Timing of ICSI with Respect to Meiotic Spindle Status

. 2022 Dec 21 ; 24 (1) : . [epub] 20221221

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36613547

The aim of this study was to evaluate the efficiency of using meiotic spindle (MS) visibility and relative position to the polar body (PB) as indicators of oocyte maturation in order to optimize intracytoplasmic sperm injection (ICSI) timing. This was a cohort study of patients younger than 40 years with planned ICSI, the timing of which was determined by MS status, compared with those without MS evaluation. The angle between PB and MS and MS visibility were evaluated by optical microscope with polarizing filter. Oocytes with MS evaluation were fertilized according to MS status either 5-6 h after ovum pick-up (OPU) or 7-8 h after OPU. Oocytes without MS evaluation were all fertilized 5-6 h after OPU. For patients over 35 years visualization of MS influenced pregnancy rate (PR): 182 patients with MS visualization had 32% PR (58/182); while 195 patients without MS visualization had 24% PR (47/195). For patients under 35 years, visualization of MS did not influence PR: 140 patients with MS visualization had 41% PR (58/140), while 162 patients without MS visualization had 41% PR (66/162). Visualization of MS therefore appears to be a useful parameter for assessment of oocyte maturity and ICSI timing for patients older than 35.

Zobrazit více v PubMed

Stevenson E.L., Gispanski L., Fields K., Cappadora M., Hurt M. Knowledge and decision making about future fertility and oocyte cryopreservation among young women. Hum. Fertil. 2021;24:112–121. doi: 10.1080/14647273.2018.1546411. PubMed DOI

Reinzi L., Ubaldi F., Martinez F., Iacobelli M., Minasi M.G., Ferrero S., Tesarik J., Greco E. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum. Reprod. 2003;18:1289–1293. doi: 10.1093/humrep/deg274. PubMed DOI

Artini P.G., Obino M.E.R., Carletti E., Pinelli S., Ruggiero M., Di Emidio G., Cela V., Tatone C. Conventional IVF as a laboratory strategy to rescue fertility potential in severe poor responder patients: The impact of reproductive aging. Gynecol. Endocrinol. 2013;29:997–1001. doi: 10.3109/09513590.2013.822063. PubMed DOI

Plancha C.E., Kovacic B. From glass to life: A commentary on the assessment of the reproductive potential of cryopreserved human oocytes. J. Assist. Reprod. Genet. 2022;39:1993–1996. doi: 10.1007/s10815-022-02565-2. PubMed DOI PMC

Pujol A., Garcia D., Obradors A., Rodriguez A., Vassena R. Is there a relation between the time to ICSI and the reproductive outcomes? Hum. Reprod. 2018;33:797–806. doi: 10.1093/humrep/dey067. PubMed DOI

Ferraretti A.P., Goossens V., Kupka M., Bhattacharya S., de Mouzon J., Castilla J.A., Erb K., Korsak V., Andersen A.N., The European IVF-monitoring (EIM) et al. Assisted reproductive technology in Europe, 2009: Results generated from European registers by ESHRE. Hum. Reprod. 2013;28:2318–2331. doi: 10.1093/humrep/det278. PubMed DOI

Smith A., Tilling K., Nelson S.M., Lawlor D.A. Live-Birth Rate Associated With Repeat In Vitro Fertilization Treatment Cycles. JAMA J. Am. Med. Assoc. 2015;314:2654–2662. doi: 10.1001/jama.2015.17296. PubMed DOI PMC

Peinado I., Moya I., Saez-Espinosa P., Barrera M., Garcia-Valverde L., Frances R., Torres P., Gomez-Torres M.J. Impact of Maturation and Vitrification Time of Human GV Oocytes on the Metaphase Plate Configuration. Int. J. Mol. Sci. 2021;22:1125. doi: 10.3390/ijms22031125. PubMed DOI PMC

Petersen C.G., Oliveira J.B.A., Mauri A.L., Massaro F.C., Baruffi R.L.R., Pontes A., Franco J.G. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: A meta-analysis. Reprod. Biomed. Online. 2009;18:235–243. doi: 10.1016/S1472-6483(10)60261-1. PubMed DOI

