2-Methyl-6-(4-aminophenyl)-4,5-dihydro-3(2H)-pyridazinone Synthon for Some New Annelated 1,2,3-Selena/Thiadiazoles and 2H-Diazaphospholes with Anticipated Biological Activity and Quantum Chemical Calculations

. 2023 Jan 28 ; 28 (3) : . [epub] 20230128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36770947

A convenient and efficient synthetic protocol for the new selenadiazole. Thiadiazole and diazaphosphole derivatives incorporating a pyridazine moiety originating from 4-(4-aminophenyl)-4-oxobutanoic acid (1) were described. All newly synthesized compounds were evaluated for their antimicrobial activity using the disk diffusion method, and their cytotoxicity was evaluated against brine shrimp lethality bioassay. Using density functional theory (DFT), the frontier molecular orbital (FMO) and molecular electrostatic potential (MEPS) were studied to estimate the chemical reactivity and kinetic stability of each structure. Therefore, global descriptor parameters like electronegativity (χ), chemical hardness (η), and global softness (σ) were calculated. Consequently, the attained results were compared with the experimental data of the biological activity of the studied structures.

Zobrazit více v PubMed

Kandile N.G., Mohamed M.I., Zaky H., Mohamed H.M. Novel pyridazine derivatives: Synthesis and antimicrobial activity evaluation. Eur. J. Med. Chem. 2009;44:1989. doi: 10.1016/j.ejmech.2008.09.047. PubMed DOI

El-Shamy I.E., Hleli E., Alsheikh A.A., Yawer M.A., El-Hashash M.A., Dybal J., Abdel-Mohsen A.M. Synthesis of Some Mono- and Disaccharide-Grafting Phthalazine Derivatives and Some New Se-Nucleoside Analogues: Antibacterial Properties, Quantum Chemical Calculations, and Cytotoxicity. Mol. J. 2023;28:317. doi: 10.3390/molecules28010317. PubMed DOI PMC

Soliman A.Y., Mohamed F.K., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Mohamed A.S. Reaction and Antibacterial efficacy of active methylene compounds with coumarin derivatives. J. Pure Appl. Microbiol. 2013;7:435–439.

El-Shamy I.E., Abdel-Mohsen A.M., Alsheikh A.A., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A. Synthesis and antimicrobial activities of S-nucleosides of 4-mesitylphthalazine-1-thiol and some new selenium-containing nucleoside analogues. Tetrahedron Lett. 2015;56:1183–1188. doi: 10.1016/j.tetlet.2015.01.103. DOI

El-Shamy I.E., Abdel-Mohsen A.M., Alsheikh A.A., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A., Jancar J. Synthesis, biological, anti-inflammatory activities and quantum chemical calculation of some [4-(2,4,6-trimethylphenyl)-1(2H)-oxo-phthalazin-2yl] acetic acid hydrazide derivatives. Dye. Pigment. 2015;113:357–371. doi: 10.1016/j.dyepig.2014.08.026. DOI

El-Hashash M.A., El-Kady A.Y., Taha M.A., El-Shamy I.E. Synthesis and antimicrobial activity of some condensed [4-(2,4,6-trimethylphenyl)-1(2H)-oxo-phthalazin-2-yl]acetic acid hydrazide. Chin. J. Chem. 2012;30:616–626. doi: 10.1002/cjoc.201100256. DOI

El-Hashash M.A., Soliman A.Y., El-Shamy I.E. Synthesis and antimicrobial evaluation of some annelated phthalazine derivatives and acyclo C-nucleosides from 1-chloro-4-(2,4,6-trimethylphenyl) phthalazine precursor. Turk. J. Chem. 2012;36:347–366.

Butnariu R., Caprosu M.D., Bejan V., Tuchilus C., Mangalagiu I. Pyridazine and phthalazine derivatives with potential antimicrobial activity. J. Heterocycl. Chem. 2007;44:1149. doi: 10.1002/jhet.5570440528. DOI

El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Abdel-Megeed A., El-Hashash M.A. Synthesis and Antimicrobial Evaluation of Some New 2-(5,6-Dihydro-4H-1,2,4-triazolo [4,3-a]benz[F]azepin-1-yl)methyl)-4-substituted Phthalazin-1(2H)-ones. Asian J. Chem. 2014;26:7828–7832. doi: 10.14233/ajchem.2014.17984. DOI

El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., El-Hashash M.A. Synthesis of Some Biologically Active Pyrazolylphthalazine Derivatives and Acyclo-C-nucleosides of 6-(2,4,6-trimethylphenyl)-1,2,4-triazolo [3,4-a]phthalazine. Asian J. Chem. 2014;26:4405–4415. doi: 10.14233/ajchem.2014.16756. DOI

El-Shamy I.E., Abdel-Mohsen A.M., Al-Shehri M.M., El-Hashash M.A., Al-Shamrani K.M. Selenium containing heterocycles: Synthesis and antimicrobial evaluation of some new 4-substituted-2-(4-phenyl-2-(piperidin-1-yl)-1,3-selenazol-5-yl) phthalazin-1(2H)-ones. Life Sci. J. 2014;11:385–391.

