Synthesis of Some Mono- and Disaccharide-Grafting Phthalazine Derivatives and Some New Se-Nucleoside Analogues: Antibacterial Properties, Quantum Chemical Calculations, and Cytotoxicity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36615511
PubMed Central
PMC9822378
DOI
10.3390/molecules28010317
PII: molecules28010317
Knihovny.cz E-zdroje
- Klíčová slova
- S-nucleosides, antibacterial, biocompatibility, mono/disaccharides, nucleoside analogues, quantum calculations,
- MeSH
- antibakteriální látky * farmakologie MeSH
- ftalaziny farmakologie MeSH
- kvantová teorie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- nukleosidy * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- ftalaziny MeSH
- nukleosidy * MeSH
A highly efficient and versatile synthetic approach for the synthesis of 4-(pyren-1-ylmethyl)-1-(d-glycosyloxy) phthalazine nucleosides 11a,b, 13, β-S-nucleosides 16, 18, 20, and acyclo C-nucleosides 23a,b, 24, 25 and 27a-f was described and fully characterized. Furthermore, a series of desired new nucleoside analogues containing Se of 4-(pyren-1-ylmethyl) phthalazine-1(2H)-selenone 28-33 were synthesized. The structures of all reported compounds were confirmed by IR, 1H-NMR, 13C-NMR, MS and elemental analysis. All compounds have been screened for their antibacterial and antifungal activities. Maximum activity was shown by 20 and 33a comparable to the standard drugs with lower toxicity. The cytotoxicity of the selected compound was measured and evaluated. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital was calculated using theoretical computations to reflect the chemical reactivity and kinetic stability of the synthesized compounds. Using density functional theory (DFT), electronic parameters such as the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) and the molecular electrostatic potential (MEPS) were calculated. On the basis of different studied structures, these properties were computed in order to elucidate the chemical reactivity and the kinetic stability. Obviously, the band gap energy (Eg) of structures studied reveals that the lowest band gap obtained for the structure 16-a indicates that it has the highest chemical reactivity and lowest kinetic stability.
Chemistry Department Faculty of Science Ain Shams University Cairo 11566 Egypt
Chemistry Department Faculty of Science Fayoum University Fayoum 63514 Egypt
Zobrazit více v PubMed
Romeo G., Iannazzo D., Piperno A., Romeo R., Saglimbeni M., Chiacchio M.A., Balestrieri E.B., Macchi A., Mastino A. Synthesis and biological evaluation of phosphonated dihydroisoxazole nucleosides. Bioorg. Med. Chem. 2006;14:3818–3824. doi: 10.1016/j.bmc.2006.01.028. PubMed DOI
Chong Y., Gumina G., Chu C.K. A divergent synthesis of d- and l-carbocyclic 4′-fluoro-2′,3′-dideoxynucleosides as potential antiviral agents. Tetrahedron Asymmetry. 2000;11:4853–4875. doi: 10.1016/S0957-4166(00)00482-1. DOI
Kren V., Martínková L. Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr. Med. Chem. 2001;8:1303–1328. doi: 10.2174/0929867013372193. PubMed DOI
Rashad A.E., Mahmoud A.E., Ali M.M. Synthesis and anticancer effects of some novel pyrazolo[3,4-d]pyrimidine derivatives by generating reactive oxygen species in human breast adenocarcinoma cells. Eur. J. Med. Chem. 2011;46:1019–1026. doi: 10.1016/j.ejmech.2011.01.013. PubMed DOI
Saad H.A., Moustafa A.H. Synthesis and anticancer activity of some new S-glycosyl and S-alkyl 1,2,4-triazinone derivatives. Molecules. 2011;16:5682–5700. doi: 10.3390/molecules16075682. PubMed DOI PMC
Al-Mutairi M.S., Al-Abdullah E.S., Haiba M.E., Khedr M.A., Zaghary W.A. Synthesis, molecular docking and preliminary in-vitro cytotoxic evaluation of some substituted tetrahydro-naphthalene (2′,3′,4′,6′-tetra-O-acetyl-β-D-gluco/-galactopyranosyl) derivatives. Molecules. 2012;17:4717–4732. doi: 10.3390/molecules17044717. PubMed DOI PMC
Abdel-Mohsen A.M., Aly A.S., Hrdina R. A novel method for the preparation of silver /chitosan-O-methoxy polyethylene glycol core shell nanoparticles. J. Polym. Environ. 2012;20:459–468. doi: 10.1007/s10924-011-0378-1. DOI
Soliman A.Y., Mohamed F.K., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Mohamed A.S. Reaction and Antibacterial efficacy of active methylene compounds with coumarin derivatives. J. Pure Appl. Microbiol. 2013;7:435–439.
Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Mohamed A.S. Finishing of cellulosic fabrics with Chitosan/polyethylene glycol-siloxane to improve their Performance and antibacterial properties. Life Sci. J. 2013;10:834–839.
