Identification of Fish Species and Targeted Genetic Modifications Based on DNA Analysis: State of the Art
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
QK1910231
Ministry of Agriculture
PubMed
36613444
PubMed Central
PMC9818732
DOI
10.3390/foods12010228
PII: foods12010228
Knihovny.cz E-zdroje
- Klíčová slova
- DNA-based methods, fish, food fraud, food quality, genetically modified organism (GMO), polymerase chain reaction (PCR), species identification,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Food adulteration is one of the most serious problems regarding food safety and quality worldwide. Besides misleading consumers, it poses a considerable health risk associated with the potential non-labeled allergen content. Fish and fish products are one of the most expensive and widely traded commodities, which predisposes them to being adulterated. Among all fraud types, replacing high-quality or rare fish with a less valuable species predominates. Because fish differ in their allergen content, specifically the main one, parvalbumin, their replacement can endanger consumers. This underlines the need for reliable, robust control systems for fish species identification. Various methods may be used for the aforementioned purpose. DNA-based methods are favored due to the characteristics of the target molecule, DNA, which is heat resistant, and the fact that through its sequencing, several other traits, including the recognition of genetic modifications, can be determined. Thus, they are considered to be powerful tools for identifying cases of food fraud. In this review, the major DNA-based methods applicable for fish meat and product authentication and their commercial applications are discussed, the possibilities of detecting genetic modifications in fish are evaluated, and future trends are highlighted, emphasizing the need for comprehensive and regularly updated online database resources.
Zobrazit více v PubMed
Goyal K., Kumar P., Verma K. Food adulteration detection using artificial intelligence: A systematic review. Arch. Comput. Methods Eng. 2021;29:397–426. doi: 10.1007/s11831-021-09600-y. DOI
Kotsanopoulos K.V., Exadactylos A., Gkafas G.A., Martsikalis P.V., Parlapani F.F., Boziaris I.S., Arvanitoyannis I.S. The use of molecular markers in the verification of fish and seafood authenticity and the detection of adulteration. Compr. Rev. Food Sci. Food Saf. 2021;20:1584–1654. doi: 10.1111/1541-4337.12719. PubMed DOI
Rasmussen R.S., Morrissey M.T. DNA-based methods for the identification of commercial fish and seafood species. Compr. Rev. Food Sci. Food Saf. 2008;7:280–295. doi: 10.1111/j.1541-4337.2008.00046.x. PubMed DOI
Civera T. Species identification and safety of fish products. Vet. Res. Commun. 2003;27:481. doi: 10.1023/B:VERC.0000014205.87859.ab. PubMed DOI
Pauly D., Christensen V., Dalsgaard J., Froese R., Torres F., Jr. Fishing down marine food webs. Science. 1998;279:860–863. doi: 10.1126/science.279.5352.860. PubMed DOI
Food and Agriculture Organization of the United Nations . Report of the Fourteenth Session of the Sub-Committee on Fish Trade. FAO; Rome, Italy: 2014. 86p COFI:FT/XIV/2014/5.
Buyuktiryaki B., Masini M., Mori F., Barni S., Liccioli G., Sarti L., Lodi L., Giovannini M., du Toit G., Lopata A.L. IgE-mediated fish allergy in children. Medicina. 2021;57:76. doi: 10.3390/medicina57010076. PubMed DOI PMC
Moonesinghe H., Mackenzie H., Venter C., Kilburn S., Turner P., Weir K., Dean T. Prevalence of fish and shellfish allergy: A systematic review. Ann. Allergy Asthma Immunol. 2016;117 doi: 10.1016/j.anai.2016.07.015. PubMed DOI
Kuehn A., Swoboda I., Arumugam K., Hilger C., Hentges F. Fish allergens at a glance: Variable allergenicity of parvalbumins, the major fish allergens. Front. Immunol. 2014;5:179. doi: 10.3389/fimmu.2014.00179. PubMed DOI PMC
Griesmeier U., Vázquez-Cortés S., Bublin M., Radauer C., Ma Y., Briza P., Fernández-Rivas M., Breiteneder H. Expression levels of parvalbumins determine allergenicity of fish species. Allergy. 2010;65:191–198. doi: 10.1111/j.1398-9995.2009.02162.x. PubMed DOI
Lee P.-W., Nordlee J.A., Koppelman S.J., Baumert J.L., Taylor S.L. Measuring parvalbumin levels in fish muscle tissue: Relevance of muscle locations and storage conditions. Food Chem. 2012;135:502–507. doi: 10.1016/j.foodchem.2012.05.030. PubMed DOI
Taylor S., Kabourek J., Hefle S. Fish allergy: Fish and products thereof. J. Food Sci. 2004;69:R175–R180. doi: 10.1111/j.1750-3841.2004.tb18022.x. DOI
Sharp M.F., Lopata A.L. Fish allergy: In review. Clin. Rev. Allergy Immunol. 2014;46:258–271. doi: 10.1007/s12016-013-8363-1. PubMed DOI
Mukherjee S., Bartoš O., Zdeňková K., Hanák P., Horká P., Musilova Z. Evolution of the Parvalbumin Genes in Teleost Fishes after the Whole-Genome Duplication. Fishes. 2021;6:70. doi: 10.3390/fishes6040070. DOI
Saptarshi S.R., Sharp M.F., Kamath S.D., Lopata A.L. Antibody reactivity to the major fish allergen parvalbumin is determined by isoforms and impact of thermal processing. Food Chem. 2014;148:321–328. doi: 10.1016/j.foodchem.2013.10.035. PubMed DOI
Sletten G., Van Do T., Lindvik H., Egaas E., Florvaag E. Effects of industrial processing on the immunogenicity of commonly ingested fish species. Int. Arch. Allergy Immunol. 2010;151:223–236. doi: 10.1159/000242360. PubMed DOI
Aiello D., Materazzi S., Risoluti R., Thangavel H., Di Donna L., Mazzotti F., Casadonte F., Siciliano C., Sindona G., Napoli A. A major allergen in rainbow trout (Oncorhynchus mykiss): Complete sequences of parvalbumin by MALDI tandem mass spectrometry. Mol. Biosyst. 2015;11:2373–2382. doi: 10.1039/C5MB00148J. PubMed DOI
Hubalkova Z., Kralik P., Tremlova B., Rencova E. Methods of gadoid fish species identification in food and their economic impact in the Czech Republic: A review. Vet. Med. 2007;52:273. doi: 10.17221/2044-VETMED. DOI
Leduc F., Krzewinski F., Le Fur B., N’Guessan A., Malle P., Kol O., Duflos G. Differentiation of fresh and frozen/thawed fish, European sea bass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), cod (Gadus morhua) and salmon (Salmo salar), using volatile compounds by SPME/GC/MS. J. Sci. Food Agric. 2012;92:2560–2568. doi: 10.1002/jsfa.5673. PubMed DOI
Edirisinghe R.K., Graffham A.J., Taylor S.J. Characterisation of the volatiles of yellowfin tuna (Thunnus albacares) during storage by solid phase microextraction and GC–MS and their relationship to fish quality parameters. Int. J. Food Sci. Technol. 2007;42:1139–1147. doi: 10.1111/j.1365-2621.2006.01224.x. DOI
Carrera M., Cañas B., Gallardo J.M. Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. J. Proteom. 2012;75:3211–3220. doi: 10.1016/j.jprot.2012.03.030. PubMed DOI
Carrera M., Canas B., López-Ferrer D., Pineiro C., Vázquez J., Gallardo J.M. Fast monitoring of species-specific peptide biomarkers using high-intensity-focused-ultrasound-assisted tryptic digestion and selected MS/MS ion monitoring. Anal. Chem. 2011;83:5688–5695. doi: 10.1021/ac200890w. PubMed DOI
Alamprese C., Casiraghi E. Application of FT-NIR and FT-IR spectroscopy to fish fillet authentication. LWT-Food Sci. Technol. 2015;63:720–725. doi: 10.1016/j.lwt.2015.03.021. DOI
Aursand M., Standal I.B., Praël A., McEvoy L., Irvine J., Axelson D.E. 13C NMR pattern recognition techniques for the classification of Atlantic salmon (Salmo salar L.) according to their wild, farmed, and geographical origin. J. Agric. Food Chem. 2009;57:3444–3451. doi: 10.1021/jf8039268. PubMed DOI
Standal I.B., Axelson D.E., Aursand M. 13C NMR as a tool for authentication of different gadoid fish species with emphasis on phospholipid profiles. Food Chem. 2010;121:608–615. doi: 10.1016/j.foodchem.2009.12.074. DOI
Asensio L., González I., García T., Martín R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA) Food Control. 2008;19:1–8. doi: 10.1016/j.foodcont.2007.02.010. DOI
Martinez I., Jakobsen Friis T. Application of proteome analysis to seafood authentication. Proteomics. 2004;4:347–354. doi: 10.1002/pmic.200300569. PubMed DOI
Hoffman J. An Introduction to Fish Migration. CRC Press; Boca Raton, FL, USA: 2016. Tracing the origins, migrations, and other movements of fishes using stable isotopes; pp. 169–196.
