Evaluation of Chokeberry/Carboxymethylcellulose Hydrogels with the Addition of Disaccharides: DART-TOF/MS and HPLC-DAD Analysis

. 2022 Dec 27 ; 24 (1) : . [epub] 20221227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36613889

Grantová podpora
IP-2019- 04-5749 Hrvatska Zaklada za Znanost

With the growing awareness of the importance of a healthy diet, the need for the development of novel formulations is also on the rise. Chokeberry products are popular among consumers since they are a rich source of polyphenols that are responsible for antioxidant activity and other positive effects on human health. However, other natural food ingredients, such as disaccharides, can affect their stability. The aim of this study was to investigate the influence of disaccharides addition on the polyphenol composition of chokeberry hydrogels. Hydrogels were prepared from chokeberry juice and 2% of carboxymethylcellulose (CMC) with the addition of 30%, 40%, or 50% of disaccharides (sucrose or trehalose). Samples were analyzed using DART-TOF/MS. The method was optimized, and the fingerprints of the mass spectra have been statistically processed using PCA analysis. Prepared samples were evaluated for total polyphenols, monomeric anthocyanins, and antioxidant activity (FRAP, CUPRAC, DPPH, ABTS assays) using spectrophotometric methods. Individual polyphenols were evaluated using HPLC-DAD analysis. Results showed the addition of disaccharides to 2% CMC hydrogels caused a decrease of total polyphenols. These findings confirm proper formulation is important to achieve appropriate retention of polyphenols.

Zobrazit více v PubMed

Kapci B., Neradová E., Čížková H., Voldřich M., Rajchl A., Capanoglu E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013;52:219–229.

Nowak D., Gośliński M., Wojtowicz E. Comparative analysis of the antioxidant capacity of selected fruit juices and nectars: Chokeberry juice as a rich source of polyphenols. Int. J. Food Prop. 2015;19:1317–1324. doi: 10.1080/10942912.2015.1063068. DOI

Jurendić T., Ščetar M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants. 2021;10:1052. doi: 10.3390/antiox10071052. PubMed DOI PMC

Zhang Y., Zhao A., Liu X., Chen X., Ding C., Dong L., Zhang J., Sun S., Ding Q., Khatoom S., et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: An overview. J. Future Foods. 2021;1:168–178. doi: 10.1016/j.jfutfo.2022.01.006. DOI

Jakobek L., Matić P., Ištuk J., Barron A.R. Study of interactions between individual phenolics of aronia with barley beta- glucan. Pol. J. Food Nutr. Sci. 2021;71:187–196. doi: 10.31883/pjfns/136051. DOI

Ghendov-Mosanu A., Cristea E., Sturza R., Niculaua M., Patras A. Synthetic dye’s substitution with chokeberry extract in jelly candies. J. Food Sci. Technol. 2020;57:4383–4394. doi: 10.1007/s13197-020-04475-6. PubMed DOI PMC

Zhu Y., Zhang J., Wei Y., Hao J., Lei Y., Zhao W., Xiao Y., Sun A. The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats. Nutr. Metab. 2020;17:54. doi: 10.1186/s12986-020-00473-9. PubMed DOI PMC

Yamane T., Kozuka M., Wada-Yoneta M., Sakamoto T., Nakagaki T., Nakano Y., Ohkubo I. Aronia juice suppresses the elevation of postprandial blood glucose levels in adult healthy Japanese. Clin. Nutr. Exp. 2017;12:20–26. doi: 10.1016/j.yclnex.2017.01.002. DOI

Gill N.K., Rios D., Osorio-Camacena E., Mojica B.E., Kaur B., Soderstrom M.A., Gonzalez M., Plaat B., Poblete C., Kaur N., et al. Anticancer Effects of Extracts from Three Different Chokeberry Species. Nutr. Cancer. 2020;73:1168–1174. doi: 10.1080/01635581.2020.1789679. PubMed DOI

Denev P., Číž M., Kratchanova M., Blazheva D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019;284:108–117. doi: 10.1016/j.foodchem.2019.01.108. PubMed DOI

Micale N., Citarella A., Molonia M.S., Speciale A., Cimino F., Saija A., Cristani M. Hydrogels for the delivery of plant-derived (poly)phenols. Molecules. 2020;25:3254. doi: 10.3390/molecules25143254. PubMed DOI PMC