Abu-Zaied M.A., El-Telbani E.M., Nawwar G.A.M. Synthesis and in vitro anti-tumor activity of new oxadiazole thioglycosides. Eur. J. Med. Chem. 2011;46:229–235. doi: 10.1016/j.ejmech.2010.11.008. PubMed DOI
El-Shamy I.E., Abdel-Mohsen A.M., Alsheikh A.A., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A. Synthesis and antimicrobial activities of S-nucleosides of 4-mesitylphthalazine-1-thiol and some new selenium-containing nucleoside analogues. Tetrahedron Lett. 2015;56:1183–1188. doi: 10.1016/j.tetlet.2015.01.103. DOI
El-Shamy I.E., Abdel-Mohsen A.M., Alsheikh A.A., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A., Jancar J. Synthesis, biological, anti-inflammatory activities and quantum chemical calculation of some [4-(2,4,6-trimethylphenyl)-1(2H)-oxo-phthalazin-2yl] acetic acid hydrazide derivatives. Dye. Pigment. 2015;113:357–371. doi: 10.1016/j.dyepig.2014.08.026. DOI
El-Hashash M.A., El-Kady A.Y., Taha M.A., El-Shamy I.E. Synthesis and antimicrobial activity of some condensed [4-(2,4,6-trimethylphenyl)-1(2H)-oxo-phthalazin-2-yl]acetic acid hydrazide. Chin. J. Chem. 2012;30:616–626. doi: 10.1002/cjoc.201100256. DOI
El-Hashash M.A., Soliman A.Y., El-Shamy I.E. Synthesis and antimicrobial evaluation of some annelated phthalazine derivatives and acyclo C-nucleosides from 1-chloro-4-(2,4,6-trimethylphenyl) phthalazine precursor. Turk. J. Chem. 2012;36:347–366.
El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Abdel-Megeed A., El-Hashash M.A. Synthesis and Antimicrobial Evaluation of Some New 2-(5,6-Dihydro-4H-1,2,4-triazolo[4,3-a]benz[F]azepin-1-yl)methyl)-4-substituted Phthalazin-1(2H)-ones. Asian J. Chem. 2014;26:7828–7832. doi: 10.14233/ajchem.2014.17984. DOI
El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A. Synthesis of Some Biologically Active Pyrazolylphthalazine Derivatives and Acyclo-C-nucleosides of 6-(2,4,6-trimethylphenyl)-1,2,4-triazolo[3,4-a]phthalazine. Asian J. Chem. 2014;26:4405–4415. doi: 10.14233/ajchem.2014.16756. DOI
El-Shamy I.E., Abdel-Mohsen A.M., Al-Shehri M.M., El-Hashash M.A., Al-Shamrani K.M. Selenium containing heterocycles: Synthesis and antimicrobial evaluation of some new 4-substituted-2-(4-phenyl-2-(piperidin-1-yl)-1,3-selenazol-5-yl) phthalazin-1(2H)-ones. Life Sci. J. 2014;11:385–391.
Mohamed F.K., Soliman A.Y., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Hrdina R. Synthesis and antibacterial activity of new quinoline derivatives started from coumarin compounds. J. Pure Appl. Microbiol. 2013;7:453–458.
Loh V.M., Jr., Cockcroft X., Dillon K.J., Dixon L., Drzewiecki J., Eversley P.J., Gomez S., Hoare J., Kerrigan F., Matthews I.T.W. Phthalazinones. Part 1: The design and synthesis of a novel series of potent inhibitors of poly (ADP-ribose)polymerase. Bioorg. Med. Chem. Lett. 2005;15:2235–2239. doi: 10.1016/j.bmcl.2005.03.026. PubMed DOI
Aly A.S., Abdel-Mohsen A.M., Hrdina R., Abou-Okeil A. Preparation and characterization of polyethylene glycol/dimethyl siloxane adduct and its utilization as finishing agent for cotton fabric. J. Nat. Fibers. 2011;8:176–188. doi: 10.1080/15440478.2011.602243. DOI
Mohamed F.K., Soliman A.Y., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Almonasy N., Mohamed A.S. Synthesis and antibacterial activity of 3-arylidene chromen-2,4-dione derivatives. Life Sci. J. 2013;10:840–845.
Hamamto Y., Nagai K., Muto M., Asagami C. Inhibitory effect of azelastine, a potent antiallergic agent, on release of tumor necrosis factor-alpha from activated human peripheral blood mononuclear cells and U937 cells. Exp. Dermatol. 1993;2:231–235. doi: 10.1111/j.1600-0625.1993.tb00038.x. PubMed DOI
Del Olmo E., Barboza B., Ybarra M.I., Lopez-Perez J.L., Carron R., Sevilla M.A. Vasorelaxant activity of phthalazinones and related compounds. Bioorg Med. Chem. Lett. 2006;16:2786–2790. doi: 10.1016/j.bmcl.2006.02.003. PubMed DOI
El-Shamy I.E., Bakeer H.M., Abdel-Mohsen A.M., Al-Shehri M.M., Al-Shamrani K.M. Synthesis of some new N-glycosyl and 4-aryl-2-((1-(piperidin-1-ylmethyl)-1H-benzo[d]imidazol-2-yl) methyl) phthalazin-1(2H)-one. Life Sci. J. 2014;11:94–99.