Molkentin J., Lehmann I., Ostermeyer U., Rehbein H. Traceability of organic fish—Authenticating the production origin of salmonids by chemical and isotopic analyses. Food Control. 2015;53:55–66. doi: 10.1016/j.foodcont.2015.01.003. DOI
Akasaki T., Yanagimoto T., Yamakami K., Tomonaga H., Sato S. Species identification and PCR-RFLP analysis of cytochrome b gene in cod fish (order Gadiformes) products. J. Food Sci. 2006;71:C190–C195. doi: 10.1111/j.1365-2621.2006.tb15616.x. DOI
Moretti V., Turchini G., Bellagamba F., Caprino F. Traceability issues in fishery and aquaculture products. Vet. Res. Commun. 2003;27:497–505. doi: 10.1023/B:VERC.0000014207.01900.5c. PubMed DOI
Mazzeo M.F., Siciliano R.A. Proteomics for the authentication of fish species. J. Proteom. 2016;147:119–124. doi: 10.1016/j.jprot.2016.03.007. PubMed DOI
Hubalkova Z., Kralik P., Kasalova J., Rencova E. Identification of gadoid species in fish meat by polymerase chain reaction (PCR) on genomic DNA. J. Agric. Food Chem. 2008;56:3454–3459. doi: 10.1021/jf703684w. PubMed DOI
Hanák P., Laknerová I., Švátora M. Second intron in the protein-coding region of the fish parvalbumin gene—A promising platform for polymerase chain reaction-based discrimination of fish meat of various species. J. Food Nutr. Res. 2012;51:81–88.
Griffiths A.M., Sotelo C.G., Mendes R., Pérez-Martín R.I., Schröder U., Shorten M., Silva H.A., Verrez-Bagnis V., Mariani S. Current methods for seafood authenticity testing in Europe: Is there a need for harmonisation? Food Control. 2014;45:95–100. doi: 10.1016/j.foodcont.2014.04.020. DOI
Gil L.A. PCR-based methods for fish and fishery products authentication. Trends Food Sci. Technol. 2007;18:558–566.
Clark L.F. The current status of DNA barcoding technology for species identification in fish value chains. Food Policy. 2015;54:85–94. doi: 10.1016/j.foodpol.2015.05.005. DOI
Fernandes T.J., Costa J., Carrapatoso I., Oliveira M.B.P., Mafra I. Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens. Crit. Rev. Food Sci. Nutr. 2017;57:3281–3296. doi: 10.1080/10408398.2015.1113157. PubMed DOI
Tomás C., Ferreira I., Faria M. Codfish authentication by a fast short amplicon high resolution melting analysis (SA-HRMA) method. Food Control. 2017;71:255–263. doi: 10.1016/j.foodcont.2016.07.004. DOI
Cai X., Xu M., Wang Y., Qiu D., Liu G., Lin A., Tang J., Zhang R., Zhu X. Sensitive and rapid detection of Clonorchis sinensis infection in fish by loop-mediated isothermal amplification (LAMP) Parasitol. Res. 2010;106:1379–1383. doi: 10.1007/s00436-010-1812-3. PubMed DOI
Caipang C.M.A., Haraguchi I., Ohira T., Hirono I., Aoki T. Rapid detection of a fish iridovirus using loop-mediated isothermal amplification (LAMP) J. Virol. Methods. 2004;121:155–161. doi: 10.1016/j.jviromet.2004.06.011. PubMed DOI
Lin T.C., Hsiao W.V., Han S.J., Joung S.J., Shiao J.C. A direct multiplex loop-mediated isothermal amplification method to detect three CITES-listed shark species. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021;31:2193–2203. doi: 10.1002/aqc.3592. DOI
But G.W.-C., Wu H.-Y., Shao K.-T., Shaw P.-C. Rapid detection of CITES-listed shark fin species by loop-mediated isothermal amplification assay with potential for field use. Sci. Rep. 2020;10:4455. doi: 10.1038/s41598-020-61150-8. PubMed DOI PMC
Wang Y., Feng J., Tian X. Application of loop-mediated isothermal amplification (LAMP) for rapid detection of Atlantic cod (Gadus morhua), Pacific cod (Gadus macrocephalus) and haddock (Melanogrammus aeglefinus) Mol. Cell. Probes. 2019;47:101420. doi: 10.1016/j.mcp.2019.07.003. PubMed DOI
Li Q., Cheng Y., Xu W., Cui X., Cao M., Xiong X., Wang L., Xiong X. Rapid identification of Atlantic salmon (Salmo salar) based on loop-mediated isothermal amplification (LAMP) using self-quenching fluorogenic approach. J. Food Compos. Anal. 2022;105:104224. doi: 10.1016/j.jfca.2021.104224. DOI
Hanner R., Desalle R., Ward R.D., Kolokotronis S.-O. The fish Barcode of Life (FISH-BOL) special issue. Mitochondrial DNA. 2011;22:1–2. doi: 10.3109/19401736.2011.598767. PubMed DOI
Böhme K., Calo-Mata P., Barros-Velázquez J., Ortea I. Review of Recent DNA-Based Methods for Main Food-Authentication Topics. J. Agric. Food Chem. 2019;67:3854–3864. doi: 10.1021/acs.jafc.8b07016. PubMed DOI
Zanzi A., Martinsohn J.T. FishTrace: A genetic catalogue of European fishes. Database. 2017;2017:bax075. doi: 10.1093/database/bax075. PubMed DOI PMC
Aparicio S., Chapman J., Stupka E., Putnam N., Chia J.-m., Dehal P., Christoffels A., Rash S., Hoon S., Smit A. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 2002;297:1301–1310. doi: 10.1126/science.1072104. PubMed DOI
Randhawa S.S., Pawar R. Fish genomes: Sequencing trends, taxonomy and influence of taxonomy on genome attributes. J. Appl. Ichthyol. 2021;37:553–562. doi: 10.1111/jai.14227. DOI
Nelson J.S., Grande T.C., Wilson M.V. Fishes of the World. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Food and Agriculture Organization of the United Nations . European Price Report—January 2022. Food and Agriculture Organization of the United Nations; Rome, Italy: 2022.
European Market Observatory for Fisheries and Aquaculture Products . The EU Fish Market. Publications Office of the European Union; Luxembourg: 2021.
Fan G., Song Y., Yang L., Huang X., Zhang S., Zhang M., Yang X., Chang Y., Zhang H., Li Y. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K) GigaScience. 2020;9:giaa080. doi: 10.1093/gigascience/giaa080. PubMed DOI PMC
Rehbein H. Differentiation of fish species by PCR-based DNA analysis of nuclear genes. Eur. Food Res. Technol. 2013;236:979–990. doi: 10.1007/s00217-013-1961-6. DOI
Paracchini V., Petrillo M., Lievens A., Kagkli D.-M., Angers-Loustau A. Nuclear DNA barcodes for cod identification in mildly-treated and processed food products. Food Addit. Contam. Part A. 2019;36:1–14. doi: 10.1080/19440049.2018.1556402. PubMed DOI
Cline S.D. Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2012;1819:979–991. doi: 10.1016/j.bbagrm.2012.06.002. PubMed DOI PMC
Pamilo P., Nei M. Relationships between gene trees and species trees. Mol. Biol. Evol. 1988;5:568–583. PubMed
Bermingham E., Forbes S.H., Friedland K., Pla C. Discrimination between Atlantic salmon (Salmo salar) of North American and European origin using restriction analyses of mitochondrial DNA. Can. J. Fish. Aquat. Sci. 1991;48:884–893. doi: 10.1139/f91-105. DOI
Lencová S., Zdeňková K., Akhatova D., Demnerová K. Aktuální trendy druhové identifikace rybího masa pomocí molekulárně-biologických metod. Chem. Listy. 2019;113:292–300.
Hebert P.D., Cywinska A., Ball S.L., DeWaard J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003;270:313–321. doi: 10.1098/rspb.2002.2218. PubMed DOI PMC
Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 2005;360:1847–1857. doi: 10.1098/rstb.2005.1716. PubMed DOI PMC
Hisar O., Erdogan O., Aksakal E., Hisar S.A. Authentication of fish species using a simple PCR-RFLP method. Isr. J. Aquac.-Bamigdeh. 2006;58:62–65. doi: 10.46989/001c.20422. DOI
Calo-Mata P., Sotelo C.G., Pérez-Martín R.I., Rehbein H., Hold G.L., Russell V.J., Pryde S., Quinteiro J., Rey-Méndez M., Rosa C. Identification of gadoid fish species using DNA-based techniques. Eur. Food Res. Technol. 2003;217:259–264. doi: 10.1007/s00217-003-0735-y. PubMed DOI
Sevilla R.G., Diez A., Norén M., Mouchel O., Jérôme M., Verrez-Bagnis V., Van Pelt H., Favre-Krey L., Krey G., The Fishtrace Consortium Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol. Ecol. Notes. 2007;7:730–734. doi: 10.1111/j.1471-8286.2007.01863.x. DOI
Teletchea F. Molecular identification methods of fish species: Reassessment and possible applications. Rev. Fish Biol. Fish. 2009;19:265–293. doi: 10.1007/s11160-009-9107-4. DOI
Bossier P. Authentication of Seafood Products by DNA Patterns. J. Food Sci. 1999;64:189–193. doi: 10.1111/j.1365-2621.1999.tb15862.x. DOI
Song H., Buhay J.E., Whiting M.F., Crandall K.A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA. 2008;105:13486–13491. doi: 10.1073/pnas.0803076105. PubMed DOI PMC
Buhay J.E. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J. Crustac. Biol. 2009;29:96–110. doi: 10.1651/08-3020.1. DOI
Williams S.T., Knowlton N. Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol. Biol. Evol. 2001;18:1484–1493. doi: 10.1093/oxfordjournals.molbev.a003934. PubMed DOI
Spielmann G., Diedrich J., Haszprunar G., Busch U., Huber I. Comparison of three DNA marker regions for identification of food relevant crustaceans of the order Decapoda. Eur. Food Res. Technol. 2019;245:987–995. doi: 10.1007/s00217-018-3199-9. DOI
Bensasson D., Zhang D.-X., Hartl D.L., Hewitt G.M. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 2001;16:314–321. doi: 10.1016/S0169-5347(01)02151-6. PubMed DOI
Ballin N.Z., Vogensen F.K., Karlsson A.H. Species determination—Can we detect and quantify meat adulteration? Meat Sci. 2009;83:165–174. doi: 10.1016/j.meatsci.2009.06.003. PubMed DOI
Mariani S., Bekkevold D. Stock Identification Methods. Elsevier; Amsterdam, The Netherlands: 2014. The nuclear genome: Neutral and adaptive markers in fisheries science; pp. 297–327.