Ćorković I., Pichler A., Šimunović J., Kopjar M. Hydrogels: Characteristics and application as delivery systems of phenolic and aroma compounds. Foods. 2021;10:1252. doi: 10.3390/foods10061252. PubMed DOI PMC

Zhang Y., Dong L., Liu L., Wu Z., Pan D., Liu L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. J. Agric. Food Chem. 2022;70:6300–6316. doi: 10.1021/acs.jafc.2c01080. PubMed DOI

Rahman M.S., Hasan M.S., Nitai A.S., Nam S., Karmakar A.K., Ahsan M.S., Shiddiky M.J.A., Ahmed M.B. Recent Developments of Carboxymethyl Cellulose. Polymers. 2021;13:1345. doi: 10.3390/polym13081345. PubMed DOI PMC

Ćorković I., Pichler A., Buljat I., Šimunović J., Kopjar M. Carboxymethylcellulose hydrogels: Effect of its different amount on preservation of tart cherry anthocyanins and polyphenols. Curr. Plant Biol. 2021;22:100222. doi: 10.1016/j.cpb.2021.100222. DOI

Kopjar M., Piližota V., Hribar J., Simčič M., Zlatič E., Nedić Tiban N. Influence of trehalose addition and storage conditions on the quality of strawberry cream filling. J. Food Eng. 2008;87:341–350. doi: 10.1016/j.jfoodeng.2007.12.011. DOI

Kopjar M., Pichler A., Turi J., Piližota V. Influence of trehalose addition on antioxidant activity, colour and texture of orange jelly during storage. Int. J. Food Sci. Technol. 2016;51:2640–2646. doi: 10.1111/ijfs.13250. DOI

Vukoja J., Buljeta I., Ivić I., Šimunović J., Pichler A., Kopjar M. Disaccharide Type Affected Phenolic and Volatile Compounds of Citrus Fiber-Blackberry Cream Fillings. Foods. 2021;10:243. doi: 10.3390/foods10020243. PubMed DOI PMC

Lončarić A., Pichler A., Trtinjak I., Piližota V., Kopjar M. Phenolics and antioxidant activity of freeze-dried sour cherry puree with addition of disaccharides. LWT. 2016;73:391–396. doi: 10.1016/j.lwt.2016.06.040. DOI

Kopjar M., Buljeta I., Nosić M., Ivić I., Šimunović J., Pichler A. Encapsulation of blackberry phenolics and volatiles using apple fibers and disaccharides. Polymers. 2022;14:2179. doi: 10.3390/polym14112179. PubMed DOI PMC

Van Can J.G.P., Van Loon L.J.C., Brouns F., Blaak E.E. Reduced glycaemic and insulinaemic responses following treha-lose and isomaltulose ingestion: Implications for postprandial substrate use in impaired glucose-tolerant subjects. Br. J. Nutr. 2012;108:1210–1217. doi: 10.1017/S0007114511006714. PubMed DOI

Yoshizane C., Mizote A., Yamada M., Arai N., Arai S., Maruta K., Mitsuzumi H., Ariyasu T., Ushio S., Fukuda S. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr. J. 2017;16:9. doi: 10.1186/s12937-017-0233-x. PubMed DOI PMC

Neta T., Takada K., Hirasawa M. Low-cariogenicity of trehalose as a substrate. J. Dent. 2000;28:571–576. doi: 10.1016/S0300-5712(00)00038-5. PubMed DOI

Zielińska A., Siudem P., Paradowska K., Gralec M., Kaźmierski S., Wawer I. Aronia melanocarpa Fruits as a Rich Dietary Source of Chlorogenic Acids and Anthocyanins: 1H-NMR, HPLC-DAD, and Chemometric Studies. Molecules. 2020;25:3234. doi: 10.3390/molecules25143234. PubMed DOI PMC

Lee J.E., Kim G., Park S., Kim Y., Kim M., Sup Lee W., Woo Jeong S., Jung Lee S., Sung Jin J., Chul Shin S. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014;146:1–5. doi: 10.1016/j.foodchem.2013.09.029. PubMed DOI

Ciocoiu M., Badescu L., Miron A., Badescu M. The Involvement of a Polyphenol-Rich Extract of Black Chokeberry in Oxidative Stress on Experimental Arterial Hypertension. Evid.-Based Complement. Altern. Med. 2013;2013:912769. doi: 10.1155/2013/912769. PubMed DOI PMC

