The role of the DE and EF loop of BKPyV VP1 in the serological cross-reactivity between subtypes
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36587871
PubMed Central
PMC10194259
DOI
10.1016/j.virusres.2022.199031
PII: S0168-1702(22)00360-4
Knihovny.cz E-zdroje
- Klíčová slova
- BKPyV, BKPyV serostatus, BKPyV virus serology, Kidney transplantation, Polyomavirus BK, Virus-like particles,
- MeSH
- ELISA MeSH
- ledviny MeSH
- lidé MeSH
- nemoci ledvin * MeSH
- sérotypizace MeSH
- transplantace ledvin * MeSH
- virus BK * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BK virus (BKPyV) is a causative agent of BKPyV-associated nephropathy and graft rejections in kidney transplant patients. It establishes persistent infection in the kidneys, which can lead to reactivation in an immunosuppressed state or transmission to kidney recipients. Complications in the case of donor-derived infections can be caused by differences between the four known BKPyV subtypes, as prior infection with one subtype does not guarantee protection against de novo infection with other subtypes. The recipient and donor pretransplant serotyping is not routinely performed since simple ELISA tests employing antigens derived from the major viral capsid protein 1 (VP1) are hindered by the high cross-reactivity of anti-VP1 antibodies against all subtypes. Identifying subtype-specific epitopes in VP1 could lead to the design of specific antigens and the improvement of serodiagnostics for kidney transplantation. We aimed to study the surface residues responsible for the interactions with the subtype-specific antibodies by focusing on the DE and EF loops of VP1, which have only a small number of distinct amino acid differences between the most common subtypes, BKPyV-I and BKPyV-IV. We designed two mutant virus-like particles (VLPs): we introduced BKPyV-I characteristic amino acid residues (either H139N in the DE loop or D175E and I178V changes in the EF loop) into the base sequence of a BKPyV-IV VP1. This way, we created BKPyV-IV mutant VLPs with the sequence of either the BKPyV-I DE loop or the BKPyV-I EF loop. These mutants were then used as competing antigens in an antigen competition assay with a panel of patient sera, and changes in antibody reactivity were assessed by ELISA. We found that the changes introduced into the BKPyV-IV VP1 EF loop restrict antibody recognition in most samples and that converting the BKPyV-IV DE loop into its BKPyV-I equivalent attracts anti-VP1 BKPyV-I antibodies. Although our results did not lead to the discovery of a subtype-specific epitope on the VP1, they suggested that the arrangement of the EF loop in VP1 might dictate the mode of interaction between virus and anti-VP1 antibodies in general and that the interactions between the antibodies and the viral capsid might be very complex. Consequently, an antigen competition assay as an assay to distinguish between BKPyV serotypes might prove difficult to interpret.
Zobrazit více v PubMed
Barten M.J., Zuckermann A. BK Virus: a Cause for Concern in Thoracic Transplantation? Ann. Transplant. 2018;23:310–321. doi: 10.12659/AOT.908429. PubMed DOI PMC
Buck C.B., Pastrana D.V., Lowy D.R., Schiller J.T. Efficient intracellular assembly of papillomaviral vectors. J. Virol. 2004;78:751–757. doi: 10.1128/jvi.78.2.751-757.2004. PubMed DOI PMC
Carter J.J., Madeleine M.M., Wipf G.C., Garcea R.L., Pipkin P.A., Minor P.D., Galloway D.A. Lack of serologic evidence for prevalent simian virus 40 infection in humans. J. Natl. Cancer Inst. 2003;95:1522–1530. doi: 10.1093/jnci/djg074. PubMed DOI
Chapanian R., Kwan D.H., Constantinescu I., Shaikh F.A., Rossi N.A.A., Withers S.G., Kizhakkedathu J.N. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat. Commun. 2014;5:4683. doi: 10.1038/ncomms5683. PubMed DOI PMC
Chesters P.M., Heritage J., McCance D.J. Persistence of DNA sequences of BK virus and JC virus in normal human tissues and in diseased tissues. J. Infect. Dis. 1983;147:676–684. doi: 10.1093/infdis/147.4.676. PubMed DOI
Doerries K. Human polyomavirus JC and BK persistent infection. Adv. Exp. Med. Biol. 2006;577:102–116. doi: 10.1007/0-387-32957-9_8. PubMed DOI
Eisen H.N. Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol. Res. 2014;2:381–392. doi: 10.1158/2326-6066.CIR-14-0029. PubMed DOI
