Class II biocompatible E-Shell 300 3D printing material causes severe developmental toxicity in Danio rerio embryos and reduced cell proliferation in vitro - implications for 3D printed microfluidics
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35479142
PubMed Central
PMC9031839
DOI
10.1039/d1ra00305d
PII: d1ra00305d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Additive manufacturing is a new technology that represents a highly promising, cheap, and efficient solution for the production of various tools in the biomedicine field. In our study, the toxicity of the commercially available E-Shell 300 series photopolymer, which is used in the manufacture of hearing aids and other implants and which could be potentially exploited in microfluidic device fabrication, was tested using in vivo and in vitro biological models. We examined B14 cell proliferation in direct contact with the three-dimensional (3D)-printed material as well as in water extracts to evaluate in vitro cytotoxicity. Similarly, in vivo tests were performed using an OECD-standardized fish embryo acute toxicity (FET) test on Danio rerio embryos in direct contact with the material and in extracts as well. Despite E-Shell 300 3D-printed material being declared as class-IIa biocompatible, in the case of direct contact with both biological models, the results demonstrated a considerable negative impact on cell proliferation and severe developmental toxicity. In this study, up to 84% reduced cell proliferation in vitro and 79% mortality of in vivo models were observed. In contrast, a negligible toxic influence of E-Shell 300 water extracts was present. Four different post-processing treatments to reduce the toxicity were also tested. We observed that post-printing treatment of 3D-printed material in 96% ethanol can reduce embryonic mortality in the FET test by 71% and also completely eliminate negative effects on cell proliferation. We analyzed leachates from the polymeric structures by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, and we discovered the presence of surfactant residues. In summary, our results indicate the importance of biocompatibility testing of the 3D printing photopolymer material in direct contact with the given biological model. On the other hand, the possibility of eliminating toxic effects by an appropriate post-processing strategy opens the door for broader applications of E-Shell 300 photopolymers in the development of complex microfluidic devices for various biological applications.
Zobrazit více v PubMed
Matsuda T. Mizutani M. Liquid acrylate-endcapped biodegradable poly(epsilon-caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J. Biomed. Mater. Res. 2002;62:395–403. doi: 10.1002/jbm.10295. doi: 10.1002/jbm.10295. PubMed DOI
Wong J. Y. Pfahnl A. C. 3D Printing of Surgical Instruments for Long-Duration Space Missions. Aviat., Space Environ. Med. 2014;85:758–763. doi: 10.3357/ASEM.3898.2014. doi: 10.3357/ASEM.3898.2014. PubMed DOI
Boyd R. L. Miller R. Vlaskalic V. The Invisalign system in adult orthodontics: mild crowding and space closure cases. J. Clin. Orthod. 2000:203–212.
Binder T. M. Moertl D. Mundigler G. Rehak G. Franke M. Delle-Karth G. Mohl W. Baumgartner H. Maurer G. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data. J. Am. Coll. Cardiol. 2000;35:230–237. doi: 10.1016/S0735-1097(99)00498-2. doi: 10.1016/S0735-1097(99)00498-2. PubMed DOI
