Performance and biocompatibility of OSTEMER 322 in cell-based microfluidic applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38268545
PubMed Central
PMC10804231
DOI
10.1039/d3ra05789e
PII: d3ra05789e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells. We employed cell viability and confluence assays to evaluate the performance of the material and its modified variants in cell culturing. The properties of the pristine and modified OSTEMER were also investigated using surface characterization methods including contact angle, zeta potential, and X-ray photoelectron spectroscopy. Mass spectrometry analysis confirmed the absence of leaching constituents from OSTEMER, indicating its safety for cell-based applications. Our findings demonstrated that cell viability on OSTEMER surfaces is sufficient for typical cell culture experiments, suggesting OSTEMER 322 is a suitable material for a variety of cell-based assays in microfluidic devices.
Zobrazit více v PubMed
Convery N. Gadegaard N. Micro Nano Eng. 2019;2:76–91.
Whitesides G. M. Nature. 2006;442:368–373. PubMed
Mark D., Haeberle S., Roth G., Von Stetten F. and Zengerle R., in Microfluidics Based Microsystems, ed. S. Kakaç, B. Kosoy, D. Li and A. Pramuanjaroenkij, Springer Netherlands, Dordrecht, 2010, pp. 305–376
Becker H. Lab Chip. 2010;10:271–273. PubMed
Harrison D. J. Fluri K. Seiler K. Fan Z. Effenhauser C. S. Manz A. Science. 1993;261:895–897. PubMed
Jacobson S. C. Moore A. W. Ramsey J. M. Anal. Chem. 1995;67:2059–2063.
Moore A. W. Jacobson S. C. Ramsey J. M. Anal. Chem. 1995;67:4184–4189.
McDonald J. C. Duffy D. C. Anderson J. R. Chiu D. T. Wu H. Schueller O. J. A. Whitesides G. M. Electrophoresis. 2000;21:27–40. PubMed
Xia Y. McClelland J. J. Gupta R. Qin D. Zhao X.-M. Sohn L. L. Celotta R. J. Whitesides G. M. Adv. Mater. 1997;9:147–149.
Becker H. Heim U. Sens. Actuators, A. 2000;83:130–135.
Chen C.-S. Chen S.-C. Liao W.-H. Chien R.-D. Lin S.-H. Int. Commun. Heat Mass Transfer. 2010;37:1290–1294.
Narasimhan J. Papautsky I. J. Manuf. Syst. 2004;14:96–103.
Hansen T. S. Selmeczi D. Larsen N. B. J. Micromech. Microeng. 2010;20:015020.
Giri K. Tsao C.-W. Micromachines. 2022;13:486. PubMed PMC
Scott S. Ali Z. Micromachines. 2021;12:319. PubMed PMC
Hoyle C. E. Lee T. Y. Roper T. J. Polym. Sci., Part A: Polym. Chem. 2004;42:5301–5338.
Hoyle C. E. Bowman C. N. Angew. Chem., Int. Ed. 2010;49:1540–1573. PubMed
Machado T. O. Sayer C. Araujo P. H. H. Eur. Polym. J. 2017;86:200–215.
Carlborg C. F. Haraldsson T. Öberg K. Malkoch M. van der Wijngaart W. Lab Chip. 2011;11:3136. PubMed
Kim S. H. Yang Y. Kim M. Nam S.-W. Lee K.-M. Lee N. Y. Kim Y. S. Park S. Adv. Funct. Mater. 2007;17:3493–3498.
Wägli Ph. Homsy A. de Rooij N. F. Sens. Actuators, B. 2011;156:994–1001.
Hung L.-H. Lin R. Lee A. P. Lab Chip. 2008;8:983. PubMed
Ashley J. F. Cramer N. B. Davis R. H. Bowman C. N. Lab Chip. 2011;11:2772. PubMed
Silvestrini S. Ferraro D. Tóth T. Pierno M. Carofiglio T. Mistura G. Maggini M. Lab Chip. 2012;12:4041. PubMed
Feidenhans’l N. A. Lafleur J. P. Jensen T. G. Kutter J. P. Electrophoresis. 2014;35:282–288. PubMed
Pardon G., Haraldsson T. and van der Wijngaart W., in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, San Francisco, CA, USA, 2014, pp. 96–99
Saharil F. Carlborg C. F. Haraldsson T. van der Wijngaart W. Lab Chip. 2012;12:3032. PubMed
Karlsson J. M., Carlborg F., Saharil F., Forsberg F., Niklaus F., van der Wijngaart W. and Haraldsson T., Chemistry and Life Sciences (microTAS, 2012), 2012, pp. 225–227
Haraldsson T., Carlborg C. F. and van der Wijngaart W., Proc. SPIE, Microfluidics, BioMEMS, and Medical Microsystems XII, 2014, vol. 8976
Carlborg C. F. Vastesson A. Liu Y. van der Wijngaart W. Johansson M. Haraldsson T. J. Polym. Sci. Part A: Polym. Chem. 2014;52:2604–2615.
