Timing of ICSI with Respect to Meiotic Spindle Status
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36613547
PubMed Central
PMC9820079
DOI
10.3390/ijms24010105
PII: ijms24010105
Knihovny.cz E-zdroje
- Klíčová slova
- ICSI, gravidity, human oocyte, in vitro fertilization, meiotic spindle, polar body, polarized light microscopy,
- MeSH
- aparát dělícího vřeténka MeSH
- intracytoplazmatické injekce spermie * metody MeSH
- kohortové studie MeSH
- lidé MeSH
- oocyty MeSH
- sperma * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to evaluate the efficiency of using meiotic spindle (MS) visibility and relative position to the polar body (PB) as indicators of oocyte maturation in order to optimize intracytoplasmic sperm injection (ICSI) timing. This was a cohort study of patients younger than 40 years with planned ICSI, the timing of which was determined by MS status, compared with those without MS evaluation. The angle between PB and MS and MS visibility were evaluated by optical microscope with polarizing filter. Oocytes with MS evaluation were fertilized according to MS status either 5-6 h after ovum pick-up (OPU) or 7-8 h after OPU. Oocytes without MS evaluation were all fertilized 5-6 h after OPU. For patients over 35 years visualization of MS influenced pregnancy rate (PR): 182 patients with MS visualization had 32% PR (58/182); while 195 patients without MS visualization had 24% PR (47/195). For patients under 35 years, visualization of MS did not influence PR: 140 patients with MS visualization had 41% PR (58/140), while 162 patients without MS visualization had 41% PR (66/162). Visualization of MS therefore appears to be a useful parameter for assessment of oocyte maturity and ICSI timing for patients older than 35.
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague Czech Republic
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 182 21 Prague Czech Republic
Zobrazit více v PubMed
Stevenson E.L., Gispanski L., Fields K., Cappadora M., Hurt M. Knowledge and decision making about future fertility and oocyte cryopreservation among young women. Hum. Fertil. 2021;24:112–121. doi: 10.1080/14647273.2018.1546411. PubMed DOI
Reinzi L., Ubaldi F., Martinez F., Iacobelli M., Minasi M.G., Ferrero S., Tesarik J., Greco E. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum. Reprod. 2003;18:1289–1293. doi: 10.1093/humrep/deg274. PubMed DOI
Artini P.G., Obino M.E.R., Carletti E., Pinelli S., Ruggiero M., Di Emidio G., Cela V., Tatone C. Conventional IVF as a laboratory strategy to rescue fertility potential in severe poor responder patients: The impact of reproductive aging. Gynecol. Endocrinol. 2013;29:997–1001. doi: 10.3109/09513590.2013.822063. PubMed DOI
Plancha C.E., Kovacic B. From glass to life: A commentary on the assessment of the reproductive potential of cryopreserved human oocytes. J. Assist. Reprod. Genet. 2022;39:1993–1996. doi: 10.1007/s10815-022-02565-2. PubMed DOI PMC
Pujol A., Garcia D., Obradors A., Rodriguez A., Vassena R. Is there a relation between the time to ICSI and the reproductive outcomes? Hum. Reprod. 2018;33:797–806. doi: 10.1093/humrep/dey067. PubMed DOI
Ferraretti A.P., Goossens V., Kupka M., Bhattacharya S., de Mouzon J., Castilla J.A., Erb K., Korsak V., Andersen A.N., The European IVF-monitoring (EIM) et al. Assisted reproductive technology in Europe, 2009: Results generated from European registers by ESHRE. Hum. Reprod. 2013;28:2318–2331. doi: 10.1093/humrep/det278. PubMed DOI