Akhatova D., Laknerova I., Zdenkova K., Ólafsdo Ttir G., Magnúsdó S., Piknova Ľ., Kyrova V., Lerch Z., Hanak P. International interlaboratory study on TaqMan real-time polymerase chain reaction authentication of black seabream (Spondyliosoma cantharus) J. Food Nutr. Res. 2018;57:27–37.
Lee J.-S. The internally self-fertilizing hermaphroditic teleost Rivulus marmoratus (Cyprinodontiformes, Rivulidae) β-actin gene: Amplification and sequence analysis with conserved primers. Mar. Biotechnol. 2000;2:161–166. doi: 10.1007/s101269900020. PubMed DOI
Sohn Y.C., Kobayashi M., Aida K. Regulation of gonadotropin β subunit gene expression by testosterone and gonadotropin-releasing hormones in the goldfish, Carassius auratus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2001;129:419–426. doi: 10.1016/S1096-4959(01)00342-6. PubMed DOI
Wang Y., Ge W. Gonadotropin regulation of follistatin expression in the cultured ovarian follicle cells of zebrafish, Danio rerio. Gen. Comp. Endocrinol. 2003;134:308–315. doi: 10.1016/S0016-6480(03)00275-2. PubMed DOI
Prado M., Ortea I., Vial S., Rivas J., Calo-Mata P., Barros-Velázquez J. Advanced DNA-and protein-based methods for the detection and investigation of food allergens. Crit. Rev. Food Sci. Nutr. 2016;56:2511–2542. doi: 10.1080/10408398.2013.873767. PubMed DOI
Paracchini V., Petrillo M., Lievens A., Gallardo A.P., Martinsohn J.T., Hofherr J., Maquet A., Silva A.P.B., Kagkli D.M., Querci M. Novel nuclear barcode regions for the identification of flatfish species. Food Control. 2017;79:297–308. doi: 10.1016/j.foodcont.2017.04.009. PubMed DOI PMC
Edwards A., Civitello A., Hammond H.A., Caskey C.T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 1991;49:746. PubMed PMC
Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989;17:6463–6471. doi: 10.1093/nar/17.16.6463. PubMed DOI PMC
Tóth G., Gáspári Z., Jurka J. Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Res. 2000;10:967–981. doi: 10.1101/gr.10.7.967. PubMed DOI PMC
Stallings R.L. Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: Implications for human genetic diseases. Genomics. 1994;21:116–121. doi: 10.1006/geno.1994.1232. PubMed DOI
Jarne P., Lagoda P.J. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 1996;11:424–429. doi: 10.1016/0169-5347(96)10049-5. PubMed DOI
Litt M., Luty J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 1989;44:397. PubMed PMC
Rehbein H., Sotelo C.G., Perez-Martin R.I., Chapela-Garrido M., Hold G.L., Russell V.J., Pryde S.E., Santos A.T., Rosa C., Quinteiro J. Differentiation of raw or processed eel by PCR-based techniques: Restriction fragment length polymorphism analysis (RFLP) and single strand conformation polymorphism analysis (SSCP) Eur. Food Res. Technol. 2002;214:171–177. doi: 10.1007/s00217-001-0457-y. DOI
Maldini M., Marzano F.N., Fortes G.G., Papa R., Gandolfi G. Fish and seafood traceability based on AFLP markers: Elaboration of a species database. Aquaculture. 2006;261:487–494. doi: 10.1016/j.aquaculture.2006.07.010. DOI
Lago F.C., Herrero B., Vieites J.M., Espineira M. Genetic identification of horse mackerel and related species in seafood products by means of forensically informative nucleotide sequencing methodology. J. Agric. Food Chem. 2011;59:2223–2228. doi: 10.1021/jf104505q. PubMed DOI
Prado M., Boix A., von Holst C. Development of a real-time PCR method for the simultaneous detection of mackerel and horse mackerel. Food Control. 2013;34:19–23. doi: 10.1016/j.foodcont.2013.04.007. DOI
Leonardo R., Nunes R.S.C., Monteiro M.L.G., Conte-Junior C.A., Del Aguila E.M., Paschoalin V.M. Molecular testing on sardines and rulings on the authenticity and nutritional value of marketed fishes: An experience report in the state of Rio de Janeiro, Brazil. Food Control. 2016;60:394–400. doi: 10.1016/j.foodcont.2015.08.004. DOI
Armani A., Tinacci L., Xiong X., Castigliego L., Gianfaldoni D., Guidi A. Fish species identification in canned pet food by BLAST and Forensically Informative Nucleotide Sequencing (FINS) analysis of short fragments of the mitochondrial 16s ribosomal RNA gene (16S rRNA) Food Control. 2015;50:821–830. doi: 10.1016/j.foodcont.2014.10.018. DOI
Xiong X., Yuan F., Huang M., Xiong X. Exploring the possible reasons for fish fraud in China based on results from monitoring sardine products sold on Chinese markets using DNA barcoding and real time PCR. Food Addit. Contam. Part A. 2020;37:193–204. doi: 10.1080/19440049.2019.1694709. PubMed DOI
Bajzik P., Golian J., Židek R., Krall M., Walczycka M., Tkaczewska J. Identification of the Common Carp (Cyprinus carpio) Species Using Real-Time PCR Methods. Żywność Nauka-Technol.-Jakość. 2012;5:166–176.
Chen C.-H., Hsieh C.-H., Hwang D.-F. Species identification of Cyprinidae fish in Taiwan by FINS and PCR–RFLP analysis. Food Control. 2012;28:240–245. doi: 10.1016/j.foodcont.2012.05.012. DOI
Chen C.-H., Hsieh C.-H., Hwang D.-F. PCR-RFLP analysis using capillary electrophoresis for species identification of Cyprinidae-related products. Food Control. 2013;33:477–483. doi: 10.1016/j.foodcont.2013.03.036. DOI
Barman H.K., Barat A., Yadav B.M., Banerjee S., Meher P.K., Reddy P.V.G.K., Jana R.K. Genetic variation between four species of Indian major carps as revealed by random amplified polymorphic DNA assay. Aquaculture. 2003;217:115–123. doi: 10.1016/S0044-8486(02)00357-5. DOI
Lucentini L., Palomba A., Lancioni H., Gigliarelli L., Natali M., Panara F. Microsatellite polymorphism in Italian populations of northern pike (Esox lucius L.) Fish. Res. 2006;80:251–262. doi: 10.1016/j.fishres.2006.04.002. DOI
Lucentini L., Puletti M.E., Ricciolini C., Gigliarelli L., Fontaneto D., Lanfaloni L., Bilò F., Natali M., Panara F. Molecular and phenotypic evidence of a new species of genus Esox (Esocidae, Esociformes, Actinopterygii): The southern pike, Esox flaviae. PLoS ONE. 2011;6:e25218. doi: 10.1371/journal.pone.0025218. PubMed DOI PMC
Denys G.P.J., Dettai A., Persat H., Hautecœur M., Keith P. Morphological and molecular evidence of three species of pikes Esox spp.(Actinopterygii, Esocidae) in France, including the description of a new species. C. R. Biol. 2014;337:521–534. doi: 10.1016/j.crvi.2014.07.002. PubMed DOI
Saull J., Duggan C., Hobbs G., Edwards T. The detection of Atlantic cod (Gadus morhua) using loop mediated isothermal amplification in conjunction with a simplified DNA extraction process. Food Control. 2016;59:306–313. doi: 10.1016/j.foodcont.2015.05.038. DOI
Herrero B., Madrinan M., Vieites J.M., Espineira M. Authentication of Atlantic cod (Gadus morhua) using real time PCR. J. Agric. Food Chem. 2010;58:4794–4799. doi: 10.1021/jf904018h. PubMed DOI
Mueller S., Handy S.M., Deeds J.R., George G.O., Broadhead W.J., Pugh S.E., Garrett S.D. Development of a COX1 based PCR-RFLP method for fish species identification. Food Control. 2015;55:39–42. doi: 10.1016/j.foodcont.2015.02.026. DOI
Poćwierz-Kotus A., Kijewska A., Petereit C., Bernaś R., Więcaszek B., Arnyasi M., Lien S., Kent M.P., Wenne R. Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays. Mar. Genom. 2015;19:17–22. doi: 10.1016/j.margen.2014.05.010. PubMed DOI
Wolf C., Burgener M., Hübner P., Lüthy J. PCR-RFLP analysis of mitochondrial DNA: Differentiation of fish species. LWT-Food Sci. Technol. 2000;33:144–150. doi: 10.1006/fstl.2000.0630. DOI
