White matter alterations in MR-negative temporal and frontal lobe epilepsy using fixel-based analysis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36593331
PubMed Central
PMC9807578
DOI
10.1038/s41598-022-27233-4
PII: 10.1038/s41598-022-27233-4
Knihovny.cz E-zdroje
- MeSH
- bílá hmota * diagnostické zobrazování patologie MeSH
- epilepsie čelního laloku * diagnostické zobrazování MeSH
- epilepsie temporálního laloku * diagnostické zobrazování patologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- nervové dráhy patologie MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study focuses on white matter alterations in pharmacoresistant epilepsy patients with no visible lesions in the temporal and frontal lobes on clinical MRI (i.e. MR-negative) with lesions confirmed by resective surgery. The aim of the study was to extend the knowledge about group-specific neuropathology in MR-negative epilepsy. We used the fixel-based analysis (FBA) that overcomes the limitations of traditional diffusion tensor image analysis, mainly within-voxel averaging of multiple crossing fibres. Group-wise comparisons of fixel parameters between healthy controls (N = 100) and: (1) frontal lobe epilepsy (FLE) patients (N = 9); (2) temporal lobe epilepsy (TLE) patients (N = 13) were performed. A significant decrease of the cross-section area of the fixels in the superior longitudinal fasciculus was observed in the FLE. Results in TLE reflected widespread atrophy of limbic, thalamic, and cortico-striatal connections and tracts directly connected to the temporal lobe (such as the anterior commissure, inferior fronto-occipital fasciculus, uncinate fasciculus, splenium of corpus callosum, and cingulum bundle). Alterations were also observed in extratemporal connections (brainstem connection, commissural fibres, and parts of the superior longitudinal fasciculus). To our knowledge, this is the first study to use an advanced FBA method not only on the datasets of MR-negative TLE patients, but also MR-negative FLE patients, uncovering new common tract-specific alterations on the group level.
Centre for Medical Engineering King's College London London UK
Centre for the Developing Brain King's College London London UK
Zobrazit více v PubMed
Chen Z, Brodie MJ, Kwan P. What has been the impact of new drug treatments on epilepsy? Curr. Opin. Neurol. 2020;33:185–190. doi: 10.1097/WCO.0000000000000803. PubMed DOI
Friedlander W. Putnam, Merritt, and the discovery of Dilantin. Epilepsia. 1986;27:S1–S20. doi: 10.1111/j.1528-1157.1986.tb05743.x. PubMed DOI
Golyala A, Kwan P. Drug development for refractory epilepsy: The past 25 years and beyond. Seizure. 2017;44:147–156. doi: 10.1016/j.seizure.2016.11.022. PubMed DOI
World Health Organization. Epilepsy: A Public Health Imperative (2019).
Obusez EC, et al. 7T MR of intracranial pathology: Preliminary observations and comparisons to 3T and 1.5T. Neuroimage. 2018;168:459–476. doi: 10.1016/j.neuroimage.2016.11.030. PubMed DOI
De Ciantis A, et al. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia. 2016;57:445–454. doi: 10.1111/epi.13313. PubMed DOI
Feldman RE, et al. 7T study of patients with previously normal MRI exams. PLoS ONE. 2019;14:1–24. doi: 10.1371/journal.pone.0213642. PubMed DOI PMC
Wang ZI, et al. The pathology of magnetic-resonance-imaging-negative epilepsy. Mod. Pathol. 2013;26:1051–1058. doi: 10.1038/modpathol.2013.52. PubMed DOI
Bernasconi N, Wang I. Emerging trends in neuroimaging of epilepsy. Epilepsy Curr. 2021;21:79–82. doi: 10.1177/1535759721991161. PubMed DOI PMC
Tsivaka, D., Svolos, P., Kapsalaki, E. Z. & Tsougos, I. The role of diffusion weighted and diffusion tensor imaging in epilepsy. In Epilepsy Surgery and Intrinsic Brain Tumor Surgery 9–23 (Springer International Publishing, 2019) 10.1007/978-3-319-95918-4_2.
Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain. 2001;124:627–636. doi: 10.1093/brain/124.3.627. PubMed DOI
Bonilha L, et al. Altered microstructure in temproal lobe epilepsy: A diffusional kurtosis imaging study. Am. J. Neuroradiol. 2015;36:719–724. doi: 10.3174/ajnr.A4185. PubMed DOI PMC
Otte WM, et al. A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging. Epilepsia. 2012;53:659–667. doi: 10.1111/j.1528-1167.2012.03426.x. PubMed DOI
Tournier JD. Diffusion MRI in the brain—Theory and concepts. Prog. Nucl. Magn. Reson. Spectrosc. 2019;112–113:1–16. doi: 10.1016/j.pnmrs.2019.03.001. PubMed DOI
Mori S, Tournier J-D. Introduction to Diffusion Tensor Imaging: And Higher Order Models. Elsevier; 2014.
