2-Methyl-6-(4-aminophenyl)-4,5-dihydro-3(2H)-pyridazinone Synthon for Some New Annelated 1,2,3-Selena/Thiadiazoles and 2H-Diazaphospholes with Anticipated Biological Activity and Quantum Chemical Calculations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36770947
PubMed Central
PMC9920368
DOI
10.3390/molecules28031280
PII: molecules28031280
Knihovny.cz E-zdroje
- Klíčová slova
- DFT calculations, antimicrobial activity, cytotoxicity, pyridazinone, selenadiazole, thiadiazole,
- Publikační typ
- časopisecké články MeSH
A convenient and efficient synthetic protocol for the new selenadiazole. Thiadiazole and diazaphosphole derivatives incorporating a pyridazine moiety originating from 4-(4-aminophenyl)-4-oxobutanoic acid (1) were described. All newly synthesized compounds were evaluated for their antimicrobial activity using the disk diffusion method, and their cytotoxicity was evaluated against brine shrimp lethality bioassay. Using density functional theory (DFT), the frontier molecular orbital (FMO) and molecular electrostatic potential (MEPS) were studied to estimate the chemical reactivity and kinetic stability of each structure. Therefore, global descriptor parameters like electronegativity (χ), chemical hardness (η), and global softness (σ) were calculated. Consequently, the attained results were compared with the experimental data of the biological activity of the studied structures.
CEITEC Brno University of Technology Purkyňova 123 61200 Brno Czech Republic
Chemistry Department Faculty of Science Ain Shams University Cairo 11221 Egypt
Chemistry Department Faculty of Science Fayoum University Fayoum 63514 Egypt
Zobrazit více v PubMed
Kandile N.G., Mohamed M.I., Zaky H., Mohamed H.M. Novel pyridazine derivatives: Synthesis and antimicrobial activity evaluation. Eur. J. Med. Chem. 2009;44:1989. doi: 10.1016/j.ejmech.2008.09.047. PubMed DOI
El-Shamy I.E., Hleli E., Alsheikh A.A., Yawer M.A., El-Hashash M.A., Dybal J., Abdel-Mohsen A.M. Synthesis of Some Mono- and Disaccharide-Grafting Phthalazine Derivatives and Some New Se-Nucleoside Analogues: Antibacterial Properties, Quantum Chemical Calculations, and Cytotoxicity. Mol. J. 2023;28:317. doi: 10.3390/molecules28010317. PubMed DOI PMC
Soliman A.Y., Mohamed F.K., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Mohamed A.S. Reaction and Antibacterial efficacy of active methylene compounds with coumarin derivatives. J. Pure Appl. Microbiol. 2013;7:435–439.
El-Shamy I.E., Abdel-Mohsen A.M., Alsheikh A.A., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A. Synthesis and antimicrobial activities of S-nucleosides of 4-mesitylphthalazine-1-thiol and some new selenium-containing nucleoside analogues. Tetrahedron Lett. 2015;56:1183–1188. doi: 10.1016/j.tetlet.2015.01.103. DOI
El-Shamy I.E., Abdel-Mohsen A.M., Alsheikh A.A., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A., Jancar J. Synthesis, biological, anti-inflammatory activities and quantum chemical calculation of some [4-(2,4,6-trimethylphenyl)-1(2H)-oxo-phthalazin-2yl] acetic acid hydrazide derivatives. Dye. Pigment. 2015;113:357–371. doi: 10.1016/j.dyepig.2014.08.026. DOI
El-Hashash M.A., El-Kady A.Y., Taha M.A., El-Shamy I.E. Synthesis and antimicrobial activity of some condensed [4-(2,4,6-trimethylphenyl)-1(2H)-oxo-phthalazin-2-yl]acetic acid hydrazide. Chin. J. Chem. 2012;30:616–626. doi: 10.1002/cjoc.201100256. DOI
El-Hashash M.A., Soliman A.Y., El-Shamy I.E. Synthesis and antimicrobial evaluation of some annelated phthalazine derivatives and acyclo C-nucleosides from 1-chloro-4-(2,4,6-trimethylphenyl) phthalazine precursor. Turk. J. Chem. 2012;36:347–366.