Li H., Xie R., Yu W., Wang N., Chen A. Rapid identification of cod and oil fish components based on loop-mediated isothermal amplification. Aquaculture. 2021;545:737209. doi: 10.1016/j.aquaculture.2021.737209. DOI
Shi R., Xiong X., Huang M., Xu W., Li Y., Cao M., Xiong X. High resolution melting (HRM) analysis of a 12S rRNA mini barcode as a novel approach for codfish species authentication in processed fish products. Eur. Food Res. Technol. 2020;246:891–899. doi: 10.1007/s00217-020-03456-5. DOI
Hwang C.-C., Lin C.-M., Huang C.-Y., Huang Y.-L., Kang F.-C., Hwang D.-F., Tsai Y.-H. Chemical characterisation, biogenic amines contents, and identification of fish species in cod and escolar steaks, and salted escolar roe products. Food Control. 2012;25:415–420. doi: 10.1016/j.foodcont.2011.11.008. DOI
Hird H., Hold G.L., Chisholm J., Reece P., Russell V., Brown J., Goodier R., MacArthur R. Development of a method for the quantification of haddock (Melanogrammus aeglefinus) in commercial products using real-time PCR. Eur. Food Res. Technol. 2005;220:633–637. doi: 10.1007/s00217-004-1050-y. DOI
Espineira M., Gonzalez-Lavin N., Vieites J.M., Santaclara F.J. Authentication of anglerfish species (Lophius spp) by means of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) and forensically informative nucleotide sequencing (FINS) methodologies. J. Agric. Food Chem. 2008;56:10594–10599. doi: 10.1021/jf801728q. PubMed DOI
Ramella M.S., Kroth M.A., Tagliari C., Arisi A.C.M. Optimization of random amplified polymorphic DNA protocol for molecular identification of Lophius gastrophysus. Food Sci. Technol. 2005;25:733–735. doi: 10.1590/S0101-20612005000400017. DOI
Mukherjee S., Hanak P., Jilkova D., Musilova Z., Horka P., Lerch Z., Zdenkova K., Cermakova E. Simultaneous detection and quantification of two European anglerfishes by novel genomic primer. J. Food Compos. Anal. 2023;115:104992. doi: 10.1016/j.jfca.2022.104992. DOI
Pepe T., Trotta M., di Marco I., Cennamo P., Anastasio A., Cortesi M.L. Mitochondrial cytochrome b DNA sequence variations: An approach to fish species identification in processed fish products. J. Food Prot. 2005;68:421–425. doi: 10.4315/0362-028X-68.2.421. PubMed DOI
Pappalardo A.M., Ferrito V. A COIBar-RFLP strategy for the rapid detection of Engraulis encrasicolus in processed anchovy products. Food Control. 2015;57:385–392. doi: 10.1016/j.foodcont.2015.03.038. DOI
Sánchez A., Quinteiro J., Rey-Mendez M., Perez-Martín R.I., Sotelo C. Identification of European hake species (Merluccius merluccius) using real-time PCR. J. Agric. Food Chem. 2009;57:3397–3403. doi: 10.1021/jf8036165. PubMed DOI
Espineira M., González-Lavín N., Vieites J.M., Santaclara F.J. Development of a method for the genetic identification of flatfish species on the basis of mitochondrial DNA sequences. J. Agric. Food Chem. 2008;56:8954–8961. doi: 10.1021/jf800570r. PubMed DOI
Xiong X., Huang M., Xu W., Cao M., Li Y., Xiong X. Tracing Atlantic Salmon (Salmo salar) in processed fish products using the novel loop-mediated isothermal amplification (LAMP) and PCR assays. Food Anal. Methods. 2020;13:1235–1245. doi: 10.1007/s12161-020-01738-y. DOI
Xiong X., Huang M., Xu W., Li Y., Cao M., Xiong X. Using real time fluorescence loop-mediated isothermal amplification for rapid species authentication of Atlantic salmon (Salmo salar) J. Food Compos. Anal. 2021;95:103659. doi: 10.1016/j.jfca.2020.103659. DOI
Soga K., Nakamura K., Ishigaki T., Kimata S., Ohmori K., Kishine M., Mano J., Takabatake R., Kitta K., Nagoya H. Data representing applicability of developed growth hormone 1 (GH1) gene detection method for detecting Atlantic salmon (Salmo salar) at high specificity to processed salmon commodities. Data Brief. 2019;27:104695. doi: 10.1016/j.dib.2019.104695. PubMed DOI PMC
Holman L.E., Onoufriou A., Hillestad B., Johnston I.A. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon. Aquaculture. 2017;476:59–64. doi: 10.1016/j.aquaculture.2017.04.001. DOI
Drywa A., Poćwierz-Kotus A., Wąs A., Dobosz S., Kent M.P., Lien S., Bernaś R., Wenne R. Genotyping of two populations of Southern Baltic Sea trout Salmo trutta m. trutta using an Atlantic salmon derived SNP-array. Mar. Genom. 2013;9:25–32. doi: 10.1016/j.margen.2012.08.001. PubMed DOI
Hildebrandt S., Garber E.A. Effects of processing on detection and quantification of the parvalbumin gene in Atlantic salmon (Salmo salar) Food Chem. 2010;119:75–80. doi: 10.1016/j.foodchem.2009.05.074. DOI
Herrero B., Vieites J.M., Espiñeira M. Authentication of Atlantic salmon (Salmo salar) using real-time PCR. Food Chem. 2011;127:1268–1272. doi: 10.1016/j.foodchem.2011.01.070. PubMed DOI
Zhang J., Cai Z. The application of DGGE and AFLP-derived SCAR for discrimination between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) Food Control. 2007;18:672–676. doi: 10.1016/j.foodcont.2006.02.015. DOI
Elo K., Ivanoff S., Vuorinen J.A., Piironen J. Inheritance of RAPD markers and detection of interspecific hybridization with brown trout and Atlantic salmon. Aquaculture. 1997;152:55–65. doi: 10.1016/S0044-8486(96)01529-3. DOI
Carrera E., García T., Céspedes A., González I., Fernández A., Hernández P.E., Martín R. PCR-RFLP of the mitochondrial cytochrome oxidase gene: A simple method for discrimination between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) J. Sci. Food Agric. 1999;79:1654–1658. doi: 10.1002/(SICI)1097-0010(199909)79:12<1654::AID-JSFA414>3.0.CO;2-S. DOI
Carrera E., García T., Céspedes A., González I., Fernández A., Asensio L.M., Hernández P.E., Martín R. Identification of smoked Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) using PCR-restriction fragment length polymorphism of the p53 gene. J. AOAC Int. 2000;83:341–346. doi: 10.1093/jaoac/83.2.341. PubMed DOI
Carrera E., Garcia T., Céspedes A., González I., Fernandez A., Hernandez P., Martin R. Salmon and trout analysis by PCR-RFLP for identity authentication. J. Food Sci. 1999;64:410–413. doi: 10.1111/j.1365-2621.1999.tb15053.x. DOI
Carrera E., Garcia T., Cespedes A., Gonzalez I., Sanz B., Hernandez P.E., Martin R. Identification of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) by using polymerase chain reaction amplification and restriction analysis of the mitochondrial cytochrome b gene. J. Food Prot. 1998;61:482–486. doi: 10.4315/0362-028X-61.4.482. PubMed DOI
Drywa A., Poćwierz-Kotus A., Dobosz S., Kent M.P., Lien S., Wenne R. Identification of multiple diagnostic SNP loci for differentiation of three salmonid species using SNP-arrays. Mar. Genom. 2014;15:5–6. doi: 10.1016/j.margen.2014.03.003. PubMed DOI
Li Q., Xue H., Fei Y., Cao M., Xiong X., Xiong X., Yang Y., Wang L. Visual detection of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) simultaneously by duplex loop-mediated isothermal amplification. Food Chem. Mol. Sci. 2022;4:100107. doi: 10.1016/j.fochms.2022.100107. PubMed DOI PMC
Xu W., Fu M., Huang M., Cui X., Li Y., Cao M., Wang L., Xiong X., Xiong X. Duplex real-time PCR combined with melting curve analysis for rapid detection of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) J. Food Compos. Anal. 2021;97:103765. doi: 10.1016/j.jfca.2020.103765. DOI