Rienzi L., Ubaldi F., Iacobelli M., Minasi M.G., Romano S., Greco E. Meiotic spindle visualization in living human oocytes. Reprod. Biomed. Online. 2005;10:192–198. doi: 10.1016/S1472-6483(10)60940-6. PubMed DOI

Jo Y.J., Jang W.I., Kim N.H., Namgoong S. Tropomodulin-3 is essential in asymmetric division during mouse oocyte maturation. Sci. Rep. 2016;6:14. doi: 10.1038/srep29204. PubMed DOI PMC

Fauser B. Towards the global coverage of a unified registry of IVF outcomes. Reprod. Biomed. Online. 2019;38:133–137. doi: 10.1016/j.rbmo.2018.12.001. PubMed DOI

Rienzi L., Balaban B., Ebner T., Mandelbaum J. The oocyte. Hum. Reprod. 2012;27:2–21. doi: 10.1093/humrep/des200. PubMed DOI

Rienzi L., Martinez F., Ubaldi F., Minasi M.G., Iacobelli M., Tesarik J., Greco E. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum. Reprod. 2004;19:655–659. doi: 10.1093/humrep/deh101. PubMed DOI

Rienzi L., Vajta G., Ubaldi F. Predictive value of oocyte morphology in human IVF: A systematic review of the literature. Hum. Reprod. Update. 2011;17:34–45. doi: 10.1093/humupd/dmq029. PubMed DOI PMC

Montag M., Koster M., van der Ven K., van der Ven H. Gamete competence assessment by polarizing optics in assisted reproduction. Hum. Reprod. Update. 2011;17:654–666. doi: 10.1093/humupd/dmr016. PubMed DOI

Swain J.E., Pool T.B. ART failure: Oocyte contributions to unsuccessful fertilization. Hum. Reprod. Update. 2008;14:431–446. doi: 10.1093/humupd/dmn025. PubMed DOI

Albertini D., Hu J., Gleicher N., Kushnir A.V., Ohara Y., De Grand A., Barad H.D. Pilot study of novel noninvasive imaging approach for determination of meiotic status in intact human cumulus-oocyte-complexes. Hum. Reprod. 2019;34:244.

Tilia L., Chapman M., Kilani S., Cooke S., Venetis C. Oocyte meiotic spindle morphology is a predictive marker of blastocyst ploidy-a prospective cohort study. Fertil. Steril. 2020;113:105. doi: 10.1016/j.fertnstert.2019.08.070. PubMed DOI

Holubcová Z., Blayney M., Elder K., Schuh M. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348:1143–1147. doi: 10.1126/science.aaa9529. PubMed DOI PMC

Holubcova Z., Kyjovska D., Martonova M., Paralova D., Klenkova T., Kloudova S. Human Egg Maturity Assessment and Its Clinical Application. J. Vis. Exp. 2019;150:e60058. doi: 10.3791/60058. PubMed DOI

Montag M., Schimming T., van der Ven H. Spindle imaging in human oocytes: The impact of the meiotic cell cycle. Reprod. Biomed. Online. 2006;12:442–446. doi: 10.1016/S1472-6483(10)61996-7. PubMed DOI

Tepla O., Topurko Z., Masata J., Jirsova S., Frolikova M., Komrskova K., Minks A., Turanek J., Lynnyk A., Kratochvilova I. Important parameters affecting quality of vitrified donor oocytes. Cryobiology. 2021;100:110–116. doi: 10.1016/j.cryobiol.2021.03.001. PubMed DOI

Tomari H., Honjo K., Kunitake K., Aramaki N., Kuhara S., Hidaka N., Nishimura K., Nagata Y., Horiuchi T. Meiotic spindle size is a strong indicator of human oocyte quality. Reprod. Med. Biol. 2018;17:268–274. doi: 10.1002/rmb2.12100. PubMed DOI PMC