Mirali M., Jafariazar Z., Mirzaei M. Loading Tacrine Alzheimer’s Drug at the Carbon Nanotube: DFT Approach. Lab-in-Silico. 2021;2:3–8.
Hleli E., Mbarek M., Gouid Z., Ulbricsht C., Romdhane S., Said R.B., Guesmi M., Egbe D.A.M., Bouchriha H. DFT study of optical and electronic properties of anthracene containing PPE-PPVs. J. Phys. Chem. Solids. 2020;136:109157. doi: 10.1016/j.jpcs.2019.109157. DOI
Ben Salah Y., Altowyan A.S., Mbarek M., Alimi K. Complementary Study Based on DFT of Optical and Electronic Properties of New Copolymer PVK-F8T2. Polym. J. 2021;13:1805. doi: 10.3390/polym13111805. PubMed DOI PMC
El-Sayed H.A., Moustafa A.H., Haikal A.Z., El Ashry E.H. Synthesis, antitumor and antimicrobial activities of 4-(4-chlorophenyl)-3-cyano-2-(β-O-glycosyloxy)-6-(thien-2-yl)-nicotinonitrile. Eur. J. Med. Chem. 2011;46:2948–2954. doi: 10.1016/j.ejmech.2011.04.019. PubMed DOI
Khalil N.S. Efficient synthesis, structure, and antimicrobial activity of some novel N- and S-β-d-glucosides of 5-pyridin-3-yl-1,2,4-triazoles. Carbohydr. Res. 2006;341:2187–2199. doi: 10.1016/j.carres.2006.06.007. PubMed DOI
Awad L.F., El Ashry E.H. Synthesis and conformational analysis of seco C-nucleosides and their diseco double-headed analogues of the 1,2,4-triazole, 1,2,4-triazolo[3,4-b]1,3,4-thiadiazole. Carbohydr. Res. 1998;312:9–22. doi: 10.1016/S0008-6215(98)00205-5. DOI
Hamed A., Abo-Amaym E.R., El Ashry E.H. Synthesis of acyclo C-nucleosides of phenanthro [9,10-1,2,4] triazino[3,4-c]-[1,2,4] triazoles, and their precursors. Nucleosides Nucleotides. 1998;17:1385–1407. doi: 10.1080/07328319808003477. PubMed DOI
Soliman A.Y., Mohamed F.K., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al Deyab s.s., Mohamed A.S. Synthesis of new coumarin derivatives using Diels-Alder reaction. Life Sci. J. 2013;10:846–850.
Koopmans T. Uber die Zuordnung von Wellenfunktiomen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica. 1934;1:104–113. doi: 10.1016/S0031-8914(34)90011-2. DOI
Fleming I. Frontier Orbitals and Organic Chemical Reactions. John Wiley and Sons; New York, NY, USA: 1976.
Coulibaly W.K., N’dri J.S., Koné M.G.-R., Dago C.D., Ambeu C.N., Bazureau J.P., Ziao N. Studies of the chemical reactivity of a series of rhodanine derivatives by approaches to quantum chemistry. Comput. Mol. Biosci. 2019;9:49. doi: 10.4236/cmb.2019.93005. DOI
Das R., Vigneresse J.L., Chattaraj P.K. Chemical reactivity through structure—Stability landscape. Int. J. Quantum Chem. 2014;114:1421. doi: 10.1002/qua.24706. DOI
Dennington R., Keith T., Millam J. GaussView, Version 5.0.8. Semichem Inc.; Shawnee Mission, KS, USA: 2009.
Hao M.H. Theoretical Calculation of Hydrogen-Bonding Strength for Drug Molecules. J. Chem. Theory Comput. 2006;2:863–872. doi: 10.1021/ct0600262. PubMed DOI
El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Almonasy N., Al-Deyab S.S., El-Hashash M.A. Selenium containing heterocyclic: Synthesis, antimicrobial of some new selenazole Substituted phthalazinone. Life Sci. J. 2013;4:799–809.
Aly A.S., Abdel-Mohsen A.M., Hebeish A. Innovative multi-finishing using chitosan-O-MPEG graft copolymer/citric acid aqueous system for preparation of medical textiles. J. Text. Inst. 2010;101:76–90. doi: 10.1080/00405000802263559. DOI
Jaki B., Orjala J., Burji H.R., Sticher O. Biological screening of cyanobacteria for antimicrobial and molluscicidal activity, brine shrimp lethality, and cytotoxicity. J. Pharm. Biol. 1999;37:138–143. doi: 10.1076/phbi.37.2.138.6092. DOI
Orio M., Pantazis D.A., Neese F. Density functional theory. Photosynth. Res. 2009;102:443–453. doi: 10.1007/s11120-009-9404-8. PubMed DOI PMC
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H. Gaussian 16, Revision, A.03. Gaussian Inc.; Wallingford, CT, USA: 2016.