Cebulak T., Oszmiański J., Kapusta I., Lachowicz S. Effect of UV-C Radiation, Ultra-Sonication Electromagnetic Field and Microwaves on Changes in Polyphenolic Compounds in Chokeberry (Aronia melanocarpa) Molecules. 2017;22:1161. doi: 10.3390/molecules22071161. PubMed DOI PMC

Rajchl A., Drgová L., Grégrová A., Čížková H., Ševčik R., Voldřich M. Rapid determination of 5-hydroxymethylfurfural by DART ionization with time-of-flight mass spectrometry. Anal. Bioanal. Chem. 2013;405:4737–4745. doi: 10.1007/s00216-013-6875-4. PubMed DOI

Rajchl A., Fernández Cusimamani E., Prchalová J., Ševčík R., Čížková H., Žiarovská J., Hrdličková M. Characterisation of yacon tuberous roots and leaves by DART-TOF/MS. Int. J. Mass Spectrom. 2018;424:27–34. doi: 10.1016/j.ijms.2017.11.005. DOI

Rýdlová L., Prchalová J., Škorpilová T., Rohlík B., Čížková H., Rajchl A. Evaluation of cocoa products quality and authenticity by DART/TOF-MS. Int. J. Mass Spectrom. 2020;454:116358. doi: 10.1016/j.ijms.2020.116358. DOI

Hajslova J., Cajka T., Vaclavik L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Analyt. Chem. 2011;30:204–218. doi: 10.1016/j.trac.2010.11.001. DOI

Gross J.H. Direct analysis in real time-a critical review on DART-MS. Anal. Bioanal. Chem. 2014;406:63–80. doi: 10.1007/s00216-013-7316-0. PubMed DOI

Chernetsova E.S., Bromirski M., Scheibner O., Morlock G.E. DART-Orbitrap MS: A novel mass spectrometric approach for the identification of phenolic compounds in propolis. Anal. Bioanal. Chem. 2012;403:2859–2867. doi: 10.1007/s00216-012-5800-6. PubMed DOI

Kirakosyan A., Seymour E.M., Llanes D.E.U., Kaufman P.B., Bolling S.F. Chemical profile and antioxidant capacities of tart cherry products. Food Chem. 2009;115:20–25. doi: 10.1016/j.foodchem.2008.11.042. DOI

Heid E., Honegger P., Braun D., Szabadi A., Stankovic T., Steinhauser O., Schröder C. Computational spectroscopy of trehalose, sucrose, maltose, and glucose: A comprehensive study of TDSS, NQR, NOE, and DRS. J. Chem. Phys. 2019;150:175102. doi: 10.1063/1.5095058. PubMed DOI

Olsson C., Swenson J. Structural comparison between sucrose and trehalose in aqueous solution. J. Phys. Chem. B. 2020;124:3074–3082. doi: 10.1021/acs.jpcb.9b09701. PubMed DOI PMC

Oku K., Watanabe H., Kubota M., Fukuda S., Kurimoto M., Tujisaka Y., Komori M., Inoue Y., Sakurai M. NMR and quantum chemical study on the OH...pi and CH...O interactions between trehalose and unsaturated fatty acids: Implication for the mechanism of antioxidant function of trehalose. J. Am. Chem. Soc. 2003;125:12739–12748. doi: 10.1021/ja034777e. PubMed DOI

Sakakura K., Okabe A., Oku K., Sakurai M. Experimental and theoretical study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution. J. Phys. Chem. B. 2011;115:9823–9830. doi: 10.1021/jp2037203. PubMed DOI

Engelsena S.B., Monteiro C., de Penhoat C.H., Pérez S. The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy. Biophys. Chem. 2001;93:103–127. doi: 10.1016/S0301-4622(01)00215-0. PubMed DOI

Liu D., Martinez-Sanz M., Lopez-Sanchez P., Gilbert E.P., Gidley M.J. Adsorption behaviour of polyphenols on cellulose is affected by processing history. Food Hydrocoll. 2017;63:496–507. doi: 10.1016/j.foodhyd.2016.09.012. DOI

Simpson K.L. Chemical changes in food during processing. In: Richardson T., Finley J.W., editors. Chemical Changes in Natural Food Pigments. Springer; New York, NY, USA: Van Nostrand Reinhold; New York, NY, USA: 1985. pp. 409–441. Basic symposium Series.

