC

Lagoy R. C. Albrecht D. R. Sci. Rep. 2018;8:6217. doi: 10.1038/s41598-018-24504-x. PubMed DOI PMC

Yanik M. F. Rohde C. B. Pardo-Martin C. Annu. Rev. Biomed. Eng. 2011;13:185–217. doi: 10.1146/annurev-bioeng-071910-124703. PubMed DOI

Life Chip Scientific Equipment Company Ltd., http://www.lifechipz.com/, accessed May 4, 2020

Yang F. Gao C. Wang P. Zhang G.-J. Chen Z. Lab Chip. 2016;16:1106–1125. doi: 10.1039/C6LC00044D. PubMed DOI

Zhu F. Skommer J. Macdonald N. P. Friedrich T. Kaslin J. Wlodkowic D. Biomicrofluidics. 2015;9:046502. doi: 10.1063/1.4927379. PubMed DOI PMC

Fuad N. M. Kaslin J. Wlodkowic D. Biomicrofluidics. 2017;11:051101. doi: 10.1063/1.5001848. DOI

Khalili A. Rezai P. Briefings Funct. Genomics. 2019;18:419–432. doi: 10.1093/bfgp/elz006. PubMed DOI

Kimmel C. B. Ballard W. W. Kimmel S. R. Ullmann B. Schilling T. F. Dev. Dyn. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI

Lammer E. Kamp H. G. Hisgen V. Koch M. Reinhard D. Salinas E. R. Wendler K. Zok S. Braunbeck Th. Toxicol. in Vitro. 2009;23:1436–1442. doi: 10.1016/j.tiv.2009.05.014. PubMed DOI

Wielhouwer E. M. Ali S. Al-Afandi A. Blom M. T. Olde Riekerink M. B. Poelma C. Westerweel J. Oonk J. Vrouwe E. X. Buesink W. vanMil H. G. J. Chicken J. van't Oever R. Richardson M. K. Lab Chip. 2011;11:1815. doi: 10.1039/C0LC00443J. PubMed DOI

Yang F. Chen Z. Pan J. Li X. Feng J. Yang H. Biomicrofluidics. 2011;5:024115. doi: 10.1063/1.3605509. PubMed DOI PMC

Li Y. Yang F. Chen Z. Shi L. Zhang B. Pan J. Li X. Sun D. Yang H. PLoS One. 2014;9:e94792. doi: 10.1371/journal.pone.0094792. PubMed DOI PMC

Li Y. Yang X. Chen Z. Zhang B. Pan J. Li X. Yang F. Sun D. Biomicrofluidics. 2015;9:024105. doi: 10.1063/1.4913699. PubMed DOI PMC

Choudhury D. van Noort D. Iliescu C. Zheng B. Poon K.-L. Korzh S. Korzh V. Yu H. Lab Chip. 2012;12:892–900. doi: 10.1039/C1LC20351G. PubMed DOI

Akagi J. Khoshmanesh K. Evans B. Hall C. J. Crosier K. E. Cooper J. M. Crosier P. S. Wlodkowic D. PLoS One. 2012;7:e36630. doi: 10.1371/journal.pone.0036630. PubMed DOI PMC

Zhu F. Wigh A. Friedrich T. Devaux A. Bony S. Nugegoda D. Kaslin J. Wlodkowic D. Environ. Sci. Technol. 2015;49:14570–14578. doi: 10.1021/acs.est.5b03838. PubMed DOI

Becker H. Talanta. 2002;56:267–287. doi: 10.1016/S0039-9140(01)00594-X. PubMed DOI

Zhu Z. Geng Y. Yuan Z. Ren S. Liu M. Meng Z. Pan D. Micromachines. 2019;10:168. doi: 10.3390/mi10030168. PubMed DOI PMC

Zhu F. Baker D. Skommer J. Sewell M. Wlodkowic D. Cytometry. 2015;87:446–450. doi: 10.1002/cyto.a.22662. PubMed DOI

Waheed S. Cabot J. M. Macdonald N. P. Lewis T. Guijt R. M. Paull B. Breadmore M. C. Lab Chip. 2016;16:1993–2013. doi: 10.1039/C6LC00284F. PubMed DOI

Yazdi A. A. Popma A. Wong W. Nguyen T. Pan Y. Xu J. Microfluid. Nanofluid. 2016;20:50. doi: 10.1007/s10404-016-1715-4. DOI

Beauchamp M. J. Nordin G. P. Woolley A. T. Anal. Bioanal. Chem. 2017;409:4311–4319. doi: 10.1007/s00216-017-0398-3. PubMed DOI PMC

The GIMP Development Team, GIMP, 2020

Gao X.-P. Feng F. Zhang X.-Q. Liu X.-X. Wang Y.-B. She J.-X. He Z.-H. He M.-F. Int. J. Toxicol. 2014;33:98–105. doi: 10.1177/1091581814523142. PubMed DOI

Zhu F. Friedrich T. Nugegoda D. Kaslin J. Wlodkowic D. Biomicrofluidics. 2015;9:061103. doi: 10.1063/1.4939031. PubMed DOI PMC

de Almeida Monteiro Melo Ferraz M. Henning H. H. W. Ferreira da Costa P. Malda J. Le Gac S. Bray F. van Duursen M. B. M. Brouwers J. F. van de Lest C. H. A. Bertijn I. Kraneburg L. Vos P. L. A. M. Stout T. A. E. Gadella B. M. Environ. Sci. Technol. Lett. 2018;5:80–85. doi: 10.1021/acs.estlett.7b00495. PubMed DOI PMC

van den Driesche S. Lucklum F. Bunge F. Vellekoop M. Micromachines. 2018;9:71. doi: 10.3390/mi9020071. PubMed DOI PMC

Nejedlá Z. Poustka D. Herma R. Liegertová M. Štofik M. Smejkal J. Šícha V. Kaule P. Malý J. RSC Adv. 2021;11:16252–16267. doi: 10.1039/D1RA00305D. PubMed DOI PMC

Akagi J. Khoshmanesh K. Hall C. J. Cooper J. M. Crosier K. E. Crosier P. S. Wlodkowic D. Sens. Actuators, B. 2013;189:11–20. doi: 10.1016/j.snb.2012.11.036. DOI

Chang T.-Y. Pardo-Martin C. Allalou A. Wählby C. Yanik M. F. Lab Chip. 2012;12:711–716. doi: 10.1039/C1LC20849G. PubMed DOI PMC

Ali S. Champagne D. L. Alia A. Richardson M. K. PLoS One. 2011;6:e20037. doi: 10.1371/journal.pone.0020037. PubMed DOI PMC

Blader P. Strähle U. Dev. Biol. 1998;201:185–201. doi: 10.1006/dbio.1998.8995. PubMed DOI

Reimers M. J. Flockton A. R. Tanguay R. L. Neurotoxicol. Teratol. 2004;26:769–781. doi: 10.1016/j.ntt.2004.06.012. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cerium-Bismuth Oxides/Oxynitrates with Low Toxicity for the Removal and Degradation of Organophosphates and Bisphenols

. 2022 Dec 23 ; 5 (12) : 17956-17968. [epub] 20221129

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...