Fernández-Quintero M.L., Georges G., Varga J.M., Liedl K.R. Ensembles in solution as a new paradigm for antibody structure prediction and design. MAbs. 2021;13 doi: 10.1080/19420862.2021.1923122. PubMed DOI PMC
Fleury M.J.J., Nicol J.T.J., Samimi M., Arnold F., Cazal R., Ballaire R., Mercey O., Gonneville H., Combelas N., Vautherot J.-.F., Moreau T., Lorette G., Coursaget P., Touzé A. Identification of the neutralizing epitopes of Merkel cell polyomavirus major capsid protein within the BC and EF surface loops. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0121751. PubMed DOI PMC
François C., Tinez C., Brochot E., Duverlie G., Castelain S., Helle F., Fiore T., Morel V., Touzé A., Sater F.A., Dakroub F., Akl H., Presne C., Choukroun G., Guillaume N. Impact of pre-graft serology on risk of BKPyV infection post-renal transplantation. Nephrol. Dial. Transplant. 2022;37:781–788. doi: 10.1093/ndt/gfab279. PubMed DOI
Frutiger A., Tanno A., Hwu S., Tiefenauer R.F., Vörös J., Nakatsuka N. Nonspecific binding—fundamental concepts and consequences for biosensing applications. Chem. Rev. 2021;121:8095–8160. doi: 10.1021/acs.chemrev.1c00044. PubMed DOI
Führer S., Kamenik A.S., Zeindl R., Nothegger B., Hofer F., Reider N., Liedl K.R., Tollinger M. Inverse relation between structural flexibility and IgE reactivity of Cor a 1 hazelnut allergens. Sci. Rep. 2021;11:4173. doi: 10.1038/s41598-021-83705-z. PubMed DOI PMC
Gardner S.D., Field A.M., Coleman D.V., Hulme B. New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet. 1971;1:1253–1257. doi: 10.1016/s0140-6736(71)91776-4. PubMed DOI
Greaney A.J., Starr T.N., Barnes C.O., Weisblum Y., Schmidt F., Caskey M., Gaebler C., Cho A., Agudelo M., Finkin S., Wang Z., Poston D., Muecksch F., Hatziioannou T., Bieniasz P.D., Robbiani D.F., Nussenzweig M.C., Bjorkman P.J., Bloom J.D. Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat. Commun. 2021;12:4196. doi: 10.1038/s41467-021-24435-8. PubMed DOI PMC
Greaney A.J., Starr T.N., Eguia R.T., Loes A.N., Khan K., Karim F., Cele S., Bowen J.E., Logue J.K., Corti D., Veesler D., Chu H.Y., Sigal A., Bloom J.D. A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. PLoS Pathog. 2022;18 doi: 10.1371/journal.ppat.1010248. PubMed DOI PMC
Griffith S.A., McCoy L.E. To bnAb or Not to bnAb: defining broadly neutralising antibodies against HIV-1. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.708227. PubMed DOI PMC
Guthmiller J.J., Lan L.Y.-L., Fernández-Quintero M.L., Han J., Utset H.A., Bitar D.J., Hamel N.J., Stovicek O., Li L., Tepora M., Henry C., Neu K.E., Dugan H.L., Borowska M.T., Chen Y.-.Q., Liu S.T.H., Stamper C.T., Zheng N.-.Y., Huang M., Palm A.-K.E., García-Sastre A., Nachbagauer R., Palese P., Coughlan L., Krammer F., Ward A.B., Liedl K.R., Wilson P.C. Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity. 2020;53:1230–1244. doi: 10.1016/j.immuni.2020.10.005. e5. PubMed DOI PMC
Hejtmánková A., Roubalová K., Forejtová A., Žáčková Suchanová J., Forstová J., Viklický O., Španielová H. Prevalence of antibodies against BKPyV subtype I and IV in kidney transplant recipients and in the general Czech population. J. Med. Virol. 2019;91:856–864. doi: 10.1002/jmv.25388. PubMed DOI
Heritage J., Chesters P.M., McCance D.J. The persistence of papovavirus BK DNA sequences in normal human renal tissue. J. Med. Virol. 1981;8:143–150. doi: 10.1002/jmv.1890080208. PubMed DOI
Jin L. Rapid genomic typing of BK virus directly from clinical specimens. Mol. Cell. Probes. 1993;7:331–334. doi: 10.1006/mcpr.1993.1047. PubMed DOI
Jin L., Gibson P.E. Genomic function and variation of human Polyomavirus BK (BKV) Rev. Med. Virol. 1996;6:201–214. doi: 10.1002/(SICI)1099-1654(199612). 6:4<201::AID−RMV177>3.0.CO;2-Z. PubMed DOI
Jin L., Gibson P.E., Knowles W.A., Clewley J.P. BK virus antigenic variants: sequence analysis within the capsid VP1 epitope. J. Med. Virol. 1993;39:50–56. doi: 10.1002/jmv.1890390110. PubMed DOI
Lindner J.M., Cornacchione V., Sathe A., Be C., Srinivas H., Riquet E., Leber X.-.C., Hein A., Wrobel M.B., Scharenberg M., Pietzonka T., Wiesmann C., Abend J., Traggiai E. Human Memory B cells harbor diverse cross-neutralizing antibodies against BK and JC Polyomaviruses. Immunity. 2019;50:668–676. doi: 10.1016/j.immuni.2019.02.003. e5. PubMed DOI