El Fissi L. Fernández R. García P. Calero M. García J. V. Jiménez Y. Arnau A. Francis L. A. Sens. Actuators, A. 2019;285:511–518.
Sticker D. Geczy R. Häfeli U. O. Kutter J. P. ACS Appl. Mater. Interfaces. 2020;12:10080–10095. PubMed
Fan Y.-J. Hsieh H.-Y. Tsai S.-F. Wu C.-H. Lee C.-M. Liu Y.-T. Lu C.-H. Chang S.-W. Chen B.-C. Lab Chip. 2021;21:344–354. PubMed
Siu D. M. D. Lee K. C. M. Chung B. M. F. Wong J. S. J. Zheng G. Tsia K. K. Lab Chip. 2023;23:1011–1033. PubMed
Black J., Biological Performance of Materials: Fundamentals of Biocompatibility, CRC Taylor & Francis, Boca Raton, 4th edn, 2006
Sticker D. Rothbauer M. Lechner S. Hehenberger M.-T. Ertl P. Lab Chip. 2015;15:4542–4554. PubMed
Zhou X. C. Sjöberg R. Druet A. Schwenk J. M. van der Wijngaart W. Haraldsson T. Carlborg C. F. Lab Chip. 2017;17:3672–3681. PubMed
de Campos R. P. S. Campos C. D. M. Almeida G. B. da Silva J. A. F. IEEE Trans. Biomed. Circuits Syst. 2017;11:1470–1477. PubMed
Liu H. Usprech J. Sun Y. Simmons C. A. Acta Biomater. 2016;34:113–124. PubMed
Matthiesen I. Voulgaris D. Nikolakopoulou P. Winkler T. E. Herland A. Small. 2021;17:2101785. PubMed
Chen T. F. Siow K. S. Ng P. Y. Majlis B. Y. Materials Science and Engineering: C. 2017;79:613–621. PubMed
Ejserholm F. Stegmayr J. Bauer P. Johansson F. Wallman L. Bengtsson M. Oredsson S. Biomater. Res. 2015;19:19. PubMed PMC
Liu W. Li Y. Ding X. Biofabrication. 2017;9:025006. PubMed
Li R. Lv X. Hasan M. Xu J. Xu Y. Zhang X. Qin K. Wang J. Zhou D. Deng Y. J. Chromatogr. Sci. 2016;54:523–530. PubMed PMC
Rimsa R. Galvanovskis A. Plume J. Rumnieks F. Grindulis K. Paidere G. Erentraute S. Mozolevskis G. Abols A. Micromachines. 2021;12:546. PubMed PMC
Sticker D. Rothbauer M. Ehgartner J. Steininger C. Liske O. Liska R. Neuhaus W. Mayr T. Haraldsson T. Kutter J. P. Ertl P. ACS Appl. Mater. Interfaces. 2019;11:9730–9739. PubMed
Owens D. K. Wendt R. C. J. Appl. Polym. Sci. 1969;13:1741–1747.
Rabel W. Farbe und Lack. 1971;77:997–1005.
Kaelble D. H. The Journal of Adhesion. 1970;2:66–81.
Stringer C. Wang T. Michaelos M. Pachitariu M. Nat. Methods. 2021;18:100–106. PubMed
Pachitariu M. Stringer C. Nat. Methods. 2022;19:1634–1641. PubMed PMC
Schmidt U., Weigert M., Broaddus C. and Myers G., in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, ed. A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López and G. Fichtinger, Springer International Publishing, Cham, 2018, vol. 11071, pp. 265–273
Kim J. Hayward R. C. Trends Biotechnol. 2012;30:426–439. PubMed
Roy S. Yue C. Y. Lam Y. C. Wang Z. Y. Hu H. Sens. Actuators, B. 2010;150:537–549.
