Clinical lipidomics in the era of the big data

. 2023 Mar 28 ; 61 (4) : 587-598. [epub] 20230104

Jazyk angličtina Země Německo Médium electronic-print

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36592414

Lipidomics as a branch of metabolomics provides unique information on the complex lipid profile in biological materials. In clinically focused studies, hundreds of lipids together with available clinical information proved to be an effective tool in the discovery of biomarkers and understanding of pathobiochemistry. However, despite the introduction of lipidomics nearly twenty years ago, only dozens of big data studies using clinical lipidomics have been published to date. In this review, we discuss the lipidomics workflow, statistical tools, and the challenges of standartisation. The consequent summary divided into major clinical areas of cardiovascular disease, cancer, diabetes mellitus, neurodegenerative and liver diseases is demonstrating the importance of clinical lipidomics. In these publications, the potential of lipidomics for prediction, diagnosis or finding new targets for the treatment of selected diseases can be seen. The first of these results have already been implemented in clinical practice in the field of cardiovascular diseases, while in other areas we can expect the application of the results summarized in this review in the near future.

Zobrazit více v PubMed

Carrasco-Pancorbo, A, Navas-Iglesias, N, Cuadros-Rodríguez, L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: modern lipid analysis. Trends Anal Chem 2009;28:263–78. https://doi.org/10.1016/j.trac.2008.12.005 . DOI

Teo, CC, Chong, WPK, Tan, E, Basri, NB, Low, ZJ, Ho, YS. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. Trends Anal Chem 2015;66:1–18. https://doi.org/10.1016/j.trac.2014.10.010 . DOI

Köfeler, HC, Ahrends, R, Baker, ES, Ekroos, K, Han, X, Hoffmann, N, et al.. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021;62:100138. https://doi.org/10.1016/j.jlr.2021.100138 . DOI

Brenna, JT, Plourde, M, Stark, KD, Jones, PJ, Lin, YH. Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids. Am J Clin Nutr 2018;108:211–27. https://doi.org/10.1093/ajcn/nqy089 . DOI

Höring, M, Ejsing, CS, Hermansson, M, Liebisch, G. Quantification of cholesterol and cholesteryl ester by direct flow injection high-resolution fourier transform mass spectrometry utilizing species-specific response factors. Anal Chem 2019;91:3459–66. https://doi.org/10.1021/acs.analchem.8b05013 . DOI

Fan, S, Kind, T, Cajka, T, Hazen, SL, Tang, WHW, Kaddurah-Daouk, R, et al.. Systematic error removal using random forest for normalizing large-scale untargeted lipidomics data. Anal Chem 2019;91:3590–6. https://doi.org/10.1021/acs.analchem.8b05592 . DOI

Lipidomics Standards Initiative Consortium . Lipidomics needs more standardization. Nat Metab 2019;1:745–7. https://doi.org/10.1038/s42255-019-0094-z . DOI

Vvedenskaya, O, Holčapek, M, Vogeser, M, Ekroos, K, Meikle, PJ, Bendt, AK. Clinical lipidomics – a community-driven roadmap to translate research into clinical applications. J Mass Spectrom Adv Clin Lab 2022;24:1–4. https://doi.org/10.1016/j.jmsacl.2022.02.002 . DOI

McDonald, JG, Ejsing, CS, Kopczynski, D, Holčapek, M, Aoki, J, Arita, M, et al.. Introducing the lipidomics minimal reporting checklist. Nat Metab 2022;4:1086–8. https://doi.org/10.1038/s42255-022-00628-3 . DOI

Avela, HF, Sirén, H. Advances in lipidomics. Clin Chim Acta 2020;510:123–41. https://doi.org/10.1016/j.cca.2020.06.049 . DOI

Meikle, TG, Huynh, K, Giles, C, Meikle, PJ. Clinical lipidomics: realizing the potential of lipid profiling. J Lipid Res 2021;62:100127. https://doi.org/10.1016/j.jlr.2021.100127 . DOI

Beyene, HB, Olshansky, G, Smith, TAA, Giles, C, Huynh, K, Cinel, M, et al.. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: evidence from two large population cohort studies. PLoS Biol 2020;18:e3000870. https://doi.org/10.1371/journal.pbio.3000870 . DOI

Slade, E, Irvin, MR, Xie, K, Arnett, DK, Claas, SA, Kind, T, et al.. Age and sex are associated with the plasma lipidome: findings from the GOLDN study. Lipids Health Dis 2021;20:30. https://doi.org/10.1186/s12944-021-01456-2 . DOI

Di Cesare, F, Luchinat, C, Tenori, L, Saccenti, E. Age- and sex-dependent changes of free circulating blood metabolite and lipid abundances, correlations, and ratios. J Gerontol A Biol Sci Med Sci 2022;77:918–26. https://doi.org/10.1093/gerona/glab335 . DOI