Espiñeira M., Vieites J.M., Santaclara F.J. Development of a genetic method for the identification of salmon, trout, and bream in seafood products by means of PCR–RFLP and FINS methodologies. Eur. Food Res. Technol. 2009;229:785–793. doi: 10.1007/s00217-009-1107-z. DOI
Rehbein H. Identification of the fish species of raw or cold-smoked salmon and salmon caviar by single-strand conformation polymorphism (SSCP) analysis. Eur. Food Res. Technol. 2005;220:625–632. doi: 10.1007/s00217-004-1067-2. DOI
Li X., Li J., Zhang S., He Y., Pan L. Novel real-time PCR method based on growth hormone gene for identification of Salmonidae ingredient in food. J. Agric. Food Chem. 2013;61:5170–5177. doi: 10.1021/jf400769y. PubMed DOI
Xiong X., Huang M., Xu W., Li Y., Cao M., Xiong X. Rainbow trout (Oncorhynchus mykiss) identification in processed fish products using loop-mediated isothermal amplification and polymerase chain reaction assays. J. Sci. Food Agric. 2020;100:4696–4704. doi: 10.1002/jsfa.10526. PubMed DOI
Liu S., Palti Y., Gao G., Rexroad III C.E. Development and validation of a SNP panel for parentage assignment in rainbow trout. Aquaculture. 2016;452:178–182. doi: 10.1016/j.aquaculture.2015.11.001. DOI
Liu S., Palti Y., Martin K.E., Parsons J.E., Rexroad III C.E. Assessment of genetic differentiation and genetic assignment of commercial rainbow trout strains using a SNP panel. Aquaculture. 2017;468:120–125. doi: 10.1016/j.aquaculture.2016.10.004. DOI
Velasco A., Sánchez A., Martínez I., Santaclara F.J., Pérez-Martín R.I., Sotelo C.G. Development of a Real-Time PCR method for the identification of Atlantic mackerel (Scomber scombrus) Food Chem. 2013;141:2006–2010. doi: 10.1016/j.foodchem.2013.05.077. PubMed DOI
Aranishi F. Rapid PCR-RFLP method for discrimination of imported and domestic mackerel. Mar. Biotechnol. 2005;7:571–575. doi: 10.1007/s10126-004-4102-1. PubMed DOI
Aranishi F. PCR-RFLP analysis of nuclear nontranscribed spacer for mackerel species identification. J. Agric. Food Chem. 2005;53:508–511. doi: 10.1021/jf0484881. PubMed DOI
Turan C. Microsatellite DNA reveals genetically different populations of Atlantic bonito Sarda sarda in the Mediterranean Basin. Biochem. Syst. Ecol. 2015;63:174–182. doi: 10.1016/j.bse.2015.10.007. DOI
Xiong X., Xu W., Guo L., An J., Huang L., Qian H., Cui X., Li Y., Cao M., Xiong X. Development of loop-mediated isothermal amplification (LAMP) assay for rapid screening of skipjack tuna (Katsuwonus pelamis) in processed fish products. J. Food Compos. Anal. 2021;102:104038. doi: 10.1016/j.jfca.2021.104038. DOI
Rehbein H., Mackie I.M., Pryde S., Gonzales-Sotelo C., Medina I., Perez-Martin R., Quinteiro J., Rey-Mendez M. Fish species identification in canned tuna by PCR-SSCP: Validation by a collaborative study and investigation of intra-species variability of the DNA-patterns. Food Chem. 1999;64:263–268. doi: 10.1016/S0308-8146(98)00125-3. DOI
Lockley A.K., Bardsley R.G. Novel Method for the Discrimination of Tuna (Thunnus hynnus) and Bonito (Sarda sarda) DNA. J. Agric. Food Chem. 2000;48:4463–4468. doi: 10.1021/jf000387p. PubMed DOI
Weder J.K., Rehbein H., Kaiser K.-P. On the specificity of tuna-directed primers in PCR-SSCP analysis of fish and meat. Eur. Food Res. Technol. 2001;213:139–144. doi: 10.1007/s002170100339. DOI
Fernandes T.J., Costa J., Oliveira M.B.P., Mafra I. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches. Food Chem. 2018;245:1034–1041. doi: 10.1016/j.foodchem.2017.11.068. PubMed DOI
Lauerman L.H. Advances in PCR technology. Anim. Health Res. Rev. 2004;5:247–248. doi: 10.1079/AHRR200477. PubMed DOI
Rahman M.T., Uddin M.S., Sultana R., Moue A., Setu M. Polymerase chain reaction (PCR): A short review. Anwer Khan Mod. Med. Coll. J. 2013;4:30–36. doi: 10.3329/akmmcj.v4i1.13682. DOI
Kubista M., Andrade J.M., Bengtsson M., Forootan A., Jonák J., Lind K., Sindelka R., Sjöback R., Sjögreen B., Strömbom L. The real-time polymerase chain reaction. Mol. Asp. Med. 2006;27:95–125. doi: 10.1016/j.mam.2005.12.007. PubMed DOI
Dingle T.C., Sedlak R.H., Cook L., Jerome K.R. Tolerance of Droplet-Digital PCR vs Real-Time Quantitative PCR to Inhibitory Substances. Clin. Chem. 2013;59:1670–1672. doi: 10.1373/clinchem.2013.211045. PubMed DOI PMC
Fernandes T.J., Costa J., Oliveira M.B.P., Mafra I. COI barcode-HRM as a novel approach for the discrimination of hake species. Fish. Res. 2018;197:50–59. doi: 10.1016/j.fishres.2017.09.014. DOI
Fernandes T.J., Costa J., Oliveira M.B.P., Mafra I. DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chem. 2017;230:49–57. doi: 10.1016/j.foodchem.2017.03.015. PubMed DOI
Silva A.J., Hellberg R.S. Advances in Food and Nutrition Research. Volume 95. Elsevier; Amsterdam, The Netherlands: 2021. DNA-based techniques for seafood species authentication; pp. 207–255. PubMed
Fernandes T.J., Amaral J.S., Mafra I. DNA barcode markers applied to seafood authentication: An updated review. Crit. Rev. Food Sci. Nutr. 2021;61:3904–3935. doi: 10.1080/10408398.2020.1811200. PubMed DOI
Druml B., Cichna-Markl M. High resolution melting (HRM) analysis of DNA—Its role and potential in food analysis. Food Chem. 2014;158:245–254. doi: 10.1016/j.foodchem.2014.02.111. PubMed DOI
Fernandes T.J., Silva C.R., Costa J., Oliveira M.B.P., Mafra I. High resolution melting analysis of a COI mini-barcode as a new approach for Penaeidae shrimp species discrimination. Food Control. 2017;82:8–17. doi: 10.1016/j.foodcont.2017.06.016. DOI
Verrez-Bagnis V., Sotelo C.G., Mendes R., Silva H., Kappel K., Schröder U. Bioactive Molecules in Food. Springer; Berlin/Heidelberg, Germany: 2019. Methods for seafood authenticity testing in Europe; pp. 2063–2117.
Cao L., Cui X., Hu J., Li Z., Choi J.R., Yang Q., Lin M., Hui L.Y., Xu F. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens. Bioelectron. 2017;90:459–474. doi: 10.1016/j.bios.2016.09.082. PubMed DOI
Hindson B.J., Ness K.D., Masquelier D.A., Belgrader P., Heredia N.J., Makarewicz A.J., Bright I.J., Lucero M.Y., Hiddessen A.L., Legler T.C. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011;83:8604–8610. doi: 10.1021/ac202028g. PubMed DOI PMC
Garafutdinov R.R., Galimova A.A., Sakhabutdinova A.R. The influence of quality of primers on the formation of primer dimers in PCR. Nucl. Nucl. Nucleic Acids. 2020;39:1251–1269. doi: 10.1080/15257770.2020.1803354. PubMed DOI
Vallone P.M., Butler J.M. AutoDimer: A screening tool for primer-dimer and hairpin structures. Biotechniques. 2004;37:226–231. doi: 10.2144/04372ST03. PubMed DOI
Whitford W., Hawkins V., Moodley K.S., Grant M.J., Lehnert K., Snell R.G., Jacobsen J.C. Proof of concept for multiplex amplicon sequencing for mutation identification using the MinION nanopore sequencer. Sci. Rep. 2022;12:8572. doi: 10.1038/s41598-022-12613-7. PubMed DOI PMC
Slatko B.E., Gardner A.F., Ausubel F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018;122:e59. doi: 10.1002/cpmb.59. PubMed DOI PMC
Fakruddin M., Chowdhury A. Pyrosequencing an alternative to traditional Sanger sequencing. Am. J. Biochem. Biotechnol. 2012;8:14–20. doi: 10.3844/ajbbsp.2012.14.20. DOI
Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012;2012:251364. doi: 10.1155/2012/251364. PubMed DOI PMC
Illumina Sequencing and Array-Based Solutions for Genetic Research. [(accessed on 21 May 2022)]. Available online: https://www.illumina.com.
