Clinical lipidomics in the era of the big data
Jazyk angličtina Země Německo Médium electronic-print
Typ dokumentu přehledy, časopisecké články
PubMed
36592414
DOI
10.1515/cclm-2022-1105
PII: cclm-2022-1105
Knihovny.cz E-zdroje
- Klíčová slova
- big data, clinical lipidomics, cohorts, large-scale,
- MeSH
- big data MeSH
- biologické markery metabolismus MeSH
- lidé MeSH
- lipidomika * MeSH
- metabolismus lipidů MeSH
- metabolomika metody MeSH
- nádory * diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
Lipidomics as a branch of metabolomics provides unique information on the complex lipid profile in biological materials. In clinically focused studies, hundreds of lipids together with available clinical information proved to be an effective tool in the discovery of biomarkers and understanding of pathobiochemistry. However, despite the introduction of lipidomics nearly twenty years ago, only dozens of big data studies using clinical lipidomics have been published to date. In this review, we discuss the lipidomics workflow, statistical tools, and the challenges of standartisation. The consequent summary divided into major clinical areas of cardiovascular disease, cancer, diabetes mellitus, neurodegenerative and liver diseases is demonstrating the importance of clinical lipidomics. In these publications, the potential of lipidomics for prediction, diagnosis or finding new targets for the treatment of selected diseases can be seen. The first of these results have already been implemented in clinical practice in the field of cardiovascular diseases, while in other areas we can expect the application of the results summarized in this review in the near future.
Faculty of Medicine and Dentistry Palacký University Olomouc Olomouc Czechia
Institute of Molecular and Translational Medicine Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Carrasco-Pancorbo, A, Navas-Iglesias, N, Cuadros-Rodríguez, L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: modern lipid analysis. Trends Anal Chem 2009;28:263–78. https://doi.org/10.1016/j.trac.2008.12.005 . DOI
Teo, CC, Chong, WPK, Tan, E, Basri, NB, Low, ZJ, Ho, YS. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. Trends Anal Chem 2015;66:1–18. https://doi.org/10.1016/j.trac.2014.10.010 . DOI
Köfeler, HC, Ahrends, R, Baker, ES, Ekroos, K, Han, X, Hoffmann, N, et al.. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021;62:100138. https://doi.org/10.1016/j.jlr.2021.100138 . DOI
Brenna, JT, Plourde, M, Stark, KD, Jones, PJ, Lin, YH. Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids. Am J Clin Nutr 2018;108:211–27. https://doi.org/10.1093/ajcn/nqy089 . DOI
Höring, M, Ejsing, CS, Hermansson, M, Liebisch, G. Quantification of cholesterol and cholesteryl ester by direct flow injection high-resolution fourier transform mass spectrometry utilizing species-specific response factors. Anal Chem 2019;91:3459–66. https://doi.org/10.1021/acs.analchem.8b05013 . DOI
Fan, S, Kind, T, Cajka, T, Hazen, SL, Tang, WHW, Kaddurah-Daouk, R, et al.. Systematic error removal using random forest for normalizing large-scale untargeted lipidomics data. Anal Chem 2019;91:3590–6. https://doi.org/10.1021/acs.analchem.8b05592 . DOI
Lipidomics Standards Initiative Consortium . Lipidomics needs more standardization. Nat Metab 2019;1:745–7. https://doi.org/10.1038/s42255-019-0094-z . DOI
Vvedenskaya, O, Holčapek, M, Vogeser, M, Ekroos, K, Meikle, PJ, Bendt, AK. Clinical lipidomics – a community-driven roadmap to translate research into clinical applications. J Mass Spectrom Adv Clin Lab 2022;24:1–4. https://doi.org/10.1016/j.jmsacl.2022.02.002 . DOI
McDonald, JG, Ejsing, CS, Kopczynski, D, Holčapek, M, Aoki, J, Arita, M, et al.. Introducing the lipidomics minimal reporting checklist. Nat Metab 2022;4:1086–8. https://doi.org/10.1038/s42255-022-00628-3 . DOI
Avela, HF, Sirén, H. Advances in lipidomics. Clin Chim Acta 2020;510:123–41. https://doi.org/10.1016/j.cca.2020.06.049 . DOI
Meikle, TG, Huynh, K, Giles, C, Meikle, PJ. Clinical lipidomics: realizing the potential of lipid profiling. J Lipid Res 2021;62:100127. https://doi.org/10.1016/j.jlr.2021.100127 . DOI
