Performance and biocompatibility of OSTEMER 322 in cell-based microfluidic applications

. 2024 Jan 23 ; 14 (6) : 3617-3635. [epub] 20240123

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38268545

The Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells. We employed cell viability and confluence assays to evaluate the performance of the material and its modified variants in cell culturing. The properties of the pristine and modified OSTEMER were also investigated using surface characterization methods including contact angle, zeta potential, and X-ray photoelectron spectroscopy. Mass spectrometry analysis confirmed the absence of leaching constituents from OSTEMER, indicating its safety for cell-based applications. Our findings demonstrated that cell viability on OSTEMER surfaces is sufficient for typical cell culture experiments, suggesting OSTEMER 322 is a suitable material for a variety of cell-based assays in microfluidic devices.

Zobrazit více v PubMed

Convery N. Gadegaard N. Micro Nano Eng. 2019;2:76–91.

Whitesides G. M. Nature. 2006;442:368–373. PubMed

Mark D., Haeberle S., Roth G., Von Stetten F. and Zengerle R., in Microfluidics Based Microsystems, ed. S. Kakaç, B. Kosoy, D. Li and A. Pramuanjaroenkij, Springer Netherlands, Dordrecht, 2010, pp. 305–376

Becker H. Lab Chip. 2010;10:271–273. PubMed

Harrison D. J. Fluri K. Seiler K. Fan Z. Effenhauser C. S. Manz A. Science. 1993;261:895–897. PubMed

Jacobson S. C. Moore A. W. Ramsey J. M. Anal. Chem. 1995;67:2059–2063.

Moore A. W. Jacobson S. C. Ramsey J. M. Anal. Chem. 1995;67:4184–4189.

McDonald J. C. Duffy D. C. Anderson J. R. Chiu D. T. Wu H. Schueller O. J. A. Whitesides G. M. Electrophoresis. 2000;21:27–40. PubMed

Xia Y. McClelland J. J. Gupta R. Qin D. Zhao X.-M. Sohn L. L. Celotta R. J. Whitesides G. M. Adv. Mater. 1997;9:147–149.

Becker H. Heim U. Sens. Actuators, A. 2000;83:130–135.

Chen C.-S. Chen S.-C. Liao W.-H. Chien R.-D. Lin S.-H. Int. Commun. Heat Mass Transfer. 2010;37:1290–1294.

Narasimhan J. Papautsky I. J. Manuf. Syst. 2004;14:96–103.

Hansen T. S. Selmeczi D. Larsen N. B. J. Micromech. Microeng. 2010;20:015020.

Giri K. Tsao C.-W. Micromachines. 2022;13:486. PubMed PMC

Scott S. Ali Z. Micromachines. 2021;12:319. PubMed PMC

Hoyle C. E. Lee T. Y. Roper T. J. Polym. Sci., Part A: Polym. Chem. 2004;42:5301–5338.

Hoyle C. E. Bowman C. N. Angew. Chem., Int. Ed. 2010;49:1540–1573. PubMed

Machado T. O. Sayer C. Araujo P. H. H. Eur. Polym. J. 2017;86:200–215.

Carlborg C. F. Haraldsson T. Öberg K. Malkoch M. van der Wijngaart W. Lab Chip. 2011;11:3136. PubMed

Kim S. H. Yang Y. Kim M. Nam S.-W. Lee K.-M. Lee N. Y. Kim Y. S. Park S. Adv. Funct. Mater. 2007;17:3493–3498.

Wägli Ph. Homsy A. de Rooij N. F. Sens. Actuators, B. 2011;156:994–1001.

Hung L.-H. Lin R. Lee A. P. Lab Chip. 2008;8:983. PubMed

Ashley J. F. Cramer N. B. Davis R. H. Bowman C. N. Lab Chip. 2011;11:2772. PubMed

Silvestrini S. Ferraro D. Tóth T. Pierno M. Carofiglio T. Mistura G. Maggini M. Lab Chip. 2012;12:4041. PubMed

Feidenhans’l N. A. Lafleur J. P. Jensen T. G. Kutter J. P. Electrophoresis. 2014;35:282–288. PubMed

Pardon G., Haraldsson T. and van der Wijngaart W., in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, San Francisco, CA, USA, 2014, pp. 96–99

Saharil F. Carlborg C. F. Haraldsson T. van der Wijngaart W. Lab Chip. 2012;12:3032. PubMed

Karlsson J. M., Carlborg F., Saharil F., Forsberg F., Niklaus F., van der Wijngaart W. and Haraldsson T., Chemistry and Life Sciences (microTAS, 2012), 2012, pp. 225–227

Haraldsson T., Carlborg C. F. and van der Wijngaart W., Proc. SPIE, Microfluidics, BioMEMS, and Medical Microsystems XII, 2014, vol. 8976

Carlborg C. F. Vastesson A. Liu Y. van der Wijngaart W. Johansson M. Haraldsson T. J. Polym. Sci. Part A: Polym. Chem. 2014;52:2604–2615.