Canadian Agency for Drugs Technologies in Health . Next Generation DNA Sequencing: A Review of the Cost Effectiveness and Guidelines. Canadian Agency for Drugs and Technologies in Health; Ottawa, ON, Canada: 2014. 19p PubMed
Young A.D., Gillung J.P. Phylogenomics—Principles, opportunities and pitfalls of big-data phylogenetics. Syst. Entomol. 2020;45:225–247. doi: 10.1111/syen.12406. DOI
Xie Z., Yu C., Guo L., Li M., Yong Z., Liu X., Meng Z., Lin H. Ion Torrent next-generation sequencing reveals the complete mitochondrial genome of black and reddish morphs of the Coral Trout Plectropomus leopardus. Mitochondrial DNA Part A. 2016;27:609–612. doi: 10.3109/19401736.2014.908369. PubMed DOI
Adelyna M.N., Jung H., Chand V., Mather P., Azizah M.S. A genome survey sequence (GSS) analysis and microsatellite marker development for Indian mackerel, Rastrelliger kanagurta, using Ion Torrent technology. Meta Gene. 2016;10:67–72. doi: 10.1016/j.mgene.2016.10.005. DOI
De Battisti C., Marciano S., Magnabosco C., Busato S., Arcangeli G., Cattoli G. Pyrosequencing as a tool for rapid fish species identification and commercial fraud detection. J. Agric. Food Chem. 2014;62:198–205. doi: 10.1021/jf403545m. PubMed DOI
Keller I., Taverna A., Seehausen O. A pyrosequencing assay for the rapid discrimination of mitochondrial lineages in the Salmo trutta species complex. Mol. Ecol. Resour. 2011;11:196–199. doi: 10.1111/j.1755-0998.2010.02897.x. PubMed DOI
Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res. 2001;11:3–11. doi: 10.1101/gr.150601. PubMed DOI
Morello L., Braglia L., Gavazzi F., Gianì S., Breviario D. Tubulin-based DNA barcode: Principle and applications to complex food matrices. Genes. 2019;10:229. doi: 10.3390/genes10030229. PubMed DOI PMC
Miya M., Gotoh R.O., Sado T. MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 2020;86:939–970. doi: 10.1007/s12562-020-01461-x. DOI
Shaw J.L., Clarke L.J., Wedderburn S.D., Barnes T.C., Weyrich L.S., Cooper A. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 2016;197:131–138. doi: 10.1016/j.biocon.2016.03.010. DOI
Bessey C., Jarman S.N., Berry O., Olsen Y.S., Bunce M., Simpson T., Power M., McLaughlin J., Edgar G.J., Keesing J. Maximizing fish detection with eDNA metabarcoding. Environ. DNA. 2020;2:493–504. doi: 10.1002/edn3.74. DOI
Euclide P.T., Lor Y., Spear M.J., Tajjioui T., Vander Zanden J., Larson W.A., Amberg J.J. Environmental DNA metabarcoding as a tool for biodiversity assessment and monitoring: Reconstructing established fish communities of north-temperate lakes and rivers. Divers. Distrib. 2021;27:1966–1980. doi: 10.1111/ddi.13253. DOI
Levsky J.M., Singer R.H. Fluorescence in situ hybridization: Past, present and future. J. Cell Sci. 2003;116:2833–2838. doi: 10.1242/jcs.00633. PubMed DOI
Bayani J., Squire J.A. Fluorescence in situ Hybridization (FISH) Curr. Protoc. Cell Biol. 2004;23 doi: 10.1002/0471143030.cb2204s23. PubMed DOI
Lipov J., Knejzlík Z., Jablonská E. Laboratoř Analýzy Biologických Materiálů. 1st ed. Vysoká Škola Chemicko-Technologická v Praze; Prague, Czech Republic: 2017.
Jarcho J. Restriction Fragment Length Polymorphism Analysis. Curr. Protoc. Hum. Genet. 2000;1 doi: 10.1002/0471142905.hg0207s01. PubMed DOI
Zhang J., Huang H., Cai Z., Huang L. Species identification in salted products of red snappers by semi-nested PCR-RFLP based on the mitochondrial 12S rRNA gene sequence. Food Control. 2006;17:557–563. doi: 10.1016/j.foodcont.2005.01.011. DOI
Pardo M.A., Pérez-Villareal B. Identification of commercial canned tuna species by restriction site analysis of mitochondrial DNA products obtained by nested primer PCR. Food Chem. 2004;86:143–150. doi: 10.1016/j.foodchem.2003.09.024. DOI
Rasmussen H.B. Gel Electrophoresis—Principles and Basics. InTechOpen; London, UK: 2012. Restriction fragment length polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis-valuable tool for genotyping and genetic fingerprinting.
Vos P., Hogers R., Bleeker M., Reijans M., Lee T.V.D., Hornes M., Friters A., Pot J., Paleman J., Kuiper M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–4414. doi: 10.1093/nar/23.21.4407. PubMed DOI PMC
Paun O., Schönswetter P. Plant DNA Fingerprinting and Barcoding. Springer; Berlin/Heidelberg, Germany: 2012. Amplified fragment length polymorphism: An invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies; pp. 75–87. PubMed PMC
Blears M., De Grandis S., Lee H., Trevors J. Amplified fragment length polymorphism (AFLP): A review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 1998;21:99–114. doi: 10.1038/sj.jim.2900537. DOI
Masiga D.K., Turner C.M.R. Parasite Genomics Protocols. Springer; Berlin/Heidelberg, Germany: 2004. Amplified (restriction) fragment length polymorphism (AFLP) analysis; pp. 173–185. PubMed
Hayashi K. PCR-SSCP: A method for detection of mutations. Genet. Anal. Biomol. Eng. 1992;9:73–79. doi: 10.1016/1050-3862(92)90001-L. PubMed DOI
Rehbein H., Kress G., Schmidt T. Application of PCR-SSCP to species identification of fishery products. J. Sci. Food Agric. 1997;74:35–41. doi: 10.1002/(SICI)1097-0010(199705)74:1<35::AID-JSFA765>3.0.CO;2-2. DOI
Lockley A., Bardsley R. DNA-based methods for food authentication. Trends Food Sci. Technol. 2000;11:67–77. doi: 10.1016/S0924-2244(00)00049-2. DOI
Rego I., Martínez A., González-Tizón A., Vieites J., Leira F., Méndez J. PCR technique for identification of mussel species. J. Agric. Food Chem. 2002;50:1780–1784. doi: 10.1021/jf0110957. PubMed DOI
Ali B.A., Huang T.-H., Qin D.-N., Wang X.-M. A review of random amplified polymorphic DNA (RAPD) markers in fish research. Rev. Fish Biol. Fish. 2004;14:443–453. doi: 10.1007/s11160-005-0815-0. DOI
Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63. doi: 10.1093/nar/28.12.e63. PubMed DOI PMC
Li Y., Fan P., Zhou S., Zhang L. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microb. Pathog. 2017;107:54–61. doi: 10.1016/j.micpath.2017.03.016. PubMed DOI
Angers A., Ballin N., Hofherr J., Kagkli D., Lievens A., Maquet A., Martinsohn J., Paracchini V., Petrillo M., Puertas-Gallardo A. Enhancing Fish Species Identification Using Novel Markers and Emerging Technologies. Volume 2 European Commission; Brussels, Belgium: 2017. Technical Report.
Earley M.C., Vogt R.F., Jr., Shapiro H.M., Mandy F.F., Kellar K.L., Bellisario R., Pass K.A., Marti G.E., Stewart C.C., Hannon W.H. Report from a workshop on multianalyte microsphere assays. Cytom. (Clin. Cytom.) 2002;50:239–242. doi: 10.1002/cyto.10140. PubMed DOI
Chen R., Gao X.-B., Mei M.-Z., Duan Y.-Y., Liu Z.-L., Weng W.-C., Yang J. A novel multiplex xMAP assay for generic detection of avian, fish, and ruminant DNA in feed and feedstuffs. Appl. Microbiol. Biotechnol. 2019;103:4575–4584. doi: 10.1007/s00253-019-09833-9. PubMed DOI
Luminex xMAP® Technology. [(accessed on 21 May 2022)]. Available online: https://www.luminexcorp.com/xmap-technology/#overview.
Michná V., Reslová N., Mikel P., Slaný M. Představení xMAP technologie a Možností Jejího Využití. Přírodovědecká Fakulta; Olomouc, Czech Republic: 2016.
Reslova N., Michna V., Kasny M., Mikel P., Kralik P. xMAP technology: Applications in detection of pathogens. Front. Microbiol. 2017;8:55. doi: 10.3389/fmicb.2017.00055. PubMed DOI PMC
Hildebrandt S. Multiplexed identification of different fish species by detection of parvalbumin, a common fish allergen gene: A DNA application of multi-analyte profiling (xMAP™) technology. Anal. Bioanal. Chem. 2010;397:1787–1796. doi: 10.1007/s00216-010-3760-2. PubMed DOI
Gleason L.U., Burton R.S. High-throughput molecular identification of fish eggs using multiplex suspension bead arrays. Mol. Ecol. Resour. 2012;12:57–66. doi: 10.1111/j.1755-0998.2011.03059.x. PubMed DOI
Bartlett S., Davidson W. FINS (forensically informative nucleotide sequencing): A procedure for identifying the animal origin of biological specimens. Biotechniques. 1992;12:408–411. PubMed
Jérôme M., Martinsohn J.T., Ortega D., Carreau P., Verrez-Bagnis V.R., Mouchel O. Toward fish and seafood traceability: Anchovy species determination in fish products by molecular markers and support through a public domain database. J. Agric. Food Chem. 2008;56:3460–3469. doi: 10.1021/jf703704m. PubMed DOI
Hebert P.D., Ratnasingham S., De Waard J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003;270:S96–S99. doi: 10.1098/rsbl.2003.0025. PubMed DOI PMC
Hellberg R.S., Kawalek M.D., Van K.T., Shen Y., Williams-Hill D.M. Comparison of DNA extraction and PCR setup methods for use in high-throughput DNA barcoding of fish species. Food Anal. Methods. 2014;7:1950–1959. doi: 10.1007/s12161-014-9865-z. DOI
Ward R.D., Hanner R., Hebert P.D. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 2009;74:329–356. doi: 10.1111/j.1095-8649.2008.02080.x. PubMed DOI
Delrieu-Trottin E., Williams J.T., Pitassy D., Driskell A., Hubert N., Viviani J., Cribb T.H., Espiau B., Galzin R., Kulbicki M. A DNA barcode reference library of French Polynesian shore fishes. Sci. Data. 2019;6:114. doi: 10.1038/s41597-019-0123-5. PubMed DOI PMC
Sarmiento-Camacho S., Valdez-Moreno M. DNA barcode identification of commercial fish sold in Mexican markets. Genome. 2018;61:457–466. doi: 10.1139/gen-2017-0222. PubMed DOI
Jin L., Yu J., Yuan X., Du X. Fish classification using DNA barcode sequences through deep learning method. Symmetry. 2021;13:1599. doi: 10.3390/sym13091599. DOI
Steinke D., Hanner R. The FISH-BOL collaborators’ protocol. Mitochondrial DNA. 2011;22:10–14. doi: 10.3109/19401736.2010.536538. PubMed DOI
Ivanova N.V., Zemlak T.S., Hanner R.H., Hebert P.D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes. 2007;7:544–548. doi: 10.1111/j.1471-8286.2007.01748.x. DOI
Li M., Zhang K.Y.-B., But P.P.-H., Shaw P.-C. Forensically informative nucleotide sequencing (FINS) for the authentication of Chinese medicinal materials. Chin. Med. 2011;6:42. doi: 10.1186/1749-8546-6-42. PubMed DOI PMC
Santaclara F.J., Espiñeira M., Vieites J.M. Genetic identification of squids (families Ommastrephidae and Loliginidae) by PCR–RFLP and FINS methodologies. J. Agric. Food Chem. 2007;55:9913–9920. doi: 10.1021/jf0707177. PubMed DOI
Hellberg R.S.R., Morrissey M.T. Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market. JALA J. Assoc. Lab. Autom. 2011;16:308–321. doi: 10.1016/j.jala.2010.07.004. PubMed DOI
Sotelo C.G., Calo-Mata P., Chapela M.J., Pérez-Martín R.I., Rehbein H., Hold G.L., Russell V.J., Pryde S., Quinteiro J., Izquierdo M. Identification of flatfish (Pleuronectiforme) species using DNA-based techniques. J. Agric. Food Chem. 2001;49:4562–4569. doi: 10.1021/jf010452a. PubMed DOI
Notomi T., Mori Y., Tomita N., Kanda H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015;53:1–5. doi: 10.1007/s12275-015-4656-9. PubMed DOI
Liu Z.J., Cordes J. DNA marker technologies and their applications in aquaculture genetics. Aquaculture. 2004;238:1–37. doi: 10.1016/j.aquaculture.2004.05.027. DOI
Mackie I., Pryde S.E., Gonzales-Sotelo C., Medina I., Pérez-Martın R., Quinteiro J., Rey-Mendez M., Rehbein H. Challenges in the identification of species of canned fish. Trends Food Sci. Technol. 1999;10:9–14. doi: 10.1016/S0924-2244(99)00013-8. DOI
Čížková H. Falšování Potravin. Verlag Dashöfer; Hamburg, Germany: 2019.