Butnariu R., Caprosu M.D., Bejan V., Tuchilus C., Mangalagiu I. Pyridazine and phthalazine derivatives with potential antimicrobial activity. J. Heterocycl. Chem. 2007;44:1149. doi: 10.1002/jhet.5570440528. DOI
El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Abdel-Megeed A., El-Hashash M.A. Synthesis and Antimicrobial Evaluation of Some New 2-(5,6-Dihydro-4H-1,2,4-triazolo [4,3-a]benz[F]azepin-1-yl)methyl)-4-substituted Phthalazin-1(2H)-ones. Asian J. Chem. 2014;26:7828–7832. doi: 10.14233/ajchem.2014.17984. DOI
El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A. Synthesis of Some Biologically Active Pyrazolylphthalazine Derivatives and Acyclo-C-nucleosides of 6-(2,4,6-trimethylphenyl)-1,2,4-triazolo [3,4-a]phthalazine. Asian J. Chem. 2014;26:4405–4415. doi: 10.14233/ajchem.2014.16756. DOI
El-Shamy I.E., Abdel-Mohsen A.M., Al-Shehri M.M., El-Hashash M.A., Al-Shamrani K.M. Selenium containing heterocycles: Synthesis and antimicrobial evaluation of some new 4-substituted-2-(4-phenyl-2-(piperidin-1-yl)-1,3-selenazol-5-yl) phthalazin-1(2H)-ones. Life Sci. J. 2014;11:385–391.
Mohamed F.K., Soliman A.Y., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Hrdina R. Synthesis and antibacterial activity of new quinoline derivatives started from coumarin compounds. J. Pure Appl. Microbiol. 2013;7:453–458.
Vishakha V., Abdel-Mohsen A.M., Jancar J. Green synthesis and the stabilization of selenium nanoparticles using carboxymethyl starch; Proceedings of the NANOCON Conference Proceedings–International Conference on Nanomaterials; Brno, Czech Republic. 21–23 October 2020; pp. 433–439. DOI
Aly A.S., Abdel-Mohsen A.M., Hrdina R., Abou-Okeil A. Preparation and characterization of polyethylene glycol/dimethyl siloxane adduct and its utilization as finishing agent for cotton fabric. J. Nat. Fibers. 2011;8:176–188. doi: 10.1080/15440478.2011.602243. DOI
Liljebris C., Martinsson J., Swedenborg L. Synthesis and biological activity of a novel class of pyridazine analogues as non-competitive reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B) Bioorg. Med. Chem. 2002;10:3197–3212. doi: 10.1016/S0968-0896(02)00176-1. PubMed DOI
Abdel-Mohsen A.M., Aly A.S., Hrdina R. A novel method for the preparation of silver /chitosan-O-methoxy polyethylene glycol core shell nanoparticles. J. Polym. Environ. 2012;20:459–468. doi: 10.1007/s10924-011-0378-1. DOI
Burling F., Goldenstein B.M. Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J. Am. Chem. Soc. 1992;114:2313–2320. doi: 10.1021/ja00033a004. DOI
Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Mohamed A.S. Finishing of cellulosic fabrics with Chitosan/polyethylene glycol-siloxane to improve their Performance and antibacterial properties. Life Sci. J. 2013;10:834–839.
Lalezari I., Shafiee A., Khorrami J. Synthesis and antimicrobial activity of spiro[chromeno [4,3-d][1,2,3]thiadiazole-4,1′-cyclohexane, spiro[chromeno [4,3-d][1,2,3]selenadiazole-4,1′-cyclohexane and spiro [chroman-2,1′-cyclohexan]-4-one-5-spiro-4-acetyl-2-(acetylamino)-∆2-1,3,4-thiadiazolines compounds. A. J. Pharm. Sci. 1987;67:1336.
Koketsu M., Ishihara H. [2-(4-Chlorophenyl)-1,3-selenazol-4-yl]methanol. Curr. Org. Chem. 2003;7:175. doi: 10.2174/1385272033373102. DOI
Mohamed F.K., Soliman A.Y., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Almonasy N., Mohamed A.S. Synthesis and antibacterial activity of 3-arylidene chromen-2,4-dione derivatives. Life Sci. J. 2013;10:840–845.
El-Shamy I.E., Bakeer H.M., Abdel-Mohsen A.M., Al-Shehri M.M., Al-Shamrani K.M. Synthesis of some new N-glycosyl and 4-aryl-2-((1-(piperidin-1-ylmethyl)-1H-benzo[d]imidazol-2-yl) methyl) phthalazin-1(2H)-one. Life Sci. J. 2014;11:94–99.
Soliman A.Y., Mohamed F.K., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al Deyab s.s., Mohamed A.S. Synthesis of new coumarin derivatives using Diels-Alder reaction. Life Sci. J. 2013;10:846–850.
El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Almonasy N., Al-Deyab S.S., El-Hashash M.A. Selenium containing heterocyclic: Synthesis, antimicrobial of some new selenazole Substituted phthalazinone. Life Sci. J. 2013;4:799–809.