Smith A., Tilling K., Nelson S.M., Lawlor D.A. Live-Birth Rate Associated With Repeat In Vitro Fertilization Treatment Cycles. JAMA J. Am. Med. Assoc. 2015;314:2654–2662. doi: 10.1001/jama.2015.17296. PubMed DOI PMC
Peinado I., Moya I., Saez-Espinosa P., Barrera M., Garcia-Valverde L., Frances R., Torres P., Gomez-Torres M.J. Impact of Maturation and Vitrification Time of Human GV Oocytes on the Metaphase Plate Configuration. Int. J. Mol. Sci. 2021;22:1125. doi: 10.3390/ijms22031125. PubMed DOI PMC
Petersen C.G., Oliveira J.B.A., Mauri A.L., Massaro F.C., Baruffi R.L.R., Pontes A., Franco J.G. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: A meta-analysis. Reprod. Biomed. Online. 2009;18:235–243. doi: 10.1016/S1472-6483(10)60261-1. PubMed DOI
Rienzi L., Ubaldi F., Iacobelli M., Minasi M.G., Romano S., Greco E. Meiotic spindle visualization in living human oocytes. Reprod. Biomed. Online. 2005;10:192–198. doi: 10.1016/S1472-6483(10)60940-6. PubMed DOI
Jo Y.J., Jang W.I., Kim N.H., Namgoong S. Tropomodulin-3 is essential in asymmetric division during mouse oocyte maturation. Sci. Rep. 2016;6:14. doi: 10.1038/srep29204. PubMed DOI PMC
Fauser B. Towards the global coverage of a unified registry of IVF outcomes. Reprod. Biomed. Online. 2019;38:133–137. doi: 10.1016/j.rbmo.2018.12.001. PubMed DOI
Rienzi L., Balaban B., Ebner T., Mandelbaum J. The oocyte. Hum. Reprod. 2012;27:2–21. doi: 10.1093/humrep/des200. PubMed DOI
Rienzi L., Martinez F., Ubaldi F., Minasi M.G., Iacobelli M., Tesarik J., Greco E. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum. Reprod. 2004;19:655–659. doi: 10.1093/humrep/deh101. PubMed DOI
Rienzi L., Vajta G., Ubaldi F. Predictive value of oocyte morphology in human IVF: A systematic review of the literature. Hum. Reprod. Update. 2011;17:34–45. doi: 10.1093/humupd/dmq029. PubMed DOI PMC
Montag M., Koster M., van der Ven K., van der Ven H. Gamete competence assessment by polarizing optics in assisted reproduction. Hum. Reprod. Update. 2011;17:654–666. doi: 10.1093/humupd/dmr016. PubMed DOI
Swain J.E., Pool T.B. ART failure: Oocyte contributions to unsuccessful fertilization. Hum. Reprod. Update. 2008;14:431–446. doi: 10.1093/humupd/dmn025. PubMed DOI
Albertini D., Hu J., Gleicher N., Kushnir A.V., Ohara Y., De Grand A., Barad H.D. Pilot study of novel noninvasive imaging approach for determination of meiotic status in intact human cumulus-oocyte-complexes. Hum. Reprod. 2019;34:244.
Tilia L., Chapman M., Kilani S., Cooke S., Venetis C. Oocyte meiotic spindle morphology is a predictive marker of blastocyst ploidy-a prospective cohort study. Fertil. Steril. 2020;113:105. doi: 10.1016/j.fertnstert.2019.08.070. PubMed DOI
Holubcová Z., Blayney M., Elder K., Schuh M. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348:1143–1147. doi: 10.1126/science.aaa9529. PubMed DOI PMC
Holubcova Z., Kyjovska D., Martonova M., Paralova D., Klenkova T., Kloudova S. Human Egg Maturity Assessment and Its Clinical Application. J. Vis. Exp. 2019;150:e60058. doi: 10.3791/60058. PubMed DOI
Montag M., Schimming T., van der Ven H. Spindle imaging in human oocytes: The impact of the meiotic cell cycle. Reprod. Biomed. Online. 2006;12:442–446. doi: 10.1016/S1472-6483(10)61996-7. PubMed DOI
Tepla O., Topurko Z., Masata J., Jirsova S., Frolikova M., Komrskova K., Minks A., Turanek J., Lynnyk A., Kratochvilova I. Important parameters affecting quality of vitrified donor oocytes. Cryobiology. 2021;100:110–116. doi: 10.1016/j.cryobiol.2021.03.001. PubMed DOI
Tomari H., Honjo K., Kunitake K., Aramaki N., Kuhara S., Hidaka N., Nishimura K., Nagata Y., Horiuchi T. Meiotic spindle size is a strong indicator of human oocyte quality. Reprod. Med. Biol. 2018;17:268–274. doi: 10.1002/rmb2.12100. PubMed DOI PMC