Weir, JM, Wong, G, Barlow, CK, Greeve, MA, Kowalczyk, A, Almasy, L, et al.. Plasma lipid profiling in a large population-based cohort. J Lipid Res 2013;54:2898–908. https://doi.org/10.1194/jlr.p035808 . DOI

Gerl, MJ, Klose, C, Surma, MA, Fernandez, C, Melander, O, Männistö, S, et al.. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol 2019;17:e3000443. https://doi.org/10.1371/journal.pbio.3000443 . DOI

Mir, SA, Chen, L, Burugupalli, S, Burla, B, Ji, S, Smith, AAT, et al.. Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: a mother-offspring cohort study. BMC Med 2022;20:242. https://doi.org/10.1186/s12916-022-02432-y . DOI

Chew, WS, Torta, F, Ji, S, Choi, H, Begum, H, Sim, X, et al.. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight 2019;5:1–14. https://doi.org/10.1172/jci.insight.126925 . DOI

Razquin, C, Toledo, E, Clish, CB, Ruiz-Canela, M, Dennis, C, Corella, D, et al.. Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes Care 2018;41:2617–24. https://doi.org/10.2337/dc18-0840 . DOI

Suvitaival, T, Bondia-Pons, I, Yetukuri, L, Pöhö, P, Nolan, JJ, Hyötyläinen, T, et al.. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 2018;78:1–12. https://doi.org/10.1016/j.metabol.2017.08.014 . DOI

Lauber, C, Gerl, MJ, Klose, C, Ottosson, F, Melander, O, Simons, K. Lipidomic risk scores are independent of polygenic risk scores and can predict incidence of diabetes and cardiovascular disease in a large population cohort. PLoS Biol 2022;20:e3001561. https://doi.org/10.1371/journal.pbio.3001561 . DOI

Hilvo, M, Meikle, PJ, Pedersen, ER, Tell, GS, Dhar, I, Brenner, H, et al.. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur Heart J 2020;41:371–80. https://doi.org/10.1093/eurheartj/ehz387 . DOI

Alshehry, ZH, Mundra, PA, Barlow, CK, Mellett, NA, Wong, G, McConville, MJ, et al.. Plasma lipidomic profiles improve on traditional risk factors for the prediction of cardiovascular events in type 2 diabetes mellitus. Circulation 2016;134:1637–50. https://doi.org/10.1161/circulationaha.116.023233 . DOI

Wang, DD, Toledo, E, Hruby, A, Rosner, BA, Willett, WC, Sun, Q, et al.. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea). Circulation 2017;135:2028–40. https://doi.org/10.1161/circulationaha.116.024261 . DOI

Laaksonen, R, Ekroos, K, Sysi-Aho, M, Hilvo, M, Vihervaara, T, Kauhanen, D, et al.. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J 2016;37:1967–76. https://doi.org/10.1093/eurheartj/ehw148 . DOI

Lemaitre, RN, Jensen, PN, Hoofnagle, A, McKnight, B, Fretts, AM, King, IB, et al.. Plasma ceramides and sphingomyelins in relation to heart failure risk. Circ Heart Fail 2019;12:e005708. https://doi.org/10.1161/circheartfailure.118.005708 . DOI

Peterson, LR, Xanthakis, V, Duncan, MS, Gross, S, Friedrich, N, Völzke, H, et al.. Ceramide remodeling and risk of cardiovascular events and mortality. J Am Heart Assoc 2018;7:1–11. https://doi.org/10.1161/JAHA.117.007931 . DOI

Katajamäki, TT, Koivula, M-K, Hilvo, M, Lääperi, MTA, Salminen, MJ, Viljanen, AM, et al.. Ceramides and phosphatidylcholines associate with cardiovascular diseases in the elderly. Clin Chem 2022;68:1502–8. https://doi.org/10.1093/clinchem/hvac158 . DOI

Wolrab, D, Jirásko, R, Cífková, E, Höring, M, Mei, D, Chocholoušková, M, et al.. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun 2022;13:124. https://doi.org/10.1038/s41467-021-27765-9 . DOI

Guo, Y, Wang, X, Qiu, L, Qin, X, Liu, H, Wang, Y, et al.. Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clin Chim Acta 2012;414:135–41. https://doi.org/10.1016/j.cca.2012.08.010 . DOI

Guo, Y, Ren, J, Li, X, Liu, X, Liu, N, Wang, Y, et al.. Simultaneous quantification of serum multi-phospholipids as potential biomarkers for differentiating different pathophysiological states of lung, stomach, intestine, and pancreas. J Cancer 2017;8:2191–204. https://doi.org/10.7150/jca.19128 . DOI

