Spontaneous emergence of straintronics effects and striped stacking domains in untwisted three-layer epitaxial graphene
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
24-11702 M
Grantová Agentura České Republiky (GAČR)
W911NF2020116
DOD | USA | AFC | CCDC | Army Research Office (ARO)
DE-SC0018924
DOE | Office of Science (SC)
PubMed
39630870
PubMed Central
PMC11648643
DOI
10.1073/pnas.2408496121
Knihovny.cz E-resources
- Keywords
- ABC graphene, cAFM, epitaxial graphene,
- Publication type
- Journal Article MeSH
Emergent electronic phenomena, from superconductivity to ferroelectricity, magnetism, and correlated many-body band gaps, have been observed in domains created by stacking and twisting atomic layers of Van der Waals materials. In graphene, emergent properties have been observed in ABC stacking domains obtained by exfoliation followed by expert mechanical twisting and alignment with the desired orientation, a process very challenging and nonscalable. Here, conductive atomic force microscopy shows in untwisted epitaxial graphene grown on SiC the surprising presence of striped domains with dissimilar conductance, a contrast that demonstrates the presence of ABA and ABC domains since it matches exactly the conductivity difference observed in ABA/ABC domains in twisted exfoliated graphene and calculated by density functional theory. The size and geometry of the stacking domains depend on the interplay between strain, solitons crossing, and shape of the three-layer regions. Interestingly, we demonstrate the growth of three-layer regions in which the ABA/ABC stacking domains self-organize in stable stripes of a few tens of nanometers. The growth-controlled production of isolated and stripe-shaped ABA/ABC domains open the path to fabricate quantum devices on these domains. These findings on self-assembly formation of ABA/ABC epitaxial graphene stripes on SiC without the need of time-consuming and nonscalable graphene exfoliation, alignment, and twisting provide different potential applications of graphene in electronic devices.
See more in PubMed
Cao Y., et al. , Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–48 (2018), 10.1038/nature26160. PubMed DOI
Cao Y., et al. , Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 583, 215–220 (2020), 10.1038/s41586-020-2260-6. PubMed DOI
Shen C., et al. , Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020), 10.1038/s41567-020-0825-9. DOI
Chen G. R., et al. , Evidence of a gate-tunable Mott insulator in a trilayer graphene moire superlattice. Nat. Phys. 15, 237–241 (2019), 10.1038/s41567-018-0387-2. DOI
Chen G. R., et al. , Signatures of tunable superconductivity in a trilayer graphene moire superlattice. Nature 572, 215–220 (2019), 10.1038/s41586-019-1393-y. PubMed DOI
Chittari B. L., Chen G. R., Zhang Y. B., Wang F., Jung J., Gate-tunable topological flat bands in trilayer graphene boron-nitride Moire superlattices. Phys. Rev. Lett. 122, 016401 (2019), 10.1103/PhysRevLett.122.016401. PubMed DOI
Hennighausen Z., Kar S., Twistronics: A turning point in 2D quantum materials. Electron. Struct. 3, 015001 (2021), 10.1088/2516-1075/abd957. DOI
Kerelsky A., et al. , Moireless correlations in ABCA graphene. Proc. Natl. Acad. Sci. U.S.A. 118, e2017366118 (2021), 10.1073/pnas.2017366118. PubMed DOI PMC
Stern M. V., et al. , Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1467 (2021), 10.1126/science.abe8177. PubMed DOI
Bao W., et al. , Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011), 10.1038/Nphys2103. DOI
Jiang L. L., et al. , Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–209 (2018), 10.1038/s41565-017-0042-6. PubMed DOI
Butz B., et al. , Dislocations in bilayer graphene. Nature 505, 533–538 (2014), 10.1038/nature12780. PubMed DOI
de Jong T. A., et al. , Intrinsic stacking domains in graphene on silicon carbide: A pathway for intercalation. Phys. Rev. Mater. 2, 104005 (2018), 10.1103/PhysRevMaterials.2.104005. DOI
de Jong T. A., Visser L., Jobst J., Tromp R. M., van der Molen S. J., Stacking domain morphology in epitaxial graphene on silicon carbide. Phys. Rev. Mater. 7, 034001 (2023), 10.1103/PhysRevMaterials.7.034001. DOI
Lebedeva I. V., Popov A. M., Two phases with different domain wall networks and a reentrant phase transition in bilayer graphene under strain. Phys. Rev. Lett. 124, 116101 (2020), 10.1103/PhysRevLett.124.116101. PubMed DOI
Alden J. S., et al. , Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. U.S.A. 110, 11256–11260 (2013), 10.1073/pnas.1309394110. PubMed DOI PMC
Zhang S., et al. , Domino-like stacking order switching in twisted monolayer-multilayer graphene. Nat. Mater. 21, 621–626 (2022), 10.1038/s41563-022-01232-2. PubMed DOI
Kunc J., et al. , Effect of residual gas composition on epitaxial growth of graphene on SiC. Phys. Rev. Appl. 8, 044011 (2017), 10.1103/PhysRevApplied.8.044011. DOI
Berger C., et al. , Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004), 10.1021/jp040650f. DOI