Murphy K., Dorfman S., Law R. J. and Le V. A., Devices, systems, and methods for the fabrication of tissue utilizing UV cross-linking, US Pat., US10201964B2, 2019
Bhattacharjee N. Urrios A. Kang S. Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16:1720–1742. doi: 10.1039/C6LC00163G. doi: 10.1039/C6LC00163G. PubMed DOI PMC
Tofail S. A. M. Koumoulos E. P. Bandyopadhyay A. Bose S. O'Donoghue L. Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today. 2018;21:22–37. doi: 10.1016/j.mattod.2017.07.001. doi: 10.1016/j.mattod.2017.07.001. DOI
Low Z.-X. Chua Y. T. Ray B. M. Mattia D. Metcalfe I. S. Patterson D. A. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 2017;523:596–613. doi: 10.1016/j.memsci.2016.10.006. doi: 10.1016/j.memsci.2016.10.006. DOI
Muller A. and Karevska S., How 3D Printing Technology Could Change World Trade, in EY's Glob. 3D Print. Rep. 2016, 2016, https://www.ey.com/Publication/vwLUAssets/ey-global-3d-printing-report-2016-fullreport/$FILE/ey-global-3d-printing-report-2016-full-report.pdf
Cumpston B. H. Ananthavel S. P. Barlow S. Dyer D. L. Ehrlich J. E. Erskine L. L. Heikal A. A. Kuebler S. M. Lee I.-Y. S. McCord-Maughon D. Qin J. Röckel H. Rumi M. Wu X.-L. Marder S. R. Perry J. W. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature. 1999;398:51–54. doi: 10.1038/17989. doi: 10.1038/17989. DOI
Monstad-Rios A. T. Watson C. J. Kwon R. Y. ScreenCube: A 3D Printed System for Rapid and Cost-Effective Chemical Screening in Adult Zebrafish. Zebrafish. 2018;15:1–8. doi: 10.1089/zeb.2017.1488. doi: 10.1089/zeb.2017.1488. PubMed DOI PMC
Wittbrodt J. N. Liebel U. Gehrig J. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing. BMC Biotechnol. 2014;14:36. doi: 10.1186/1472-6750-14-36. doi: 10.1186/1472-6750-14-36. PubMed DOI PMC
Tan Z. Liu T. Zhong J. Yang Y. Tan W. Control of cell growth on 3D-printed cell culture platforms for tissue engineering. J. Biomed. Mater. Res., Part A. 2017;105:3281–3292. doi: 10.1002/jbm.a.36188. doi: 10.1002/jbm.a.36188. PubMed DOI
Ong L. J. Y. Islam A. DasGupta R. Iyer N. G. Leo H. L. Toh Y.-C. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication. 2017;9:045005. doi: 10.1088/1758-5090/aa8858. doi: 10.1088/1758-5090/aa8858. PubMed DOI
Macdonald N. P. Zhu F. Hall C. J. Reboud J. Crosier P. S. Patton E. E. Wlodkowic D. Cooper J. M. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16:291–297. doi: 10.1039/C5LC01374G. doi: 10.1039/C5LC01374G. PubMed DOI PMC
Oskui S. M. Diamante G. Liao C. Shi W. Gan J. Schlenk D. Grover W. H. Assessing and Reducing the Toxicity of 3D-Printed Parts. Environ. Sci. Technol. Lett. 2016;3:1–6. doi: 10.1021/acs.estlett.5b00249. doi: 10.1021/acs.estlett.5b00249. DOI
Zhu F. Friedrich T. Nugegoda D. Kaslin J. Wlodkowic D. Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests. Biomicrofluidics. 2015;9:061103. doi: 10.1063/1.4939031. doi: 10.1063/1.4939031. PubMed DOI PMC
Schmelzer E. Over P. Gridelli B. Gerlach J. C. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. J. Med. Biol. Eng. 2016;36:153–167. doi: 10.1007/s40846-016-0118-z. doi: 10.1007/s40846-016-0118-z. PubMed DOI PMC
Popov V. K. Evseev A. V. Ivanov A. L. Roginski V. V. Volozhin A. I. Howdle S. M. Laser stereolithography and supercritical fluid processing for custom-designed implant fabrication. J. Mater. Sci.: Mater. Med. 2004;15:123–128. doi: 10.1023/B:JMSM.0000011812.08185.2a. doi: 10.1023/B:JMSM.0000011812.08185.2a. PubMed DOI