Tournier J-D, Calamante F, Connelly A. MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 2012;22:53–66. doi: 10.1002/ima.22005. DOI
Tournier J-D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. doi: 10.1016/j.neuroimage.2019.116137. PubMed DOI
Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219. doi: 10.1016/j.neuroimage.2004.07.051. PubMed DOI
Tustison NJ, et al. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging. 2010;29:1310–1320. doi: 10.1109/TMI.2010.2046908. PubMed DOI PMC
Veraart J, et al. Denoising of diffusion MRI using random matrix theory. Neuroimage. 2016;142:394–406. doi: 10.1016/j.neuroimage.2016.08.016. PubMed DOI PMC
Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 2016;76:1582–1593. doi: 10.1002/mrm.26059. PubMed DOI PMC
Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 2016;76:1574–1581. doi: 10.1002/mrm.26054. PubMed DOI
Bastiani M, et al. Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. Neuroimage. 2019;184:801–812. doi: 10.1016/j.neuroimage.2018.09.073. PubMed DOI PMC
Dhollander, T., Mito, R., Raffelt, D. & Connelly, A. Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. In Proceedings of the 27th annual meeting of the International Society of Magnetic Resonance in Medicine 555 (2019).
Vaughan DN, et al. Tract-specific atrophy in focal epilepsy: Disease, genetics, or seizures? Ann. Neurol. 2017;81:240–250. doi: 10.1002/ana.24848. PubMed DOI
Raffelt D, et al. Apparent fibre density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 2012;59:3976–3994. doi: 10.1016/j.neuroimage.2011.10.045. PubMed DOI
Raffelt DA, et al. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage. 2017;144:58–73. doi: 10.1016/j.neuroimage.2016.09.029. PubMed DOI PMC
Smith RE, Tournier J-D, Calamante F, Connelly A. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage. 2015;119:338–351. doi: 10.1016/j.neuroimage.2015.06.092. PubMed DOI
Raffelt DA, et al. Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55. doi: 10.1016/j.neuroimage.2015.05.039. PubMed DOI PMC
Wasserthal J, Neher P, Maier-Hein KH. TractSeg—Fast and accurate white matter tract segmentation. Neuroimage. 2018;183:239–253. doi: 10.1016/j.neuroimage.2018.07.070. PubMed DOI
Hatton SN, et al. White matter abnormalities across different epilepsy syndromes in adults: An ENIGMA-Epilepsy study. Brain. 2020;143:2454–2473. doi: 10.1093/brain/awaa200. PubMed DOI PMC
Gross DW. Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia. 2011;52:32–34. doi: 10.1111/j.1528-1167.2011.03149.x. PubMed DOI
Rugg-Gunn FJ. Diffusion imaging in epilepsy. Expert Rev. Neurother. 2007;7:1043–1054. doi: 10.1586/14737175.7.8.1043. PubMed DOI
Dhollander T, et al. Fixel-based analysis of diffusion MRI: Methods, applications, challenges and opportunities. Neuroimage. 2021;241:118417. doi: 10.1016/j.neuroimage.2021.118417. PubMed DOI
Makris N, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cereb. Cortex. 2005;15:854–869. doi: 10.1093/cercor/bhh186. PubMed DOI
Fonseca VDC, Yasuda CL, Tedeschi GG, Betting LE, Cendes F. White matter abnormalities in patients with focal cortical dysplasia revealed by diffusion tensor imaging analysis in a voxelwise approach. Front. Neurol. 2012;3:121. doi: 10.3389/fneur.2012.00121. PubMed DOI PMC
Campos BM, et al. White matter abnormalities associate with type and localization of focal epileptogenic lesions. Epilepsia. 2015;56:125–132. doi: 10.1111/epi.12871. PubMed DOI
Slinger G, Sinke MRT, Braun KPJ, Otte WM. White matter abnormalities at a regional and voxel level in focal and generalized epilepsy: A systematic review and meta-analysis. NeuroImage Clin. 2016;12:902–909. doi: 10.1016/j.nicl.2016.10.025. PubMed DOI PMC
Pizzo F, et al. The ictal signature of thalamus and basal ganglia in focal epilepsy. Neurology. 2021;96:e280–e293. doi: 10.1212/WNL.0000000000011003. PubMed DOI
Guye M. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain. 2006;129:1917–1928. doi: 10.1093/brain/awl151. PubMed DOI
Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat. Rev. Neurol. 2014;10:261–270. doi: 10.1038/nrneurol.2014.59. PubMed DOI
Chen X, et al. Temporal lobe epilepsy: Decreased thalamic resting-state functional connectivity and their relationships with alertness performance. Epilepsy Behav. 2015;44:47–54. doi: 10.1016/j.yebeh.2014.12.013. PubMed DOI