Padayachee A., Netzel G., Netzel M., Day L., Zabaras D., Mikkelsen D., Gidley M.J. Binding of polyphenols to plant cell wall analogues–Part 1: Anthocyanins. Food Chem. 2012;134:155–161. doi: 10.1016/j.foodchem.2012.02.082. PubMed DOI

Phan A.D.T., Netzel G., Wang D., Flanagan B.M., D’Arcy B.R., Gidley M.J. Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chem. 2015;171:388–396. doi: 10.1016/j.foodchem.2014.08.118. PubMed DOI

Munteanu I.G., Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021;22:3380. doi: 10.3390/ijms22073380. PubMed DOI PMC

Santos-Sánchez N., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. In: Shalaby E., editor. Antioxidants. IntechOpen; London, UK: 2019. DOI

Zhang Y., Li Y., Ren X., Zhang X., Wu Z., Liu L. The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds. Food Chem. 2023;402:134231. doi: 10.1016/j.foodchem.2022.134231. PubMed DOI

Pinelo M., Manzocco L., Nunez M.J., Nicoli M.C. Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. J. Agric. Food Chem. 2004;52:1177–1180. doi: 10.1021/jf0350515. PubMed DOI

Wang M., Jin Y., Ho C.T. Evaluation of resveratrol derivatives as potential antioxidants and identification of a reaction product of resveratrol and 2,2,-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 1999;47:3974–3977. doi: 10.1021/jf990382w. PubMed DOI

Ariga T., Hamano M. Radical scavenging action and its mode in procyanidins B1 and B3 from azuki beans to peroxyl radicals. Agric. Biol. Chem. 1990;54:2499–2504. doi: 10.1080/00021369.1990.10870369. DOI

Saint-Cricq de Gaulejac N., Provost C., Vivas N. Comparative study of polyphenol scavenging activities assessed by different methods. J. Agric. Food Chem. 1999;47:425–431. doi: 10.1021/jf980700b. PubMed DOI

Hagerman A.E., Riedl K.M., Jones G.A., Sovik K.N., Ritchad N.T., Harzfeld P.W., Riechel T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998;46:1887–1992. doi: 10.1021/jf970975b. PubMed DOI

Lu Y., Yeap Foo L. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 2000;68:81–85. doi: 10.1016/S0308-8146(99)00167-3. DOI

Nicoli M.C., Manzocco L., Calligaris S. Effect of enzymatic and chemical oxidation on the antioxidant capacity of catechin model systems and apple derivatives. J. Agric. Food Chem. 2000;48:4576–4580. doi: 10.1021/jf000151l. PubMed DOI

Espin J.C., Wichers W.J. Study of the oxidation of resveratrol catalyzed by polyphenol oxidase. Effect of polyphenol oxidase, laccase and peroxidase on the antiradical activity of resveratrol. J. Food Biochem. 2000;24:225–250. doi: 10.1111/j.1745-4514.2000.tb00698.x. DOI

Kopjar M., Ćorković I., Buljeta I., Šimunović J., Pichler A. Fortification of pectin/blackberry hydrogels with apple fibers: Effect on phenolics, antioxidant activity and inhibition of α-glucosidase. Antioxidants. 2022;11:1459. doi: 10.3390/antiox11081459. PubMed DOI PMC

Kopjar M., Ivić I., Buljeta I., Ćorković I., Vukoja J., Šimunović J., Pichler A. Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose. Plants. 2021;10:1640. doi: 10.3390/plants10081640. PubMed DOI PMC

Tobolka A., Škorpilová T., Dvořáková Z., Fernández Cusimamani E., Rajchl A. Determination of capsaicin in hot peppers (Capsicum spp.) by direct analysis in real time (DART) method. J. Food Compos. Anal. 2021;103:104074. doi: 10.1016/j.jfca.2021.104074. DOI

Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotonutric acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.

Giusti M.M., Wrolstad R.E. Current Protocols in Food Analytical Chemistry Current Protocols. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2001. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy.

Arnao M.B., Cano A., Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001;73:239–244. doi: 10.1016/S0308-8146(00)00324-1. DOI

Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI

Apak R., Güçlü K., Ozyürek M., Karademir S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Sci. Food Agric. 2004;52:7970–7981. doi: 10.1021/jf048741x. PubMed DOI

Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1994;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Buljeta I., Pichler A., Šimunović J., Kopjar M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules. 2021;26:4400. doi: 10.3390/molecules26154400. PubMed DOI PMC

Prchalová J., Kovařík F., Rajchl A. Evaluation of the quality of herbal teas by DART/TOF-MS. J. Mass Spectrom. 2017;52:116–126. doi: 10.1002/jms.3905. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...