Tomari H., Honjou K., Kunitake K., Hidaka N., Nishimura K., Nagata Y. Relationship Between the Meiotic Spindle Size in Human Oocytes and Embryo Developmental Potential After Intracytoplasmic Sperm Injection. Fertil. Steril. 2014;102:E341. doi: 10.1016/j.fertnstert.2014.07.1155. DOI
Ducheyne K.D., Rizzo M., Daels P.F., Stout T.A.E., de Ruijter-Villani M. Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MII spindle. Reprod. Fertil. Dev. 2019;31:1330–1338. doi: 10.1071/RD18276. PubMed DOI
Namgoong S., Kim N.H. Meiotic spindle formation in mammalian oocytes: Implications for human infertility. Biol. Reprod. 2018;98:153–161. doi: 10.1093/biolre/iox145. PubMed DOI
Trebichalská Z., Javůrek J., Tatíčková M., Kyjovská D., Kloudová S., Otevřel P., Hampl A., Holubcová Z. High-Resolution 3D Reconstruction of Human Oocytes Using Focused Ion Beam Scanning Electron Microscopy. Front. Cell Dev. Biol. 2021;9:755740. doi: 10.3389/fcell.2021.755740. PubMed DOI PMC
Isachenko E., Isachenko V., Katkov I.I., Rahimi G., Schondorf T., Mallmann P., Dessole S., Nawroth F. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum. Reprod. 2004;19:932–939. doi: 10.1093/humrep/deh194. PubMed DOI
Bjorndahl L., Brown J.K., Editorial Board Members of the WHO Laboratory Manual for the Examination and Processing of Human Semen The sixth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen: Ensuring quality and standardization in basic examination of human ejaculates. Fertil. Steril. 2022;117:246–251. doi: 10.1016/j.fertnstert.2021.12.012. PubMed DOI
Machtinger R., Combelles C.M.H., Missmer S.A., Correia K.F., Williams P., Hauser R., Racowsky C. Bisphenol-A and human oocyte maturation in vitro. Hum. Reprod. 2013;28:2735–2745. doi: 10.1093/humrep/det312. PubMed DOI PMC
Gardner D.K., Schoolcraft W.B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol. 1999;11:307–311. doi: 10.1097/00001703-199906000-00013. PubMed DOI
Gardner D.K., Lane M., Stevens J., Schlenker T., Schoolcraft W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000;73:1155–1158. doi: 10.1016/S0015-0282(00)00518-5. PubMed DOI
Gardner D.K. In vitro culture of human blastocyst. In: Jansen R., Mortimer D., editors. Towards Reproductive Certainty: Infertility and Genetics Beyond. Carnforth Parthenon Press; Lancashire, UK: 1999. pp. 377–388.
Gardner D.K., Kelley R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J. Dev. Orig. Health Dis. 2017;8:418–435. doi: 10.1017/S2040174417000368. PubMed DOI
Stangroom J. Pearson Correlation Coefficient Calculator. 2020. [(accessed on 11 December 2022)]. Available online: https://www.socscistatistics.com/tests/pearson/default2.aspx.
Kupka M.S., Ferraretti A.P., de Mouzon J., Erb K., D’Hooghe T., Castilla J.A., Calhaz-Jorge C., De Geyter C., Goossens V., The European IVF-monitoring (EIM) et al. Assisted reproductive technology in Europe, 2010: Results generated from European registers by ESHRE. Hum. Reprod. 2014;29:2099–2113. doi: 10.1093/humrep/deu175. PubMed DOI
Van der Gaast M.H., Eijkemans M.J.C., van der Net J.B., de Boer E.J., Burger C.W., van Leeuwen F.E., Fauser B., Macklon N.S. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod. Biomed. Online. 2006;13:476–480. doi: 10.1016/S1472-6483(10)60633-5. PubMed DOI
Nelson S.M., Larsson P., Mannaerts B., Andersen A.N., Fauser B. Anti-Mullerian hormone variability and its implications for the number of oocytes retrieved following individualized dosing with follitropin delta. Clin. Endocrinol. 2019;90:719–726. doi: 10.1111/cen.13956. PubMed DOI