Beyene, HB, Olshansky, G, Smith, TAA, Giles, C, Huynh, K, Cinel, M, et al.. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: evidence from two large population cohort studies. PLoS Biol 2020;18:e3000870. https://doi.org/10.1371/journal.pbio.3000870 . DOI
Slade, E, Irvin, MR, Xie, K, Arnett, DK, Claas, SA, Kind, T, et al.. Age and sex are associated with the plasma lipidome: findings from the GOLDN study. Lipids Health Dis 2021;20:30. https://doi.org/10.1186/s12944-021-01456-2 . DOI
Di Cesare, F, Luchinat, C, Tenori, L, Saccenti, E. Age- and sex-dependent changes of free circulating blood metabolite and lipid abundances, correlations, and ratios. J Gerontol A Biol Sci Med Sci 2022;77:918–26. https://doi.org/10.1093/gerona/glab335 . DOI
Weir, JM, Wong, G, Barlow, CK, Greeve, MA, Kowalczyk, A, Almasy, L, et al.. Plasma lipid profiling in a large population-based cohort. J Lipid Res 2013;54:2898–908. https://doi.org/10.1194/jlr.p035808 . DOI
Gerl, MJ, Klose, C, Surma, MA, Fernandez, C, Melander, O, Männistö, S, et al.. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol 2019;17:e3000443. https://doi.org/10.1371/journal.pbio.3000443 . DOI
Mir, SA, Chen, L, Burugupalli, S, Burla, B, Ji, S, Smith, AAT, et al.. Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: a mother-offspring cohort study. BMC Med 2022;20:242. https://doi.org/10.1186/s12916-022-02432-y . DOI
Chew, WS, Torta, F, Ji, S, Choi, H, Begum, H, Sim, X, et al.. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight 2019;5:1–14. https://doi.org/10.1172/jci.insight.126925 . DOI
Razquin, C, Toledo, E, Clish, CB, Ruiz-Canela, M, Dennis, C, Corella, D, et al.. Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes Care 2018;41:2617–24. https://doi.org/10.2337/dc18-0840 . DOI
Suvitaival, T, Bondia-Pons, I, Yetukuri, L, Pöhö, P, Nolan, JJ, Hyötyläinen, T, et al.. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 2018;78:1–12. https://doi.org/10.1016/j.metabol.2017.08.014 . DOI
Lauber, C, Gerl, MJ, Klose, C, Ottosson, F, Melander, O, Simons, K. Lipidomic risk scores are independent of polygenic risk scores and can predict incidence of diabetes and cardiovascular disease in a large population cohort. PLoS Biol 2022;20:e3001561. https://doi.org/10.1371/journal.pbio.3001561 . DOI
Hilvo, M, Meikle, PJ, Pedersen, ER, Tell, GS, Dhar, I, Brenner, H, et al.. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur Heart J 2020;41:371–80. https://doi.org/10.1093/eurheartj/ehz387 . DOI
Alshehry, ZH, Mundra, PA, Barlow, CK, Mellett, NA, Wong, G, McConville, MJ, et al.. Plasma lipidomic profiles improve on traditional risk factors for the prediction of cardiovascular events in type 2 diabetes mellitus. Circulation 2016;134:1637–50. https://doi.org/10.1161/circulationaha.116.023233 . DOI
Wang, DD, Toledo, E, Hruby, A, Rosner, BA, Willett, WC, Sun, Q, et al.. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea). Circulation 2017;135:2028–40. https://doi.org/10.1161/circulationaha.116.024261 . DOI
Laaksonen, R, Ekroos, K, Sysi-Aho, M, Hilvo, M, Vihervaara, T, Kauhanen, D, et al.. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J 2016;37:1967–76. https://doi.org/10.1093/eurheartj/ehw148 . DOI
Lemaitre, RN, Jensen, PN, Hoofnagle, A, McKnight, B, Fretts, AM, King, IB, et al.. Plasma ceramides and sphingomyelins in relation to heart failure risk. Circ Heart Fail 2019;12:e005708. https://doi.org/10.1161/circheartfailure.118.005708 . DOI
Peterson, LR, Xanthakis, V, Duncan, MS, Gross, S, Friedrich, N, Völzke, H, et al.. Ceramide remodeling and risk of cardiovascular events and mortality. J Am Heart Assoc 2018;7:1–11. https://doi.org/10.1161/JAHA.117.007931 . DOI
Katajamäki, TT, Koivula, M-K, Hilvo, M, Lääperi, MTA, Salminen, MJ, Viljanen, AM, et al.. Ceramides and phosphatidylcholines associate with cardiovascular diseases in the elderly. Clin Chem 2022;68:1502–8. https://doi.org/10.1093/clinchem/hvac158 . DOI
Wolrab, D, Jirásko, R, Cífková, E, Höring, M, Mei, D, Chocholoušková, M, et al.. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun 2022;13:124. https://doi.org/10.1038/s41467-021-27765-9 . DOI