Tomari H., Honjou K., Kunitake K., Hidaka N., Nishimura K., Nagata Y. Relationship Between the Meiotic Spindle Size in Human Oocytes and Embryo Developmental Potential After Intracytoplasmic Sperm Injection. Fertil. Steril. 2014;102:E341. doi: 10.1016/j.fertnstert.2014.07.1155. DOI

Ducheyne K.D., Rizzo M., Daels P.F., Stout T.A.E., de Ruijter-Villani M. Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MII spindle. Reprod. Fertil. Dev. 2019;31:1330–1338. doi: 10.1071/RD18276. PubMed DOI

Namgoong S., Kim N.H. Meiotic spindle formation in mammalian oocytes: Implications for human infertility. Biol. Reprod. 2018;98:153–161. doi: 10.1093/biolre/iox145. PubMed DOI

Trebichalská Z., Javůrek J., Tatíčková M., Kyjovská D., Kloudová S., Otevřel P., Hampl A., Holubcová Z. High-Resolution 3D Reconstruction of Human Oocytes Using Focused Ion Beam Scanning Electron Microscopy. Front. Cell Dev. Biol. 2021;9:755740. doi: 10.3389/fcell.2021.755740. PubMed DOI PMC

Isachenko E., Isachenko V., Katkov I.I., Rahimi G., Schondorf T., Mallmann P., Dessole S., Nawroth F. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum. Reprod. 2004;19:932–939. doi: 10.1093/humrep/deh194. PubMed DOI

Bjorndahl L., Brown J.K., Editorial Board Members of the WHO Laboratory Manual for the Examination and Processing of Human Semen The sixth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen: Ensuring quality and standardization in basic examination of human ejaculates. Fertil. Steril. 2022;117:246–251. doi: 10.1016/j.fertnstert.2021.12.012. PubMed DOI

Machtinger R., Combelles C.M.H., Missmer S.A., Correia K.F., Williams P., Hauser R., Racowsky C. Bisphenol-A and human oocyte maturation in vitro. Hum. Reprod. 2013;28:2735–2745. doi: 10.1093/humrep/det312. PubMed DOI PMC

Gardner D.K., Schoolcraft W.B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol. 1999;11:307–311. doi: 10.1097/00001703-199906000-00013. PubMed DOI

Gardner D.K., Lane M., Stevens J., Schlenker T., Schoolcraft W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000;73:1155–1158. doi: 10.1016/S0015-0282(00)00518-5. PubMed DOI

Gardner D.K. In vitro culture of human blastocyst. In: Jansen R., Mortimer D., editors. Towards Reproductive Certainty: Infertility and Genetics Beyond. Carnforth Parthenon Press; Lancashire, UK: 1999. pp. 377–388.

Gardner D.K., Kelley R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J. Dev. Orig. Health Dis. 2017;8:418–435. doi: 10.1017/S2040174417000368. PubMed DOI

Stangroom J. Pearson Correlation Coefficient Calculator. 2020. [(accessed on 11 December 2022)]. Available online: https://www.socscistatistics.com/tests/pearson/default2.aspx.

Kupka M.S., Ferraretti A.P., de Mouzon J., Erb K., D’Hooghe T., Castilla J.A., Calhaz-Jorge C., De Geyter C., Goossens V., The European IVF-monitoring (EIM) et al. Assisted reproductive technology in Europe, 2010: Results generated from European registers by ESHRE. Hum. Reprod. 2014;29:2099–2113. doi: 10.1093/humrep/deu175. PubMed DOI

Van der Gaast M.H., Eijkemans M.J.C., van der Net J.B., de Boer E.J., Burger C.W., van Leeuwen F.E., Fauser B., Macklon N.S. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod. Biomed. Online. 2006;13:476–480. doi: 10.1016/S1472-6483(10)60633-5. PubMed DOI

Nelson S.M., Larsson P., Mannaerts B., Andersen A.N., Fauser B. Anti-Mullerian hormone variability and its implications for the number of oocytes retrieved following individualized dosing with follitropin delta. Clin. Endocrinol. 2019;90:719–726. doi: 10.1111/cen.13956. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...