Chiesa L.M., Pavlovic R., Nobile M., Di Cesare F., Malandra R., Pessina D., Panseri S. Discrimination between Fresh and Frozen-Thawed Fish Involved in Food Safety and Fraud Protection. Foods. 2020;9:1896. doi: 10.3390/foods9121896. PubMed DOI PMC
Monteiro C.S., Deconinck D., Eljasik P., Sobczak M., Derycke S., Panicz R., Kane N., Mazloomrezaei M., Devlin R., Faria M.A. A fast HRMA tool to authenticate eight salmonid species in commercial food products. Food Chem. Toxicol. 2021;156:112440. doi: 10.1016/j.fct.2021.112440. PubMed DOI
Keskin E., Atar H. Molecular identification of fish species from surimi-based products labeled as A laskan pollock. J. Appl. Ichthyol. 2012;28:811–814. doi: 10.1111/j.1439-0426.2012.02031.x. DOI
Panprommin D., Manosri R. DNA barcoding as an approach for species traceability and labeling accuracy of fish fillet products in Thailand. Food Control. 2022;136:108895. doi: 10.1016/j.foodcont.2022.108895. DOI
Pahl S. Authenticity for the Australian Seafood Sector: A Review of Available Tools to Identify Substitution and Mislabelling. Government of South Australia; Adelaide, Australia: 2018. 57p
Reilly A. Overview of Food Fraud in the Fisheries Sector. FAO Fisheries and Aquaculture Circular. 2018. [(accessed on 20 October 2022)]. I-21. Available online: https://www.proquest.com/openview/42f30fa94753cb46bfc7cb8305bb2eb0/1?pq-origsite=gscholar&cbl=237324.
Kroetz K., Luque G.M., Gephart J.A., Jardine S.L., Lee P., Chicojay Moore K., Cole C., Steinkruger A., Donlan C.J. Consequences of seafood mislabeling for marine populations and fisheries management. Proc. Natl. Acad. Sci. USA. 2020;117:30318–30323. doi: 10.1073/pnas.2003741117. PubMed DOI PMC
US Food Drug Administration . Seafood Species Substitution and Economic Fraud. United States Department of Health and Human Services; Washington, DC, USA: 2014.
Ballin N., Lametsch R. Analytical methods for authentication of fresh vs. thawed meat—A review. Meat Sci. 2008;80:151–158. doi: 10.1016/j.meatsci.2007.12.024. PubMed DOI
Rutkayová J., Voříšková J., Beneš K., Kašparů M., Škrleta J., Klečacký D. Dielektrické vlastnosti rozmrazeného rybího masa a využití freshmetru pro detegování zmrazení. Chem. Listy. 2019;113:515–517.
Wang Y., Hamid N., Jia P.P., Pei D.S. A comprehensive review on genetically modified fish: Key techniques, applications and future prospects. Rev. Aquac. 2021;13:1635–1660. doi: 10.1111/raq.12538. DOI
Maclean N., Talwar S. Injection of cloned genes into rainbow trout eggs. J. Embryol. Exp. Morphol. 1984;82:187–200.
Debode F., Marien A., Ledoux Q., Janssen E., Ancion C., Berben G. Detection of ornamental transgenic fish by real-time PCR and fluorescence microscopy. Transgenic Res. 2020;29:283–294. doi: 10.1007/s11248-020-00197-9. PubMed DOI
Gong Z., Ju B., Wan H. Green fluorescent protein (GFP) transgenic fish and their applications. Genetica. 2001;111:213–225. doi: 10.1023/A:1013796810782. PubMed DOI
Rehbein H., Bogerd J. Identification of genetically modified zebrafish (Danio rerio) by protein-and DNA-analysis. J. Für Verbrauch. Lebensm. 2007;2:122–125. doi: 10.1007/s00003-007-0179-6. DOI
Tonelli F.M., Lacerda S.M., Tonelli F.C., Costa G.M., de Franca L.R., Resende R.R. Progress and biotechnological prospects in fish transgenesis. Biotechnol. Adv. 2017;35:832–844. doi: 10.1016/j.biotechadv.2017.06.002. PubMed DOI
Green D.P. Genetically Engineered Salmon Approved for Food by US FDA. J. Aquat. Food Prod. Technol. 2016;25:145–146. doi: 10.1080/10498850.2016.1152101. DOI
Debode F., Janssen E., Marien A., Devlin R.H., Lieske K., Mankertz J., Berben G. Detection of transgenic Atlantic and Coho salmon by real-time PCR. Food Anal. Methods. 2018;11:2396–2406. doi: 10.1007/s12161-018-1214-1. DOI
Masri S., Rast H., Ripley T., James D., Green M., Jia X., Devlin R.H. Detection of genetically modified coho salmon using polymerase chain reaction (PCR) amplification. J. Agric. Food Chem. 2002;50:3161–3164. doi: 10.1021/jf011606p. PubMed DOI
Hafsa A.B., Nabi N., Zellama M.S., Said K., Chaouachi M. A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products. Food Chem. 2016;190:1040–1045. doi: 10.1016/j.foodchem.2015.06.064. PubMed DOI
Kishimoto K., Washio Y., Yoshiura Y., Toyoda A., Ueno T., Fukuyama H., Kato K., Kinoshita M. Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture. 2018;495:415–427. doi: 10.1016/j.aquaculture.2018.05.055. DOI
Hallerman E. Genome editing in cultured fishes. CABI Agric. Biosci. 2021;2:46. doi: 10.1186/s43170-021-00066-3. DOI
Van Eenennaam A., Olin P. Careful risk assessment needed to evaluate transgenic fish. Calif. Agric. 2006;60:126–131.
Pan X., Wan H., Chia W., Tong Y., Gong Z. Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res. 2005;14:217–223. doi: 10.1007/s11248-004-5790-z. PubMed DOI
Doyon Y., McCammon J.M., Miller J.C., Faraji F., Ngo C., Katibah G.E., Amora R., Hocking T.D., Zhang L., Rebar E.J. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 2008;26:702–708. doi: 10.1038/nbt1409. PubMed DOI PMC
Huang P., Xiao A., Zhou M., Zhu Z., Lin S., Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 2011;29:699–700. doi: 10.1038/nbt.1939. PubMed DOI
Hwang W.Y., Fu Y., Reyon D., Maeder M.L., Tsai S.Q., Sander J.D., Peterson R.T., Yeh J., Joung J.K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:227–229. doi: 10.1038/nbt.2501. PubMed DOI PMC
Zhang Y., Qin W., Lu X., Xu J., Huang H., Bai H., Li S., Lin S. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat. Commun. 2017;8:118. doi: 10.1038/s41467-017-00175-6. PubMed DOI PMC
Amsterdam A., Lin S., Hopkins N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev. Biol. 1995;171:123–129. doi: 10.1006/dbio.1995.1265. PubMed DOI
Gong Z., Wan H., Tay T.L., Wang H., Chen M., Yan T. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem. Biophys. Res. Commun. 2003;308:58–63. doi: 10.1016/S0006-291X(03)01282-8. PubMed DOI
Soga K., Nakamura K., Ishigaki T., Kimata S., Ohmori K., Kishine M., Mano J., Takabatake R., Kitta K., Nagoya H. Development of a novel method for specific detection of genetically modified Atlantic salmon, AquAdvantage, using real-time polymerase chain reaction. Food Chem. 2020;305:125426. doi: 10.1016/j.foodchem.2019.125426. PubMed DOI
Du S.J., Gong Z., Fletcher G.L., Shears M.A., Hew C.L. Transgenic Fish. World Scientific; Singapore: 1992. Growth hormone gene transfer in Atlantic salmon: Use of fish antifreeze/growth hormone chimeric gene construct; pp. 176–189. PubMed
Shears M., Fletcher G., Hew C., Gauthier S., Davies P. Transfer, expression, and stable inheritance of antifreeze protein genes in Atlantic salmon (Salmo salar) Mol. Mar. Biol. Biotechnol. 1991;1:58.