D'Urso P. S. Effeney D. J. Earwaker W. J. Barker T. M. Redmond M. J. Thompson R. G. Tomlinson F. H. Custom cranioplasty using stereolithography and acrylic. Br. J. Plast. Surg. 2000;53:200–204. doi: 10.1054/bjps.1999.3268. doi: 10.1054/bjps.1999.3268. PubMed DOI
Carve M. Wlodkowic D. 3D-Printed Chips: Compatibility of Additive Manufacturing Photopolymeric Substrata with Biological Applications. Micromachines. 2018;9:91. doi: 10.3390/mi9020091. doi: 10.3390/mi9020091. PubMed DOI PMC
Zhu F. Skommer J. Macdonald N. P. Friedrich T. Kaslin J. Wlodkowic D. Three-dimensional printed millifluidic devices for zebrafish embryo tests. Biomicrofluidics. 2015;9:046502. doi: 10.1063/1.4927379. doi: 10.1063/1.4927379. PubMed DOI PMC
Lithner D. Larsson Å. Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011;409:3309–3324. doi: 10.1016/j.scitotenv.2011.04.038. doi: 10.1016/j.scitotenv.2011.04.038. PubMed DOI
Geurtsen W. Biocompatibility of Resin-Modified Filling Materials. Crit. Rev. Oral Biol. Med. 2000;11:333–355. doi: 10.1177/10454411000110030401. doi: 10.1177/10454411000110030401. PubMed DOI
Ferracane J. L. Condon J. R. Post-cure heat treatments for composites: properties and fractography. Dent. Mater. 1992;8:290–295. doi: 10.1016/0109-5641(92)90102-I. doi: 10.1016/0109-5641(92)90102-I. PubMed DOI
de Almeida Monteiro Melo Ferraz M. Henning H. H. W. Ferreira da Costa P. Malda J. Le Gac S. Bray F. van Duursen M. B. M. Brouwers J. F. van de Lest C. H. A. Bertijn I. Kraneburg L. Vos P. L. A. M. Stout T. A. E. Gadella B. M. Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers. Environ. Sci. Technol. Lett. 2018;5:80–85. doi: 10.1021/acs.estlett.7b00495. doi: 10.1021/acs.estlett.7b00495. PubMed DOI PMC
Inoue Y. Ikuta K. Detoxification of the Photocurable Polymer by Heat Treatment for Microstereolithography. Procedia CIRP. 2013;5:115–118. doi: 10.1016/j.procir.2013.01.023. doi: 10.1016/j.procir.2013.01.023. DOI
Liu H. and He C., Additive use in photopolymer resin for 3D printing to enhance the appearance of printed parts, US Pat., US9574039B1, 2017, http://www.freepatentsonline.com/9574039.html
Jiemin B. S., Kennedy C. and Lickhus A., Three-dimensional fabricating material systems for producing dental products, WO/2014/078537, 2014
Schmalz G. and Arenholt-Bindslev D., Biocompatibility of dental materials, Springer, Berlin, 2009
van den Driesche S. Lucklum F. Bunge F. Vellekoop M. 3D Printing Solutions for Microfluidic Chip-To-World Connections. Micromachines. 2018;9:71. doi: 10.3390/mi9020071. doi: 10.3390/mi9020071. PubMed DOI PMC
Rasband W. S., ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2016
OECD, Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD, 2013, 10.1787/9789264203709-en DOI
Nagel R. DarT: the embryo test with the zebrafish Danio rerio--a general model in ecotoxicology and toxicology. ALTEX. 2002;19(suppl 1):38–48. PubMed
Padilla S. and Glaberman S., The zebrafish (Danio rerio) model in toxicity testing, in Introd. Interdiscip. Toxicol., Elsevier, 2020, pp. 525–532, 10.1016/B978-0-12-813602-7.00037-5 DOI
Dang Z. van der Ven L. T. M. Kienhuis A. S. Fish embryo toxicity test, threshold approach, and moribund as approaches to implement 3R principles to the acute fish toxicity test. Chemosphere. 2017;186:677–685. doi: 10.1016/j.chemosphere.2017.08.047. doi: 10.1016/j.chemosphere.2017.08.047. PubMed DOI
Entzeroth M. Flotow H. Condron P. Overview of High-Throughput Screening. Curr. Protoc. Pharmacol. 2009;44(9) doi: 10.1002/0471141755.ph0904s44. PubMed DOI