Mohamed F.K., Soliman A.Y., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Hrdina R. Synthesis and antibacterial activity of new quinoline derivatives started from coumarin compounds. J. Pure Appl. Microbiol. 2013;7:453–458.

Vishakha V., Abdel-Mohsen A.M., Jancar J. Green synthesis and the stabilization of selenium nanoparticles using carboxymethyl starch; Proceedings of the NANOCON Conference Proceedings–International Conference on Nanomaterials; Brno, Czech Republic. 21–23 October 2020; pp. 433–439. DOI

Aly A.S., Abdel-Mohsen A.M., Hrdina R., Abou-Okeil A. Preparation and characterization of polyethylene glycol/dimethyl siloxane adduct and its utilization as finishing agent for cotton fabric. J. Nat. Fibers. 2011;8:176–188. doi: 10.1080/15440478.2011.602243. DOI

Liljebris C., Martinsson J., Swedenborg L. Synthesis and biological activity of a novel class of pyridazine analogues as non-competitive reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B) Bioorg. Med. Chem. 2002;10:3197–3212. doi: 10.1016/S0968-0896(02)00176-1. PubMed DOI

Abdel-Mohsen A.M., Aly A.S., Hrdina R. A novel method for the preparation of silver /chitosan-O-methoxy polyethylene glycol core shell nanoparticles. J. Polym. Environ. 2012;20:459–468. doi: 10.1007/s10924-011-0378-1. DOI

Burling F., Goldenstein B.M. Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J. Am. Chem. Soc. 1992;114:2313–2320. doi: 10.1021/ja00033a004. DOI

Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al-Deyab S.S., Mohamed A.S. Finishing of cellulosic fabrics with Chitosan/polyethylene glycol-siloxane to improve their Performance and antibacterial properties. Life Sci. J. 2013;10:834–839.

Lalezari I., Shafiee A., Khorrami J. Synthesis and antimicrobial activity of spiro[chromeno [4,3-d][1,2,3]thiadiazole-4,1′-cyclohexane, spiro[chromeno [4,3-d][1,2,3]selenadiazole-4,1′-cyclohexane and spiro [chroman-2,1′-cyclohexan]-4-one-5-spiro-4-acetyl-2-(acetylamino)-∆2-1,3,4-thiadiazolines compounds. A. J. Pharm. Sci. 1987;67:1336.

Koketsu M., Ishihara H. [2-(4-Chlorophenyl)-1,3-selenazol-4-yl]methanol. Curr. Org. Chem. 2003;7:175. doi: 10.2174/1385272033373102. DOI

Mohamed F.K., Soliman A.Y., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Almonasy N., Mohamed A.S. Synthesis and antibacterial activity of 3-arylidene chromen-2,4-dione derivatives. Life Sci. J. 2013;10:840–845.

El-Shamy I.E., Bakeer H.M., Abdel-Mohsen A.M., Al-Shehri M.M., Al-Shamrani K.M. Synthesis of some new N-glycosyl and 4-aryl-2-((1-(piperidin-1-ylmethyl)-1H-benzo[d]imidazol-2-yl) methyl) phthalazin-1(2H)-one. Life Sci. J. 2014;11:94–99.

Soliman A.Y., Mohamed F.K., Abdel-Motaleb R.M., Abdel-Rahman R.M., Abdel-Mohsen A.M., Fouda M.M.G., Al Deyab s.s., Mohamed A.S. Synthesis of new coumarin derivatives using Diels-Alder reaction. Life Sci. J. 2013;10:846–850.

El-Shamy I.E., Abdel-Mohsen A.M., Fouda M.M.G., Almonasy N., Al-Deyab S.S., El-Hashash M.A. Selenium containing heterocyclic: Synthesis, antimicrobial of some new selenazole Substituted phthalazinone. Life Sci. J. 2013;4:799–809.