Aly A.S., Abdel-Mohsen A.M., Hebeish A. Innovative multi-finishing using chitosan-O-MPEG graft copolymer/citric acid aqueous system for preparation of medical textiles. J. Text. Inst. 2010;101:76–90. doi: 10.1080/00405000802263559. DOI
Chen T., Wong Y.-S., Zheng W., Liu J. Caspase—And p53-dependent apoptosis in breast carcinoma cells induced by a synthetic selenadiazole derivative. Chem. Biol. Interact. 2009;180:54–60. doi: 10.1016/j.cbi.2008.12.010. PubMed DOI
Zhao P., Boekfa B., Shimizu K.I., Ogura M., Ehara M. Selective catalytic reduction of NO with NH 3 over Cu-exchanged CHA, GME, and AFX zeolites: A density functional theory study. Catal. Sci. Technol. 2021;11:1780–1790. doi: 10.1039/D0CY02342F. DOI
Filipowska A., Filipowski, Tkacz A., Nowicka G., Struga M. Statistical Analysis of the Impact of Molecular Descriptors on Cytotoxicity of Thiourea Derivatives Incorporating 2-Aminothiazole Scaffold. Chem. Pharm. Bull. 2016;64:1196–1202. PubMed
Martínez J. Local reactivity descriptors from degenerate frontier molecular orbitals. Chem. Phys. Lett. 2009;478:310–322. doi: 10.1016/j.cplett.2009.07.086. DOI
Braga L.S., Leal D.H., Kuca K., Ramalho T.C. Perspectives on the Role of the Frontier Effective-for-Reaction Molecular Orbital (FERMO) in the Study of Chemical Reactivity. Curr. Org. Chem. 2020;24:314–333. doi: 10.2174/1385272824666200204121044. DOI
Baelde D., Delaune S., Jacomme C., Koutsos A., Moreau S. An interactive prover for protocol verification in the computational model; Proceedings of the SP 2021-42nd IEEE Symposium on Security and Privacy; San Francisco, CA, USA. 22 March 2021; [(accessed on 18 January 2023)]. pp. 1–24. Available online: https://hal.science/hal-03172119v1/document.
Yang Y., Sun Y., Eslami M. A density functional theory study on detection of amphetamine drug by silicon carbide nanotubeS. Phys. E: Low-Dimens. Syst. Nanostructures. 2021;125:114411. doi: 10.1016/j.physe.2020.114411. DOI
Chidieberea W.C., Durua C.E., Mbagwub J.P.C. Application of computational chemistry in chemical reactivity: A review. Nig. Soc. Phys. Sci. 2021;3:292–297. doi: 10.46481/jnsps.2021.347. DOI
Koopmans T. Uber die Zuordnung von Wellenfunktiomen und Eigenwerten zu den einzelnen Elektronen eines. Atoms. Phys. 1934;1:104–111. doi: 10.1016/S0031-8914(34)90011-2. DOI
Fleming I. Frontier Orbitals and Organic Chemical Reactions. John Wiley and Sons; New York, NY, USA: 1976.
Coulibaly W.K., Ndri J.S., Koné M.G.-R., Dago C.D., Ambeu C.N., Bazureau J.-P., Ziao N. Studies of the Chemical Reactivity of a Series of Rhodanine Derivatives by Approaches to Quantum Chemistry B. Comput. Mol. Biosci. 2019;9:49–62. doi: 10.4236/cmb.2019.93005. DOI
Das R., Vigneresse J.L., Chattaraj P.K. Chemical reactivity through structure-stability landscape. Int. J. Quantum Chem. 2014;114:1421. doi: 10.1002/qua.24706. DOI
Hleli E., Mbarek M., Gouid E., Ulbricsht E., Romdhane S., Ben Said R., Guesmi M., Egbe D.A.M., Bouchriha H. DFT study of optical and electronic properties of anthracene containing PPE-PPVs. J. Phys. Chem. Solids. 2020;136:109–157. doi: 10.1016/j.jpcs.2019.109157. DOI
Hao M.-H. Theoretical Calculation of Hydrogen-Bonding Strength for Drug Molecules. J. Chem. Theory Comput. 2006;2:863–872. doi: 10.1021/ct0600262. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H. Gaussian 16, Revision, A.03. Gaussian Inc.; Wallingford, CT, USA: 2016.
Orio M., Pantazis D.A., Neese F. Density functional theory. Photosynth. Res. 2009;102:443–453. doi: 10.1007/s11120-009-9404-8. PubMed DOI PMC