Giant Increase of Hardness in Silicon Carbide by Metastable Single Layer Diamond-Like Coating
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DE-SC0018924
U.S. Department of Energy, Office of Science, Basic Energy Sciences
W911NF2020116
Army Research Office
PubMed
36599685
PubMed Central
PMC9951309
DOI
10.1002/advs.202204562
Knihovny.cz E-zdroje
- Klíčová slova
- SiC, Young's modulus, diamene, epitaxial graphene, hardness,
- Publikační typ
- časopisecké články MeSH
Silicon carbide (SiC) is one of the hardest known materials. Its exceptional mechanical properties combined with its high thermal conductivity make it a very attractive material for a variety of technological applications. Recently, it is discovered that two-layer epitaxial graphene films on SiC can undergo a pressure activated phase transition into a sp3 diamene structure at room temperature. Here, it is shown that epitaxial graphene films grown on SiC can increase the hardness of SiC up to 100% at low loads (up to 900 µN), and up to 30% at high loads (10 mN). By using a Berkovich diamond indenter and nanoindentation experiments, it is demonstrated that the 30% increase in hardness is present even for indentations depths of 175 nm, almost three hundred times larger than the graphene film thickness. The experiments also show that the yield point of SiC increases up to 77% when the SiC surface is coated with epitaxial graphene. These improved mechanical properties are explained with the formation of diamene under the indenter's pressure.
Zobrazit více v PubMed
Lee C., Wei X., Kysar J. W., Hone J., Science 2008, 321, 385. PubMed
Scarpa F., Adhikari S., Srikantha Phani A., Nanotechnology 2009, 20, 065709. PubMed
Zhang B., Mei L., Xiao H., Appl. Phys. Lett. 2012, 101, 121915.
Zandiatashbar A., Lee G. H., An S. J., Lee S., Mathew N., Terrones M., Hayashi T., Picu C. R., Hone J., Koratkar N., Nat. Commun. 2014, 5, 3186. PubMed
Suk J. W., Piner R. D., An J., Ruoff R. S., ACS Nano 2010, 4, 6557. PubMed
Park S.‐Y., Kim Y.‐C., Ruoff R. S., Kim J.‐Y., APL Mater. 2019, 7, 031106.
Cellini F., Lavini F., Berger C., de Heer W., Riedo E., 2D Mater. 2019, 6, 035043.
Hammad M., Adjizian J. J., Sacré C. H., Huet B., Charlier J. C., Raskin J. P., Pardoen T., Carbon 2017, 122, 446.
Gao Y., Cao T., Cellini F., Berger C., de Heer W. A., Tosatti E., Riedo E., Bongiorno A., Nat. Nanotechnol. 2018, 13, 133. PubMed
Cellini F., Lavini F., Cao T., De Heer W., Berger C., Bongiorno A., Riedo E., FlatChem 2018, 10, 8.
Lavini F., Rejhon M., Riedo E., Nat. Rev. Mater. 2022, 7, 814. PubMed
Cellini F., Gao Y., Riedo E., Sci. Rep. 2019, 9, 4075. PubMed PMC
Kuhn M., Tierney D., Simmers M., American Ceramic Society Bulletin 2017, 96, 38.
Kunc J., Rejhon M., Belas E., Dedic V., Moravec P., Franc J., Phys. Rev. Appl. 2017, 8, 044011.
Kunc J., Rejhon M., Hlidek P., AIP Adv. 2018, 8, 045015.
Rejhon M., Kunc J., J. Raman Spectrosc. 2018, 50, 465.
Oliver W. C., Pharr G. M., J. Mater. Res. 2011, 19, 3.
Chai P., Li S., Li Y., Liang L., Yin X., Micromachines 2020, 11, 102. PubMed PMC
Datye A., Schwarz U., Lin H.‐T., Ceramics 2018, 1, 198.
Henshall J. L., Brookes C. A., J. Mater. Sci. Lett. 1985, 4, 783.
Shaffer P. T. B., J. Am. Ceram. Soc. 1964, 47, 466.
Jönsson B., Hogmark S., Thin Solid Films 1984, 114, 257.
Brazhkin V. V., Lyapin A. G., Hemley R. J., Philos. Mag. A 2002, 82, 231.
Kitahara H., Noda Y., Yoshida F., Nakashima H., Shinohara N., Abe H., J. Ceram. Soc. Jpn. 2001, 109, 602.
Lucas M., Gall K., Riedo E., J. Appl. Phys. 2008, 104, 113515.
Nix W. D., Gao H., J. Mech. Phys. Solids 1998, 46, 411.
Emtsev K. V., Speck F., Seyller T., Ley L., Riley J. D., Phys. Rev. B 2008, 77, 155303.
Sakai M., Shimizu S., Ishikawa T., J. Mater. Res. 1999, 14, 1471.
Li H., Ghosh A., Han Y. H., Bradt R. C., J. Mater. Res. 1993, 8, 1028.