Tan S. H. Nguyen N.-T. Chua Y. C. Kang T. G. Biomicrofluidics. 2010;4:032204. PubMed PMC
Da Silva B. Zhang M. Schelcher G. Winter L. Guyon C. Tabeling P. Bonn D. Tatoulian M. Plasma Processes Polym. 2017;14:1600034.
Lejars M. Margaillan A. Bressy C. Chem. Rev. 2012;112:4347–4390. PubMed
Kleinman H. K. Luckenbill-Edds L. Cannon F. W. Sephel G. C. Anal. Biochem. 1987;166:1–13. PubMed
Halper J. and Kjaer M., in Progress in Heritable Soft Connective Tissue Diseases, ed. J. Halper, Springer Netherlands, Dordrecht, 2014, vol. 802, pp. 31–47
Molecular Biology of the Cell, ed. B. Alberts, Garland Science, New York, 4th edn, 2002
Gamm D. M. Melvan J. N. Shearer R. L. Pinilla I. Sabat G. Svendsen C. N. Wright L. S. Invest. Ophthalmol. Visual Sci. 2008;49:788. PubMed
Saxena T., Karumbaiah L. and Valmikinathan C. M., in Natural and Synthetic Biomedical Polymers, Elsevier, 2014, pp. 43–65
Mazia D. Schatten G. Sale W. J. Cell Biol. 1975;66:198–200. PubMed PMC
Foerch R. Izawa J. Spears G. J. Adhes. Sci. Technol. 1991;5:549–564.
Paynter R. W. Surf. Interface Anal. 1998;26:674–681.
Vesel A. Mozetic M. Zalar A. Vacuum. 2007;82:248–251.
Ray S. Shard A. G. Anal. Chem. 2011;83:8659–8666. PubMed
Burns N. L. and Holmberg K., in Trends in Colloid and Interface Science X, ed. C. Solans, M. R. Infante and M. J. García-Celma, Steinkopff, Darmstadt, 1996, vol. 100, pp. 271–275
Wilcox K. G. Kemerer G. M. Morozova S. J. Chem. Phys. 2023;158:044903. PubMed
Zheng M. Pan M. Zhang W. Lin H. Wu S. Lu C. Tang S. Liu D. Cai J. Bioact. Mater. 2021;6:1878–1909. PubMed PMC
Sandström N. Shafagh R. Z. Vastesson A. Carlborg C. F. van der Wijngaart W. Haraldsson T. J. Micromech. Microeng. 2015;25:075002.
Sønstevold L. Yadav M. Arnfinnsdottir N. B. Herbjørnrød A. K. Jensen G. U. Aksnes A. Mielnik M. M. J. Micromech. Microeng. 2022;32:075008.
Curtis A. S. Forrester J. V. McInnes C. Lawrie F. J. Cell Biol. 1983;97:1500–1506. PubMed PMC
Van Wachem P. B. Hogt A. H. Beugeling T. Feijen J. Bantjes A. Detmers J. P. Van Aken W. G. Biomaterials. 1987;8:323–328. PubMed
Lampin M. Warocquier-Clérout R. Legris C. Degrange M. Sigot-Luizard M. F. J. Biomed. Mater. Res. 1997;36:99–108. PubMed
Solid Surface Energy Data (SFE) for Common Polymers, http://www.surface-tension.de/solid-surface-energy.htm, accessed June 13, 2023
Callow M. E. Fletcher R. L. Int. Biodeterior. Biodegrad. 1994;34:333–348.
Lithner D. Nordensvan I. Dave G. Environ. Sci. Pollut. Res. 2012;19:1763–1772. PubMed
Nejedlá Z. Poustka D. Herma R. Liegertová M. Štofik M. Smejkal J. Šícha V. Kaule P. Malý J. RSC Adv. 2021;11:16252–16267. PubMed PMC
Halldorsson S. Lucumi E. Gómez-Sjöberg R. Fleming R. M. T. Biosens. Bioelectron. 2015;63:218–231. PubMed
Recek N. Jaganjac M. Kolar M. Milkovic L. Mozetič M. Stana-Kleinschek K. Vesel A. Molecules. 2013;18:12441–12463. PubMed PMC
Tilghman R. W. Cowan C. R. Mih J. D. Koryakina Y. Gioeli D. Slack-Davis J. K. Blackman B. R. Tschumperlin D. J. Parsons J. T. PLoS One. 2010;5:e12905. PubMed PMC