• This record comes from PubMed

Spontaneous emergence of straintronics effects and striped stacking domains in untwisted three-layer epitaxial graphene

. 2024 Dec 10 ; 121 (50) : e2408496121. [epub] 20241204

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
24-11702 M Grantová Agentura České Republiky (GAČR)
W911NF2020116 DOD | USA | AFC | CCDC | Army Research Office (ARO)
DE-SC0018924 DOE | Office of Science (SC)

Emergent electronic phenomena, from superconductivity to ferroelectricity, magnetism, and correlated many-body band gaps, have been observed in domains created by stacking and twisting atomic layers of Van der Waals materials. In graphene, emergent properties have been observed in ABC stacking domains obtained by exfoliation followed by expert mechanical twisting and alignment with the desired orientation, a process very challenging and nonscalable. Here, conductive atomic force microscopy shows in untwisted epitaxial graphene grown on SiC the surprising presence of striped domains with dissimilar conductance, a contrast that demonstrates the presence of ABA and ABC domains since it matches exactly the conductivity difference observed in ABA/ABC domains in twisted exfoliated graphene and calculated by density functional theory. The size and geometry of the stacking domains depend on the interplay between strain, solitons crossing, and shape of the three-layer regions. Interestingly, we demonstrate the growth of three-layer regions in which the ABA/ABC stacking domains self-organize in stable stripes of a few tens of nanometers. The growth-controlled production of isolated and stripe-shaped ABA/ABC domains open the path to fabricate quantum devices on these domains. These findings on self-assembly formation of ABA/ABC epitaxial graphene stripes on SiC without the need of time-consuming and nonscalable graphene exfoliation, alignment, and twisting provide different potential applications of graphene in electronic devices.

See more in PubMed

Cao Y., et al. , Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–48 (2018), 10.1038/nature26160. PubMed DOI

Cao Y., et al. , Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 583, 215–220 (2020), 10.1038/s41586-020-2260-6. PubMed DOI

Shen C., et al. , Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020), 10.1038/s41567-020-0825-9. DOI

Chen G. R., et al. , Evidence of a gate-tunable Mott insulator in a trilayer graphene moire superlattice. Nat. Phys. 15, 237–241 (2019), 10.1038/s41567-018-0387-2. DOI

Chen G. R., et al. , Signatures of tunable superconductivity in a trilayer graphene moire superlattice. Nature 572, 215–220 (2019), 10.1038/s41586-019-1393-y. PubMed DOI

Chittari B. L., Chen G. R., Zhang Y. B., Wang F., Jung J., Gate-tunable topological flat bands in trilayer graphene boron-nitride Moire superlattices. Phys. Rev. Lett. 122, 016401 (2019), 10.1103/PhysRevLett.122.016401. PubMed DOI

Hennighausen Z., Kar S., Twistronics: A turning point in 2D quantum materials. Electron. Struct. 3, 015001 (2021), 10.1088/2516-1075/abd957. DOI

Kerelsky A., et al. , Moireless correlations in ABCA graphene. Proc. Natl. Acad. Sci. U.S.A. 118, e2017366118 (2021), 10.1073/pnas.2017366118. PubMed DOI PMC

Stern M. V., et al. , Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1467 (2021), 10.1126/science.abe8177. PubMed DOI

Bao W., et al. , Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011), 10.1038/Nphys2103. DOI

Jiang L. L., et al. , Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–209 (2018), 10.1038/s41565-017-0042-6. PubMed DOI

Butz B., et al. , Dislocations in bilayer graphene. Nature 505, 533–538 (2014), 10.1038/nature12780. PubMed DOI

de Jong T. A., et al. , Intrinsic stacking domains in graphene on silicon carbide: A pathway for intercalation. Phys. Rev. Mater. 2, 104005 (2018), 10.1103/PhysRevMaterials.2.104005. DOI

de Jong T. A., Visser L., Jobst J., Tromp R. M., van der Molen S. J., Stacking domain morphology in epitaxial graphene on silicon carbide. Phys. Rev. Mater. 7, 034001 (2023), 10.1103/PhysRevMaterials.7.034001. DOI

Lebedeva I. V., Popov A. M., Two phases with different domain wall networks and a reentrant phase transition in bilayer graphene under strain. Phys. Rev. Lett. 124, 116101 (2020), 10.1103/PhysRevLett.124.116101. PubMed DOI

Alden J. S., et al. , Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. U.S.A. 110, 11256–11260 (2013), 10.1073/pnas.1309394110. PubMed DOI PMC

Zhang S., et al. , Domino-like stacking order switching in twisted monolayer-multilayer graphene. Nat. Mater. 21, 621–626 (2022), 10.1038/s41563-022-01232-2. PubMed DOI

Kunc J., et al. , Effect of residual gas composition on epitaxial growth of graphene on SiC. Phys. Rev. Appl. 8, 044011 (2017), 10.1103/PhysRevApplied.8.044011. DOI

Berger C., et al. , Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004), 10.1021/jp040650f. DOI

Riedl C., Starke U., Bernhardt J., Franke M., Heinz K., Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 76, 245406 (2007), 10.1103/PhysRevB.76.245406. DOI

Emtsev K. V., et al. , Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009), 10.1038/Nmat2382. PubMed DOI

de Heer W. A., et al. , Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U.S.A. 108, 16900–16905 (2011), 10.1073/pnas.1105113108. PubMed DOI PMC