Riedl C., Starke U., Bernhardt J., Franke M., Heinz K., Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 76, 245406 (2007), 10.1103/PhysRevB.76.245406. DOI
Emtsev K. V., et al. , Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009), 10.1038/Nmat2382. PubMed DOI
de Heer W. A., et al. , Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U.S.A. 108, 16900–16905 (2011), 10.1073/pnas.1105113108. PubMed DOI PMC
Emtsev K. V., Speck F., Seyller T., Ley L., Riley J. D., Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008), 10.1103/PhysRevB.77.155303. DOI
Rejhon M., et al. , Relation between interfacial shear and friction force in 2D materials. Nat. Nanotechnol. 17, 1280–1287 (2022), 10.1038/s41565-022-01237-7. PubMed DOI
Rejhon M., et al. , Giant increase of hardness in silicon carbide by metastable single layer diamond-like coating. Adv. Sci. 10, 2204562 (2023), 10.1002/advs.202204562. PubMed DOI PMC
Rejhon M., Dedic V., Shestopalov M., Kunc J., Riedo E., Impact of metastable graphene-diamond coatings on the fracture toughness of silicon carbide. Nanoscale 16, 12345–12350 (2024), 10.1039/d3nr06281c. PubMed DOI
Matsui H., Matsui F., Maejima N., Matsushita T., Daimon H., Stacking registry determination of graphene grown on the SiC(0001) by photoelectron holography. Surf. Sci. 635, 1–4 (2015), 10.1016/j.susc.2014.11.027. DOI
Hibino H., Mizuno S., Kageshima H., Nagase M., Yamaguchi H., Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B 80, 085406 (2009), 10.1103/PhysRevB.80.085406. DOI
Pierucci D., et al. , Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of strong dependence on stacking sequence and charge transfer. Sci. Rep. 6, 33487 (2016), 10.1038/srep33487. PubMed DOI PMC
Cho S., et al. , Thermoelectric imaging of structural disorder in epitaxial graphene. Nat. Mater. 12, 913–918 (2013), 10.1038/Nmat3708. PubMed DOI
Lim H., et al. , Effects of hydrogen on the stacking orientation of bilayer graphene grown on copper. Chem. Mater. 32, 10357–10364 (2020), 10.1021/acs.chemmater.0c02331. DOI
Norimatsu W., Kusunoki M., Selective formation of ABC-stacked graphene layers on SiC(0001). Phys. Rev. B 81, 161410 (2010), 10.1103/PhysRevB.81.161410. DOI
Ping J. L., Fuhrer M. S., Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 12, 4635–4641 (2012), 10.1021/nl301932v. PubMed DOI
Hass J., de Heer W. A., Conrad E. H., The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008), 10.1088/0953-8984/20/32/323202. DOI
Yazdi G. R., et al. , Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes. Carbon 57, 477–484 (2013), 10.1016/j.carbon.2013.02.022. DOI
Filleter T., Bennewitz R., Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys. Rev. B 81, 155412 (2010), 10.1103/PhysRevB.81.155412. DOI
Filleter T., Emtsev K. V., Seyller T., Bennewitz R., Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93, 133107 (2008), 10.1063/1.2993341. DOI
Mammadov S., et al. , Work function of graphene multilayers on SiC(0001). 2D Mater. 4, 015043 (2017), 10.1088/2053-1583/4/1/015043. DOI
Momeni Pakdehi D., et al. , Silicon carbide stacking-order-induced doping variation in epitaxial graphene. Adv. Funct. Mater. 30, 2004695 (2020), 10.1002/adfm.202004695. DOI
Sinterhauf A., et al. , Substrate induced nanoscale resistance variation in epitaxial graphene. Nat. Commun. 11, 555 (2020), 10.1038/s41467-019-14192-0. PubMed DOI PMC
Alaboson J. M. P., et al. , Conductive atomic force microscope nanopatterning of epitaxial graphene on SiC(0001) in ambient conditions. Adv. Mater. 23, 2181–2186 (2011), 10.1002/adma.201100367. PubMed DOI
Gao Y., et al. , Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2018), 10.1038/s41565-017-0023-9. PubMed DOI
Li H. Y., et al. , Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020), 10.1021/acs.nanolett.9b05092. PubMed DOI
Brouillard M., et al. , Experimental determination of the lateral resolution of surface electric potential measurements by Kelvin probe force microscopy using biased electrodes separated by a nanoscale gap and application to thin-film transistors. Nanoscale Adv. 4, 2018–2028 (2022), 10.1039/d1na00824b. PubMed DOI PMC
Kunc J., Rejhon M., Hlidek P., Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy. AIP Adv. 8, 025001 (2018), 10.1063/1.5024132. DOI
Rejhon M., Kunc J., ZO phonon of a buffer layer and Raman mapping of hydrogenated buffer on SiC(0001). J. Raman Spectrosc. 50, 465–473 (2018), 10.1002/jrs.5533. DOI
Riedl C., Coletti C., Iwasaki T., Zakharov A. A., Starke U., Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009), 10.1103/PhysRevLett.103.246804. PubMed DOI
Paillet M., Parret R., Sauvajol J.-L., Colomban P., Graphene and related 2D materials: An overview of the Raman studies. J. Raman Spectrosc. 49, 8–12 (2018), 10.1002/jrs.5295. DOI
Lee D. S., et al. , Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO. Nano Lett. 8, 4320–4325 (2008), 10.1021/nl802156w. PubMed DOI
Rejhon M., Data from “Spontaneous emergence of straintronics effects and striped stacking domains in untwisted three-layer epitaxial graphene.” Figshare. 10.6084/m9.figshare.27168915. Deposited 20 November 2024. PubMed DOI PMC