El Fissi L. Fernández R. García P. Calero M. García J. V. Jiménez Y. Arnau A. Francis L. A. Sens. Actuators, A. 2019;285:511–518.

Sticker D. Geczy R. Häfeli U. O. Kutter J. P. ACS Appl. Mater. Interfaces. 2020;12:10080–10095. PubMed

Fan Y.-J. Hsieh H.-Y. Tsai S.-F. Wu C.-H. Lee C.-M. Liu Y.-T. Lu C.-H. Chang S.-W. Chen B.-C. Lab Chip. 2021;21:344–354. PubMed

Siu D. M. D. Lee K. C. M. Chung B. M. F. Wong J. S. J. Zheng G. Tsia K. K. Lab Chip. 2023;23:1011–1033. PubMed

Black J., Biological Performance of Materials: Fundamentals of Biocompatibility, CRC Taylor & Francis, Boca Raton, 4th edn, 2006

Sticker D. Rothbauer M. Lechner S. Hehenberger M.-T. Ertl P. Lab Chip. 2015;15:4542–4554. PubMed

Zhou X. C. Sjöberg R. Druet A. Schwenk J. M. van der Wijngaart W. Haraldsson T. Carlborg C. F. Lab Chip. 2017;17:3672–3681. PubMed

de Campos R. P. S. Campos C. D. M. Almeida G. B. da Silva J. A. F. IEEE Trans. Biomed. Circuits Syst. 2017;11:1470–1477. PubMed

Liu H. Usprech J. Sun Y. Simmons C. A. Acta Biomater. 2016;34:113–124. PubMed

Matthiesen I. Voulgaris D. Nikolakopoulou P. Winkler T. E. Herland A. Small. 2021;17:2101785. PubMed

Chen T. F. Siow K. S. Ng P. Y. Majlis B. Y. Materials Science and Engineering: C. 2017;79:613–621. PubMed

Ejserholm F. Stegmayr J. Bauer P. Johansson F. Wallman L. Bengtsson M. Oredsson S. Biomater. Res. 2015;19:19. PubMed PMC

Liu W. Li Y. Ding X. Biofabrication. 2017;9:025006. PubMed

Li R. Lv X. Hasan M. Xu J. Xu Y. Zhang X. Qin K. Wang J. Zhou D. Deng Y. J. Chromatogr. Sci. 2016;54:523–530. PubMed PMC

Rimsa R. Galvanovskis A. Plume J. Rumnieks F. Grindulis K. Paidere G. Erentraute S. Mozolevskis G. Abols A. Micromachines. 2021;12:546. PubMed PMC

Sticker D. Rothbauer M. Ehgartner J. Steininger C. Liske O. Liska R. Neuhaus W. Mayr T. Haraldsson T. Kutter J. P. Ertl P. ACS Appl. Mater. Interfaces. 2019;11:9730–9739. PubMed

Owens D. K. Wendt R. C. J. Appl. Polym. Sci. 1969;13:1741–1747.

Rabel W. Farbe und Lack. 1971;77:997–1005.

Kaelble D. H. The Journal of Adhesion. 1970;2:66–81.

Stringer C. Wang T. Michaelos M. Pachitariu M. Nat. Methods. 2021;18:100–106. PubMed

Pachitariu M. Stringer C. Nat. Methods. 2022;19:1634–1641. PubMed PMC

Schmidt U., Weigert M., Broaddus C. and Myers G., in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, ed. A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López and G. Fichtinger, Springer International Publishing, Cham, 2018, vol. 11071, pp. 265–273

Kim J. Hayward R. C. Trends Biotechnol. 2012;30:426–439. PubMed

Roy S. Yue C. Y. Lam Y. C. Wang Z. Y. Hu H. Sens. Actuators, B. 2010;150:537–549.