Sever R. et al., E3 medium (for zebrafish embryos) Cold Spring Harb. Protoc. 2011;2011(10) doi: 10.1101/pdb.rec066449. DOI
Zhu F., Development of lab-on-a-chip devices for automated zebrafish embryo bioassay, Doctor of Philosophy (PhD), RMIT University, 2016, http://researchbank.rmit.edu.au/view/rmit:161664
White R. Jobling S. Hoare S. A. Sumpter J. P. Parker M. G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994;135(1):175–182. doi: 10.1210/endo.135.1.8013351. doi: 10.1210/endo.135.1.8013351. PubMed DOI
SigmaPlot 10.0, Systat Software, Inc., San Jose, California, U.S., www.systsoftware.com
Dayan A. D. General and Applied Toxicology, 2nd edition. Occup. Environ. Med. 2000;57:431d–4431. doi: 10.1136/oem.57.6.431d. doi: 10.1136/oem.57.6.431d. PubMed DOI
Lithner D. Nordensvan I. Dave G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile–butadiene–styrene, and epoxy to Daphnia magna. Environ. Sci. Pollut. Res. 2012;19:1763–1772. doi: 10.1007/s11356-011-0663-5. doi: 10.1007/s11356-011-0663-5. PubMed DOI
Bejgarn S. MacLeod M. Bogdal C. Breitholtz M. Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere. 2015;132:114–119. doi: 10.1016/j.chemosphere.2015.03.010. doi: 10.1016/j.chemosphere.2015.03.010. PubMed DOI
Michaels B., A New Biocompatibility Test: Zebrafish Embryo Toxicity Testing, Med. Device Diagn. Ind., 2014, https://www.mddionline.com/new-biocompatibility-test-zebrafish-embryo-toxicity-testing
Lutte A. H. Capiotti K. M. da Silva N. L. G. da Silva C. S. d. O. Kist L. W. Bogo M. R. Silva R. S. D. Contributions from extracellular sources of adenosine to the ethanol toxicity in zebrafish larvae. Reprod. Toxicol. 2015;53:82–91. doi: 10.1016/j.reprotox.2015.04.001. doi: 10.1016/j.reprotox.2015.04.001. PubMed DOI
Reimers M. J. Flockton A. R. Tanguay R. L. Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol. Teratol. 2004;26:769–781. doi: 10.1016/j.ntt.2004.06.012. doi: 10.1016/j.ntt.2004.06.012. PubMed DOI
Toyokawa T. et al., Synthesis of chemicals related to environmental endocrine disruptors. Kyushu Kyoritsu Daigaku Kogakubu Kenkyu Hokoku. 2007;2007(31):1–8.
Jho E. H. Yun S. H. Thapa P. Nam J.-W. Changes in the aquatic ecotoxicological effects of Triton X-100 after UV photodegradation. Environ. Sci. Pollut. Res. 2021;28(9):11224–11232. doi: 10.1007/s11356-020-11362-2. doi: 10.1007/s11356-020-11362-2. PubMed DOI
Keller B. O. Sui J. Young A. B. Whittal R. M. Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta. 2008;627(1):71–81. doi: 10.1016/j.aca.2008.04.043. doi: 10.1016/j.aca.2008.04.043. PubMed DOI
LCO Fleet Tune plus and Qual Browser, Thermo Fisher Scientific, Inc., 1998
International Organization for Standardization, Biological evaluation of medical devices — Part 18: Chemical characterization of medical device materials within a risk management process, 2020, https://www.iso.org/standard/64750.html
Coats A. L., Harrison J. P., Hay J. S. and Ramos M. J., Stereolithography resins and methods, US Pat., 7211368, 2007
Ngan C. G. Y. O'Connell C. D. Blanchard R. Boyd-Moss M. Williams R. J. Bourke J. Quigley A. McKelvie P. Kapsa R. M. I. Choong P. F. M. Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo. Biomed. Mater. 2019;14:035007. doi: 10.1088/1748-605X/ab09c4. doi: 10.1088/1748-605X/ab09c4. PubMed DOI
Alifui-Segbaya F. George R. Biocompatibility of 3D-Printed Methacrylate for Hearing Devices. Inventions. 2018;3:52. doi: 10.3390/inventions3030052. doi: 10.3390/inventions3030052. DOI