Jirásko, R, Idkowiak, J, Wolrab, D, Kvasnička, A, Friedecký, D, Polański, K, et al.. Altered plasma, urine, and tissue profiles of sulfatides and sphingomyelins in patients with renal cell carcinoma. Cancers 2022;14:1–18. https://doi.org/10.3390/cancers14194622 . DOI

Ren, J, Zhang, D, Liu, Y, Zhang, R, Fang, H, Guo, S, et al.. Simultaneous quantification of serum nonesterified and esterified fatty acids as potential biomarkers to differentiate benign lung diseases from lung cancer. Sci Rep 2016;6:34201. https://doi.org/10.1038/srep34201 . DOI

Ros-Mazurczyk, M, Jelonek, K, Marczyk, M, Binczyk, F, Pietrowska, M, Polanska, J, et al.. Serum lipid profile discriminates patients with early lung cancer from healthy controls. Lung Cancer 2017;112:69–74. https://doi.org/10.1016/j.lungcan.2017.07.036 . DOI

Huynh, K, Lim, WLF, Giles, C, Jayawardana, KS, Salim, A, Mellett, NA, et al.. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun 2020;11:5698. https://doi.org/10.1038/s41467-020-19473-7 . DOI

Sinclair, E, Trivedi, DK, Sarkar, D, Walton-Doyle, C, Milne, J, Kunath, T, et al.. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 2021;12:1592. https://doi.org/10.1038/s41467-021-21669-4 . DOI

Hwangbo, N, Zhang, X, Raftery, D, Gu, H, Hu, S-C, Montine, TJ, et al.. Predictive modeling of alzheimer’s and Parkinson’s disease using metabolomic and lipidomic profiles from cerebrospinal fluid. Metabolites 2022;12:1–28. https://doi.org/10.3390/metabo12040277 . DOI

Barr, J, Caballería, J, Martínez-Arranz, I, Domínguez-Díez, A, Alonso, C, Muntané, J, et al.. Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. J Proteome Res 2012;11:2521–32. https://doi.org/10.1021/pr201223p . DOI

Alonso, C, Fernández-Ramos, D, Varela-Rey, M, Martínez-Arranz, I, Navasa, N, Van Liempd, SM, et al.. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 2017;152:1449–61.e7. https://doi.org/10.1053/j.gastro.2017.01.015 . DOI

Orešič, M, Hyötyläinen, T, Kotronen, A, Gopalacharyulu, P, Nygren, H, Arola, J, et al.. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia 2013;56:2266–74. https://doi.org/10.1007/s00125-013-2981-2 . DOI

Vvedenskaya, O, Rose, TD, Knittelfelder, O, Palladini, A, Wodke, JAH, Schuhmann, K, et al.. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021;62:100104. https://doi.org/10.1016/j.jlr.2021.100104 . DOI

Meeusen, JW, Donato, LJ, Kopecky, SL, Vasile, VC, Jaffe, AS, Laaksonen, R. Ceramides improve atherosclerotic cardiovascular disease risk assessment beyond standard risk factors. Clin Chim Acta 2020;511:138–42. https://doi.org/10.1016/j.cca.2020.10.005 . DOI

Hilvo, M, Vasile, VC, Donato, LJ, Hurme, R, Laaksonen, R. Ceramides and ceramide scores: clinical applications for cardiometabolic risk stratification. Front Endocrinol 2020;11:570628. https://doi.org/10.3389/fendo.2020.570628 . DOI

Wolrab, D, Jirásko, R, Chocholoušková, M, Peterka, O, Holčapek, M. Oncolipidomics: mass spectrometric quantitation of lipids in cancer research. TrAC, Trends Anal Chem 2019;120:115480. https://doi.org/10.1016/j.trac.2019.04.012 . DOI

Küçüksayan, E, Sansone, A, Chatgilialoglu, C, Ozben, T, Tekeli, D, Talibova, G, et al.. Sapienic acid metabolism influences membrane plasticity and protein signaling in breast cancer cell lines. Cells 2022;11:1–16. https://doi.org/10.3390/cells11020225 . DOI

Ferreri, C, Sansone, A, Ferreri, R, Amézaga, J, Tueros, I. Fatty acids and membrane lipidomics in oncology: a cross-road of nutritional, signaling and metabolic pathways. Metabolites 2020;10:1–26. https://doi.org/10.3390/metabo10090345 . DOI

Ivanovová, E, Piskláková, B, Dobešová, D, Kvasnička, A, Friedecký, D. Novel LC-MS tools for diagnosing inborn errors of metabolism. Microchem J 2021;170:106654. https://doi.org/10.1016/j.microc.2021.106654 . DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...