Hernández O., Castro F., Aguilar A., Uliver C., Pérez A., Herrera L., de la Fuente J. Gene transfer in common carp (CyprinuscarpioL.) by microinjection into the germinal disc. Theriogenology. 1991;35:625–632. doi: 10.1016/0093-691X(91)90458-P. PubMed DOI
Zhang P., Hayat M., Joyce C., Gonzalez-Villaseñor L.I., Lin C., Dunham R.A., Chen T.T., Powers D.A. Gene transfer, expression and inheritance of pRSV-rainbow trout-GH cDNA in the common carp, Cyprinus carpio (Linnaeus) Mol. Reprod. Dev. 1990;25:3–13. doi: 10.1002/mrd.1080250103. PubMed DOI
Zhu Z., He L., Chen S. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758) J. Appl. Ichthyol. 1985;1:31–34. doi: 10.1111/j.1439-0426.1985.tb00408.x. DOI
Gross M.L., Schneider J.F., Moav N., Moav B., Alvarez C., Myster S.H., Liu Z., Hallerman E.M., Hackett P.B., Guise K.S. Molecular analysis and growth evaluation of northern pike (Esox Iucius) microinjected with growth hormone genes. Aquaculture. 1992;103:253–273. doi: 10.1016/0044-8486(92)90171-G. DOI
Kishimoto K., Washio Y., Murakami Y., Katayama T., Kuroyanagi M., Kato K., Yoshiura Y., Kinoshita M. An effective microinjection method for genome editing of marine aquaculture fish: Tiger pufferfish Takifugu rubripes and red sea bream Pagrus major. Fish. Sci. 2019;85:217–226. doi: 10.1007/s12562-018-1277-3. DOI
Ohama M., Washio Y., Kishimoto K., Kinoshita M., Kato K. Growth performance of myostatin knockout red sea bream Pagrus major juveniles produced by genome editing with CRISPR/Cas9. Aquaculture. 2020;529:735672. doi: 10.1016/j.aquaculture.2020.735672. DOI
Chiou P.P., Chen M.J., Lin C.-M., Khoo J., Larson J., Holt R., Leong J.-A., Thorgarrd G., Chen T.T. Production of homozygous transgenic rainbow trout with enhanced disease resistance. Mar. Biotechnol. 2014;16:299–308. doi: 10.1007/s10126-013-9550-z. PubMed DOI PMC
Chae J.-S., Wang H.-Y., Han J.-C., Cho M., Park J., Choi M.-S., Choi S.-H. Detection of Living Modified Rainbow Trout and Super Mud Loach by Real-time TAQ Man PCR; Proceedings of the 11th International Conference of the Association of Institutions for Tropical Veterinary Medicine; Serdang, Malaysia. 23–27 August 2004; p. 390.
Rahman M.A., Maclean N. Production of transgenic tilapia (Oreochromis niloticus) by one-cell-stage microinjection. Aquaculture. 1992;105:219–232. doi: 10.1016/0044-8486(92)90088-3. DOI
Brem G., Brenig B., Hörstgen-Schwark G., Winnacker E.-L. Gene transfer in tilapia (Oreochromis niloticus) Aquaculture. 1988;68:209–219. doi: 10.1016/0044-8486(88)90354-7. DOI
Ju B., Xu Y., He J., Liao J., Yan T., Hew C.L., Lam T.J., Gong Z. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev. Genet. 1999;25:158–167. doi: 10.1002/(SICI)1520-6408(1999)25:2<158::AID-DVG10>3.0.CO;2-6. PubMed DOI
Wan H., He J., Ju B., Yan T., Lam T.J., Gong Z. Generation of two-color transgenic zebrafish using the green and red fluorescent protein reporter genes gfp and rfp. Mar. Biotechnol. 2002;4:146–154. doi: 10.1007/s10126-001-0085-3. PubMed DOI
Tanner N.A., Zhang Y., Evans T.C., Jr. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques. 2012;53:81–89. doi: 10.2144/0000113902. PubMed DOI
Preckel L., Brünen-Nieweler C., Denay G., Petersen H., Cichna-Markl M., Dobrovolny S., Hochegger R. Identification of mammalian and poultry species in food and pet food samples using 16s rdna metabarcoding. Foods. 2021;10:2875. doi: 10.3390/foods10112875. PubMed DOI PMC
Gense K., Peterseil V., Licina A., Wagner M., Cichna-Markl M., Dobrovolny S., Hochegger R. Development of a DNA Metabarcoding Method for the Identification of Bivalve Species in Seafood Products. Foods. 2021;10:2618. doi: 10.3390/foods10112618. PubMed DOI PMC
Yue G.H., Orban L. Rapid isolation of DNA from fresh and preserved fish scales for polymerase chain reaction. Mar. Biotechnol. 2001;3:199–204. doi: 10.1007/s10126-001-0010-9. PubMed DOI
Alvarado Bremer J., Smith B.L., Moulton D., Lu C.P., Cornic M. Shake and stew: A non-destructive PCR-ready DNA isolation method from a single preserved fish larva. J. Fish Biol. 2014;84:267–272. doi: 10.1111/jfb.12280. PubMed DOI
Martínez G., Shaw E.M., Carrillo M., Zanuy S. Protein salting-out method applied to genomic DNA isolation from fish whole blood. Biotechniques. 1998;24:238–239. doi: 10.2144/98242bm14. PubMed DOI
Mukhopadhyay T., Bhattacharjee S. Standardization of genomic DNA isolation from minute quantities of fish scales and fins amenable to RAPD-PCR. Proc. Zool. Soc. 2014;67:28–32. doi: 10.1007/s12595-013-0065-4. DOI
Kenk M., Panter S., Engler-Blum G., Bergemann J. Sensitive DNA-based allergen detection depends on food matrix and DNA isolation method. Eur. Food Res. Technol. 2012;234:351–359. doi: 10.1007/s00217-011-1639-x. DOI
Rahman M.A., Mak R., Ayad H., Smith A., Maclean N. Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus) Transgenic Res. 1998;7:357–370. doi: 10.1023/A:1008837105299. PubMed DOI
Zhu Z. Transgenic Fish. World Scientific; Singapore: 1992. Generation of fast growing transgenic fish: Methods and mechanisms; pp. 92–119.
Shahi N., Mallik S.K., Sarma D. Muscle growth in targeted knockout common carp (Cyprinus carpio) mstn gene with low off-target effects. Aquaculture. 2022;547:737423. doi: 10.1016/j.aquaculture.2021.737423. DOI
Yang Z., Yu Y., Tay Y.X., Yue G.H. Genome editing and its applications in genetic improvement in aquaculture. Rev. Aquac. 2022;14:178–191. doi: 10.1111/raq.12591. DOI
Forabosco F., Löhmus M., Rydhmer L., Sundström L.F. Genetically modified farm animals and fish in agriculture: A review. Livest. Sci. 2013;153:1–9. doi: 10.1016/j.livsci.2013.01.002. DOI
Chen T.T., Vrolijk N.H., Lu J.-K., Lin C.-M., Reimschuessel R., Dunham R.A. Transgenic fish and its application in basic and applied research. Biotechnol. Annu. Rev. 1996;2:205–236. PubMed
Sarmasik A., Warr G., Chen T.T. Production of transgenic medaka with increased resistance to bacterial pathogens. Mar. Biotechnol. 2002;4:310–322. doi: 10.1007/s10126-002-0023-z. PubMed DOI
Gabillard J.-C., Rallière C., Sabin N., Rescan P.-Y. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation. BMC Biotechnol. 2010;10:39. doi: 10.1186/1472-6750-10-39. PubMed DOI PMC
Zeng Z., Shan T., Tong Y., Lam S.H., Gong Z. Development of estrogen-responsive transgenic medaka for environmental monitoring of endocrine disrupters. Environ. Sci. Technol. 2005;39:9001–9008. doi: 10.1021/es050728l. PubMed DOI
Bowman T.V., Zon L.I. Swimming into the future of drug discovery: In vivo chemical screens in zebrafish. ACS Chem. Biol. 2010;5:159–161. doi: 10.1021/cb100029t. PubMed DOI PMC
Hrytsenko O., Rayat G.R., Xu B.-Y., Krause R., Pohajdak B., Rajotte R.V., Wright J.R., Jr. Lifelong stable human insulin expression in transgenic tilapia expressing a humanized tilapia insulin gene. Transgenic Res. 2011;20:1397. doi: 10.1007/s11248-011-9500-3. PubMed DOI
Pohajdak B., Mansour M., Hrytsenko O., Michael Conlon J., Clayton Dymond L., Wright J.R., Jr. Production of transgenic tilapia with Brockmann bodies secreting [desThrB30] human insulin. Transgenic Res. 2004;13:313–323. doi: 10.1023/B:TRAG.0000040036.11109.ee. PubMed DOI