Guo, Y, Wang, X, Qiu, L, Qin, X, Liu, H, Wang, Y, et al.. Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clin Chim Acta 2012;414:135–41. https://doi.org/10.1016/j.cca.2012.08.010 . DOI
Guo, Y, Ren, J, Li, X, Liu, X, Liu, N, Wang, Y, et al.. Simultaneous quantification of serum multi-phospholipids as potential biomarkers for differentiating different pathophysiological states of lung, stomach, intestine, and pancreas. J Cancer 2017;8:2191–204. https://doi.org/10.7150/jca.19128 . DOI
Jirásko, R, Idkowiak, J, Wolrab, D, Kvasnička, A, Friedecký, D, Polański, K, et al.. Altered plasma, urine, and tissue profiles of sulfatides and sphingomyelins in patients with renal cell carcinoma. Cancers 2022;14:1–18. https://doi.org/10.3390/cancers14194622 . DOI
Ren, J, Zhang, D, Liu, Y, Zhang, R, Fang, H, Guo, S, et al.. Simultaneous quantification of serum nonesterified and esterified fatty acids as potential biomarkers to differentiate benign lung diseases from lung cancer. Sci Rep 2016;6:34201. https://doi.org/10.1038/srep34201 . DOI
Ros-Mazurczyk, M, Jelonek, K, Marczyk, M, Binczyk, F, Pietrowska, M, Polanska, J, et al.. Serum lipid profile discriminates patients with early lung cancer from healthy controls. Lung Cancer 2017;112:69–74. https://doi.org/10.1016/j.lungcan.2017.07.036 . DOI
Huynh, K, Lim, WLF, Giles, C, Jayawardana, KS, Salim, A, Mellett, NA, et al.. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun 2020;11:5698. https://doi.org/10.1038/s41467-020-19473-7 . DOI
Sinclair, E, Trivedi, DK, Sarkar, D, Walton-Doyle, C, Milne, J, Kunath, T, et al.. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 2021;12:1592. https://doi.org/10.1038/s41467-021-21669-4 . DOI
Hwangbo, N, Zhang, X, Raftery, D, Gu, H, Hu, S-C, Montine, TJ, et al.. Predictive modeling of alzheimer’s and Parkinson’s disease using metabolomic and lipidomic profiles from cerebrospinal fluid. Metabolites 2022;12:1–28. https://doi.org/10.3390/metabo12040277 . DOI
Barr, J, Caballería, J, Martínez-Arranz, I, Domínguez-Díez, A, Alonso, C, Muntané, J, et al.. Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. J Proteome Res 2012;11:2521–32. https://doi.org/10.1021/pr201223p . DOI
Alonso, C, Fernández-Ramos, D, Varela-Rey, M, Martínez-Arranz, I, Navasa, N, Van Liempd, SM, et al.. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 2017;152:1449–61.e7. https://doi.org/10.1053/j.gastro.2017.01.015 . DOI
Orešič, M, Hyötyläinen, T, Kotronen, A, Gopalacharyulu, P, Nygren, H, Arola, J, et al.. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia 2013;56:2266–74. https://doi.org/10.1007/s00125-013-2981-2 . DOI
Vvedenskaya, O, Rose, TD, Knittelfelder, O, Palladini, A, Wodke, JAH, Schuhmann, K, et al.. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021;62:100104. https://doi.org/10.1016/j.jlr.2021.100104 . DOI
Meeusen, JW, Donato, LJ, Kopecky, SL, Vasile, VC, Jaffe, AS, Laaksonen, R. Ceramides improve atherosclerotic cardiovascular disease risk assessment beyond standard risk factors. Clin Chim Acta 2020;511:138–42. https://doi.org/10.1016/j.cca.2020.10.005 . DOI
Hilvo, M, Vasile, VC, Donato, LJ, Hurme, R, Laaksonen, R. Ceramides and ceramide scores: clinical applications for cardiometabolic risk stratification. Front Endocrinol 2020;11:570628. https://doi.org/10.3389/fendo.2020.570628 . DOI
Wolrab, D, Jirásko, R, Chocholoušková, M, Peterka, O, Holčapek, M. Oncolipidomics: mass spectrometric quantitation of lipids in cancer research. TrAC, Trends Anal Chem 2019;120:115480. https://doi.org/10.1016/j.trac.2019.04.012 . DOI
Küçüksayan, E, Sansone, A, Chatgilialoglu, C, Ozben, T, Tekeli, D, Talibova, G, et al.. Sapienic acid metabolism influences membrane plasticity and protein signaling in breast cancer cell lines. Cells 2022;11:1–16. https://doi.org/10.3390/cells11020225 . DOI
Ferreri, C, Sansone, A, Ferreri, R, Amézaga, J, Tueros, I. Fatty acids and membrane lipidomics in oncology: a cross-road of nutritional, signaling and metabolic pathways. Metabolites 2020;10:1–26. https://doi.org/10.3390/metabo10090345 . DOI
Ivanovová, E, Piskláková, B, Dobešová, D, Kvasnička, A, Friedecký, D. Novel LC-MS tools for diagnosing inborn errors of metabolism. Microchem J 2021;170:106654. https://doi.org/10.1016/j.microc.2021.106654 . DOI