Tan S. H. Nguyen N.-T. Chua Y. C. Kang T. G. Biomicrofluidics. 2010;4:032204. PubMed PMC

Da Silva B. Zhang M. Schelcher G. Winter L. Guyon C. Tabeling P. Bonn D. Tatoulian M. Plasma Processes Polym. 2017;14:1600034.

Lejars M. Margaillan A. Bressy C. Chem. Rev. 2012;112:4347–4390. PubMed

Kleinman H. K. Luckenbill-Edds L. Cannon F. W. Sephel G. C. Anal. Biochem. 1987;166:1–13. PubMed

Halper J. and Kjaer M., in Progress in Heritable Soft Connective Tissue Diseases, ed. J. Halper, Springer Netherlands, Dordrecht, 2014, vol. 802, pp. 31–47

Molecular Biology of the Cell, ed. B. Alberts, Garland Science, New York, 4th edn, 2002

Gamm D. M. Melvan J. N. Shearer R. L. Pinilla I. Sabat G. Svendsen C. N. Wright L. S. Invest. Ophthalmol. Visual Sci. 2008;49:788. PubMed

Saxena T., Karumbaiah L. and Valmikinathan C. M., in Natural and Synthetic Biomedical Polymers, Elsevier, 2014, pp. 43–65

Mazia D. Schatten G. Sale W. J. Cell Biol. 1975;66:198–200. PubMed PMC

Foerch R. Izawa J. Spears G. J. Adhes. Sci. Technol. 1991;5:549–564.

Paynter R. W. Surf. Interface Anal. 1998;26:674–681.

Vesel A. Mozetic M. Zalar A. Vacuum. 2007;82:248–251.

Ray S. Shard A. G. Anal. Chem. 2011;83:8659–8666. PubMed

Burns N. L. and Holmberg K., in Trends in Colloid and Interface Science X, ed. C. Solans, M. R. Infante and M. J. García-Celma, Steinkopff, Darmstadt, 1996, vol. 100, pp. 271–275

Wilcox K. G. Kemerer G. M. Morozova S. J. Chem. Phys. 2023;158:044903. PubMed

Zheng M. Pan M. Zhang W. Lin H. Wu S. Lu C. Tang S. Liu D. Cai J. Bioact. Mater. 2021;6:1878–1909. PubMed PMC

Sandström N. Shafagh R. Z. Vastesson A. Carlborg C. F. van der Wijngaart W. Haraldsson T. J. Micromech. Microeng. 2015;25:075002.

Sønstevold L. Yadav M. Arnfinnsdottir N. B. Herbjørnrød A. K. Jensen G. U. Aksnes A. Mielnik M. M. J. Micromech. Microeng. 2022;32:075008.

Curtis A. S. Forrester J. V. McInnes C. Lawrie F. J. Cell Biol. 1983;97:1500–1506. PubMed PMC

Van Wachem P. B. Hogt A. H. Beugeling T. Feijen J. Bantjes A. Detmers J. P. Van Aken W. G. Biomaterials. 1987;8:323–328. PubMed

Lampin M. Warocquier-Clérout R. Legris C. Degrange M. Sigot-Luizard M. F. J. Biomed. Mater. Res. 1997;36:99–108. PubMed

Solid Surface Energy Data (SFE) for Common Polymers, http://www.surface-tension.de/solid-surface-energy.htm, accessed June 13, 2023

Callow M. E. Fletcher R. L. Int. Biodeterior. Biodegrad. 1994;34:333–348.

Lithner D. Nordensvan I. Dave G. Environ. Sci. Pollut. Res. 2012;19:1763–1772. PubMed

Nejedlá Z. Poustka D. Herma R. Liegertová M. Štofik M. Smejkal J. Šícha V. Kaule P. Malý J. RSC Adv. 2021;11:16252–16267. PubMed PMC

Halldorsson S. Lucumi E. Gómez-Sjöberg R. Fleming R. M. T. Biosens. Bioelectron. 2015;63:218–231. PubMed

Recek N. Jaganjac M. Kolar M. Milkovic L. Mozetič M. Stana-Kleinschek K. Vesel A. Molecules. 2013;18:12441–12463. PubMed PMC

Tilghman R. W. Cowan C. R. Mih J. D. Koryakina Y. Gioeli D. Slack-Davis J. K. Blackman B. R. Tschumperlin D. J. Parsons J. T. PLoS One. 2010;5:e12905. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...