Aly A.S., Abdel-Mohsen A.M., Hebeish A. Innovative multi-finishing using chitosan-O-MPEG graft copolymer/citric acid aqueous system for preparation of medical textiles. J. Text. Inst. 2010;101:76–90. doi: 10.1080/00405000802263559. DOI

Chen T., Wong Y.-S., Zheng W., Liu J. Caspase—And p53-dependent apoptosis in breast carcinoma cells induced by a synthetic selenadiazole derivative. Chem. Biol. Interact. 2009;180:54–60. doi: 10.1016/j.cbi.2008.12.010. PubMed DOI

Zhao P., Boekfa B., Shimizu K.I., Ogura M., Ehara M. Selective catalytic reduction of NO with NH 3 over Cu-exchanged CHA, GME, and AFX zeolites: A density functional theory study. Catal. Sci. Technol. 2021;11:1780–1790. doi: 10.1039/D0CY02342F. DOI

Filipowska A., Filipowski, Tkacz A., Nowicka G., Struga M. Statistical Analysis of the Impact of Molecular Descriptors on Cytotoxicity of Thiourea Derivatives Incorporating 2-Aminothiazole Scaffold. Chem. Pharm. Bull. 2016;64:1196–1202. PubMed

Martínez J. Local reactivity descriptors from degenerate frontier molecular orbitals. Chem. Phys. Lett. 2009;478:310–322. doi: 10.1016/j.cplett.2009.07.086. DOI

Braga L.S., Leal D.H., Kuca K., Ramalho T.C. Perspectives on the Role of the Frontier Effective-for-Reaction Molecular Orbital (FERMO) in the Study of Chemical Reactivity. Curr. Org. Chem. 2020;24:314–333. doi: 10.2174/1385272824666200204121044. DOI

Baelde D., Delaune S., Jacomme C., Koutsos A., Moreau S. An interactive prover for protocol verification in the computational model; Proceedings of the SP 2021-42nd IEEE Symposium on Security and Privacy; San Francisco, CA, USA. 22 March 2021; [(accessed on 18 January 2023)]. pp. 1–24. Available online: https://hal.science/hal-03172119v1/document.

Yang Y., Sun Y., Eslami M. A density functional theory study on detection of amphetamine drug by silicon carbide nanotubeS. Phys. E: Low-Dimens. Syst. Nanostructures. 2021;125:114411. doi: 10.1016/j.physe.2020.114411. DOI

Chidieberea W.C., Durua C.E., Mbagwub J.P.C. Application of computational chemistry in chemical reactivity: A review. Nig. Soc. Phys. Sci. 2021;3:292–297. doi: 10.46481/jnsps.2021.347. DOI

Koopmans T. Uber die Zuordnung von Wellenfunktiomen und Eigenwerten zu den einzelnen Elektronen eines. Atoms. Phys. 1934;1:104–111. doi: 10.1016/S0031-8914(34)90011-2. DOI

Fleming I. Frontier Orbitals and Organic Chemical Reactions. John Wiley and Sons; New York, NY, USA: 1976.

Coulibaly W.K., Ndri J.S., Koné M.G.-R., Dago C.D., Ambeu C.N., Bazureau J.-P., Ziao N. Studies of the Chemical Reactivity of a Series of Rhodanine Derivatives by Approaches to Quantum Chemistry B. Comput. Mol. Biosci. 2019;9:49–62. doi: 10.4236/cmb.2019.93005. DOI

Das R., Vigneresse J.L., Chattaraj P.K. Chemical reactivity through structure-stability landscape. Int. J. Quantum Chem. 2014;114:1421. doi: 10.1002/qua.24706. DOI

Hleli E., Mbarek M., Gouid E., Ulbricsht E., Romdhane S., Ben Said R., Guesmi M., Egbe D.A.M., Bouchriha H. DFT study of optical and electronic properties of anthracene containing PPE-PPVs. J. Phys. Chem. Solids. 2020;136:109–157. doi: 10.1016/j.jpcs.2019.109157. DOI

Hao M.-H. Theoretical Calculation of Hydrogen-Bonding Strength for Drug Molecules. J. Chem. Theory Comput. 2006;2:863–872. doi: 10.1021/ct0600262. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H. Gaussian 16, Revision, A.03. Gaussian Inc.; Wallingford, CT, USA: 2016.

Orio M., Pantazis D.A., Neese F. Density functional theory. Photosynth. Res. 2009;102:443–453. doi: 10.1007/s11120-009-9404-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...