Emtsev K. V., Speck F., Seyller T., Ley L., Riley J. D., Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008), 10.1103/PhysRevB.77.155303. DOI

Rejhon M., et al. , Relation between interfacial shear and friction force in 2D materials. Nat. Nanotechnol. 17, 1280–1287 (2022), 10.1038/s41565-022-01237-7. PubMed DOI

Rejhon M., et al. , Giant increase of hardness in silicon carbide by metastable single layer diamond-like coating. Adv. Sci. 10, 2204562 (2023), 10.1002/advs.202204562. PubMed DOI PMC

Rejhon M., Dedic V., Shestopalov M., Kunc J., Riedo E., Impact of metastable graphene-diamond coatings on the fracture toughness of silicon carbide. Nanoscale 16, 12345–12350 (2024), 10.1039/d3nr06281c. PubMed DOI

Matsui H., Matsui F., Maejima N., Matsushita T., Daimon H., Stacking registry determination of graphene grown on the SiC(0001) by photoelectron holography. Surf. Sci. 635, 1–4 (2015), 10.1016/j.susc.2014.11.027. DOI

Hibino H., Mizuno S., Kageshima H., Nagase M., Yamaguchi H., Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B 80, 085406 (2009), 10.1103/PhysRevB.80.085406. DOI

Pierucci D., et al. , Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of strong dependence on stacking sequence and charge transfer. Sci. Rep. 6, 33487 (2016), 10.1038/srep33487. PubMed DOI PMC

Cho S., et al. , Thermoelectric imaging of structural disorder in epitaxial graphene. Nat. Mater. 12, 913–918 (2013), 10.1038/Nmat3708. PubMed DOI

Lim H., et al. , Effects of hydrogen on the stacking orientation of bilayer graphene grown on copper. Chem. Mater. 32, 10357–10364 (2020), 10.1021/acs.chemmater.0c02331. DOI

Norimatsu W., Kusunoki M., Selective formation of ABC-stacked graphene layers on SiC(0001). Phys. Rev. B 81, 161410 (2010), 10.1103/PhysRevB.81.161410. DOI

Ping J. L., Fuhrer M. S., Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 12, 4635–4641 (2012), 10.1021/nl301932v. PubMed DOI

Hass J., de Heer W. A., Conrad E. H., The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008), 10.1088/0953-8984/20/32/323202. DOI

Yazdi G. R., et al. , Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes. Carbon 57, 477–484 (2013), 10.1016/j.carbon.2013.02.022. DOI

Filleter T., Bennewitz R., Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys. Rev. B 81, 155412 (2010), 10.1103/PhysRevB.81.155412. DOI

Filleter T., Emtsev K. V., Seyller T., Bennewitz R., Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93, 133107 (2008), 10.1063/1.2993341. DOI

Mammadov S., et al. , Work function of graphene multilayers on SiC(0001). 2D Mater. 4, 015043 (2017), 10.1088/2053-1583/4/1/015043. DOI

Momeni Pakdehi D., et al. , Silicon carbide stacking-order-induced doping variation in epitaxial graphene. Adv. Funct. Mater. 30, 2004695 (2020), 10.1002/adfm.202004695. DOI

Sinterhauf A., et al. , Substrate induced nanoscale resistance variation in epitaxial graphene. Nat. Commun. 11, 555 (2020), 10.1038/s41467-019-14192-0. PubMed DOI PMC

Alaboson J. M. P., et al. , Conductive atomic force microscope nanopatterning of epitaxial graphene on SiC(0001) in ambient conditions. Adv. Mater. 23, 2181–2186 (2011), 10.1002/adma.201100367. PubMed DOI

Gao Y., et al. , Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2018), 10.1038/s41565-017-0023-9. PubMed DOI

Li H. Y., et al. , Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020), 10.1021/acs.nanolett.9b05092. PubMed DOI

Brouillard M., et al. , Experimental determination of the lateral resolution of surface electric potential measurements by Kelvin probe force microscopy using biased electrodes separated by a nanoscale gap and application to thin-film transistors. Nanoscale Adv. 4, 2018–2028 (2022), 10.1039/d1na00824b. PubMed DOI PMC

Kunc J., Rejhon M., Hlidek P., Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy. AIP Adv. 8, 025001 (2018), 10.1063/1.5024132. DOI

Rejhon M., Kunc J., ZO phonon of a buffer layer and Raman mapping of hydrogenated buffer on SiC(0001). J. Raman Spectrosc. 50, 465–473 (2018), 10.1002/jrs.5533. DOI

Riedl C., Coletti C., Iwasaki T., Zakharov A. A., Starke U., Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009), 10.1103/PhysRevLett.103.246804. PubMed DOI

Paillet M., Parret R., Sauvajol J.-L., Colomban P., Graphene and related 2D materials: An overview of the Raman studies. J. Raman Spectrosc. 49, 8–12 (2018), 10.1002/jrs.5295. DOI

Lee D. S., et al. , Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO. Nano Lett. 8, 4320–4325 (2008), 10.1021/nl802156w. PubMed DOI

Rejhon M., Data from “Spontaneous emergence of straintronics effects and striped stacking domains in untwisted three-layer epitaxial graphene.” Figshare. 10.6084/m9.figshare.27168915. Deposited 20 November 2024. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...