McCarthy K.R., Watanabe A., Kuraoka M., Do K.T., McGee C.E., Sempowski G.D., Kepler T.B., Schmidt A.G., Kelsoe G., Harrison S.C. Memory B cells that cross-react with group 1 and group 2 influenza A viruses are abundant in adult human repertoires. Immunity. 2018;48:174–184. doi: 10.1016/j.immuni.2017.12.009. e9. PubMed DOI PMC
McIlroy D., Hönemann M., Nguyen N.-.K., Barbier P., Peltier C., Rodallec A., Halary F., Przyrowski E., Liebert U., Hourmant M., Bressollette-Bodin C. Persistent BK Polyomavirus Viruria is Associated with Accumulation of VP1 Mutations and Neutralization Escape. Viruses. 2020;12 doi: 10.3390/v12080824. PubMed DOI PMC
Murata H., Teferedegne B., Sheng L., Lewis A.M., Jr, Peden K. Identification of a neutralization epitope in the VP1 capsid protein of SV40. Virology. 2008;381:116–122. doi: 10.1016/j.virol.2008.07.032. PubMed DOI
Neu U., Allen S.-A.A., Blaum B.S., Liu Y., Frank M., Palma A.S., Ströh L.J., Feizi T., Peters T., Atwood W.J., Stehle T. A structure-guided mutation in the major capsid protein retargets BK polyomavirus. PLoS Pathog. 2013;9 doi: 10.1371/journal.ppat.1003688. PubMed DOI PMC
Pantaleo G., Correia B., Fenwick C., Joo V.S., Perez L. Antibodies to combat viral infections: development strategies and progress. Nat. Rev. Drug Discov. 2022:1–21. doi: 10.1038/s41573-022-00495-3. PubMed DOI PMC
Pastrana D.V., Ray U., Magaldi T.G., Schowalter R.M., Çuburu N., Buck C.B. BK polyomavirus genotypes represent distinct serotypes with distinct entry tropism. J. Virol. 2013;87:10105–10113. doi: 10.1128/JVI.01189-13. PubMed DOI PMC
Purighalla R., Shapiro R., McCauley J., Randhawa P.S. BK virus infection in a kidney allograft diagnosed by needle biopsy. Am. J. Kidney Dis. 1995;26:671–673. doi: 10.1016/0272-6386(95)90608-8. PubMed DOI
Randhawa P.S., Finkelstein S., Scantlebury V., Shapiro R., Vivas C., Jordan M., Picken M.M., Demetris A.J. Human polyoma virus-associated interstitial nephritis in the allograft kidney. Transplantation. 1999;67:103–109. doi: 10.1097/00007890-199901150-00018. PubMed DOI
Randhawa P.S., Pastrana D.V., Zeng G., Huang Y., Shapiro R., Sood P., Puttarajappa C., Berger M., Hariharan S., Buck C.B. Commercially available immunoglobulins contain virus neutralizing antibodies against all major genotypes of polyomavirus BK. Am. J. Transplant. 2015;15:1014–1020. doi: 10.1111/ajt.13083. PubMed DOI PMC
Randhawa P.S., Viscidi R., Carter J.J., Galloway D.A., Culp T.D., Huang C., Ramaswami B., Christensen N.D. Identification of species-specific and cross-reactive epitopes in human polyomavirus capsids using monoclonal antibodies. J. Gen. Virol. 2009;90:634–639. doi: 10.1099/vir.0.008391-0. PubMed DOI PMC
Rani A., Ranjan R., McGee H.S., Metwally A., Hajjiri Z., Brennan D.C., Finn P.W., Perkins D.L. A diverse virome in kidney transplant patients contains multiple viral subtypes with distinct polymorphisms. Sci. Rep. 2016;6 doi: 10.1038/srep33327. PubMed DOI PMC
Schmitt C., Raggub L., Linnenweber-Held S., Adams O., Schwarz A., Heim A. Donor origin of BKV replication after kidney transplantation. J. Clin. Virol. 2014;59:120–125. doi: 10.1016/j.jcv.2013.11.009. PubMed DOI
Schowalter R.M., Pastrana D.V., Buck C.B. Glycosaminoglycans and sialylated glycans sequentially facilitate merkel cell polyomavirus infectious entry. PLoS Pathog. 2011;7 doi: 10.1371/journal.ppat.1002161. PubMed DOI PMC
Tremolada S., Delbue S., Castagnoli L., Allegrini S., Miglio U., Boldorini R., Elia F., Gordon J., Ferrante P. Mutations in the external loops of BK virus VP1 and urine viral load in renal transplant recipients. J. Cell. Physiol. 2010;222:195–199. doi: 10.1002/jcp.21937. PubMed DOI PMC
Van Regenmortel M.H.V. In: Epitope Mapping Protocols: Second Edition. Schutkowski M., Reineke U., editors. Humana Press; Totowa, NJ: 2009. What Is a B-Cell Epitope? pp. 3–20. DOI
Wunderink H.F., de Brouwer C.S., van der Meijden E., Pastrana D.V., Kroes A.C.M., Buck C.B., Feltkamp M.C.W. Development and evaluation of a BK polyomavirus serotyping assay using Luminex technology. J. Clin. Virol. 2019;110:22–28. doi: 10.1016/j.jcv.2018.11.009. PubMed DOI PMC