Rektor I, Kuba R, Brazdil M, Chrastina J. Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav. 2012;25:56–59. doi: 10.1016/j.yebeh.2012.04.125. PubMed DOI
Hetherington HP, et al. A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy. Neurology. 2007;69:2256–2265. doi: 10.1212/01.wnl.0000286945.21270.6d. PubMed DOI
Vuong J, Devergnas A. The role of the basal ganglia in the control of seizure. J. Neural Transm. 2018;125:531–545. doi: 10.1007/s00702-017-1768-x. PubMed DOI PMC
Englot DJ, et al. Relating structural and functional brainstem connectivity to disease measures in epilepsy. Neurology. 2018;91:e67–e77. doi: 10.1212/WNL.0000000000005733. PubMed DOI PMC
González HFJ, et al. Brainstem functional connectivity disturbances in epilepsy may recover after successful surgery. Neurosurgery. 2020;86:417–428. doi: 10.1093/neuros/nyz128. PubMed DOI PMC
Caciagli L, et al. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy. Neurology. 2017;89:506–516. doi: 10.1212/WNL.0000000000004176. PubMed DOI PMC
Tang Y, et al. FDG-PET profiles of extratemporal metabolism as a predictor of surgical failure in temporal lobe epilepsy. Front. Med. 2020;7:605002. doi: 10.3389/fmed.2020.605002. PubMed DOI PMC
Ji G-J, et al. Disrupted causal connectivity in mesial temporal lobe epilepsy. PLoS ONE. 2013;8:e63183. doi: 10.1371/journal.pone.0063183. PubMed DOI PMC
Liu M, Concha L, Lebel C, Beaulieu C, Gross DW. Mesial temporal sclerosis is linked with more widespread white matter changes in temporal lobe epilepsy. NeuroImage Clin. 2012;1:99–105. doi: 10.1016/j.nicl.2012.09.010. PubMed DOI PMC
Hong S-J, Bernhardt BC, Gill RS, Bernasconi N, Bernasconi A. The spectrum of structural and functional network alterations in malformations of cortical development. Brain. 2017;140:2133–2143. doi: 10.1093/brain/awx145. PubMed DOI
Mito R, Vaughan DN, Semmelroch M, Connelly A, Jackson GD. Bilateral structural network abnormalities in epilepsy associated with bottom-of-sulcus dysplasia. Neurology. 2022;98:e152–e163. doi: 10.1212/WNL.0000000000013006. PubMed DOI PMC
Gleichgerrcht E, et al. Patterns of seizure spread in temporal lobe epilepsy are associated with distinct white matter tracts. Epilepsy Res. 2021;171:106571. doi: 10.1016/j.eplepsyres.2021.106571. PubMed DOI PMC
Bauer T, et al. Fixel-based analysis links white matter characteristics, serostatus and clinical features in limbic encephalitis. NeuroImage Clin. 2020;27:102289. doi: 10.1016/j.nicl.2020.102289. PubMed DOI PMC
Feshki, M., Parham, E. & Soltanin-Zadeh, H. Fixel-based analysis of white matter in temporal lobe epilepsy. In 2018 25th Iran. Conf. Biomed. Eng. 2018 3rd Int. Iran. Conf. Biomed. Eng. ICBME 2018 1–5 (2018) 10.1109/ICBME.2018.8703504.
Garbelli R, et al. Blurring in patients with temporal lobe epilepsy: Clinical, high-field imaging and ultrastructural study. Brain. 2012;135:2337–2349. doi: 10.1093/brain/aws149. PubMed DOI
Arfanakis K, et al. Diffusion tensor MRI in temporal lobe epilepsy. Magn. Reson. Imaging. 2002;20:511–519. doi: 10.1016/S0730-725X(02)00509-X. PubMed DOI
Concha L, Beaulieu C, Collins DL, Gross DW. White-matter diffusion abnormalities in temporal-lobe epilepsy with and without mesial temporal sclerosis. J. Neurol. Neurosurg. Psychiatry. 2009;80:312–319. doi: 10.1136/jnnp.2007.139287. PubMed DOI
Günbey HP, et al. Secondary corpus callosum abnormalities associated with antiepileptic drugs in temporal lobe epilepsy. Neuroradiol. J. 2011;24:316–323. doi: 10.1177/197140091102400223. PubMed DOI
Kim H, Piao Z, Liu P, Bingaman W, Diehl B. Secondary white matter degeneration of the corpus callosum in patients with intractable temporal lobe epilepsy: A diffusion tensor imaging study. Epilepsy Res. 2008;81:136–142. doi: 10.1016/j.eplepsyres.2008.05.005. PubMed DOI
Lee CY, et al. Microstructural integrity of early- versus late-myelinating white matter tracts in medial temporal lobe epilepsy. Epilepsia. 2013;54:1801–1809. doi: 10.1111/epi.12353. PubMed DOI PMC
Ostrowski LM, et al. Dysmature superficial white matter microstructure in developmental focal epilepsy. Brain Commun. 2019;1:fcz002. doi: 10.1093/braincomms/fcz002. PubMed DOI PMC
Bryant L, et al. Fiber ball white matter modeling in focal epilepsy. Hum. Brain Mapp. 2021;42:2490–2507. doi: 10.1002/hbm.25382. PubMed DOI PMC
Winn, R. H. Youmans & Winn Neurological Surgery. in 4944 (Elsevier, 2016).