Validation of a Genetic-Enhanced Risk Prediction Model for Colorectal Cancer in a Large Community-Based Cohort

. 2023 Mar 06 ; 32 (3) : 353-362.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid36622766

Grantová podpora
K07 CA212057 NCI NIH HHS - United States
R01 CA244588 NCI NIH HHS - United States
R01 CA189532 NCI NIH HHS - United States
R03 CA215775 NCI NIH HHS - United States
K07 CA188142 NCI NIH HHS - United States
R01 CA195789 NCI NIH HHS - United States
UM1 CA222035 NCI NIH HHS - United States
R01 CA206279 NCI NIH HHS - United States
S10 OD028685 NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
U01 CA167551 NCI NIH HHS - United States
P30 CA071789 NCI NIH HHS - United States
001 World Health Organization - International

BACKGROUND: Polygenic risk scores (PRS) which summarize individuals' genetic risk profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced colorectal cancer risk model comprising 140 known colorectal cancer loci to provide a comprehensive assessment on prediction performance. METHODS: The model was developed using 20,338 individuals and externally validated in a community-based cohort (n = 85,221). We validated predicted 5-year absolute colorectal cancer risk, including calibration using expected-to-observed case ratios (E/O) and calibration plots, and discriminatory accuracy using time-dependent AUC. The PRS-related improvement in AUC, sensitivity and specificity were assessed in individuals of age 45 to 74 years (screening-eligible age group) and 40 to 49 years with no endoscopy history (younger-age group). RESULTS: In European-ancestral individuals, the predicted 5-year risk calibrated well [E/O = 1.01; 95% confidence interval (CI), 0.91-1.13] and had high discriminatory accuracy (AUC = 0.73; 95% CI, 0.71-0.76). Adding the PRS to a model with age, sex, family and endoscopy history improved the 5-year AUC by 0.06 (P < 0.001) and 0.14 (P = 0.05) in the screening-eligible age and younger-age groups, respectively. Using a risk-threshold of 5-year SEER colorectal cancer incidence rate at age 50 years, adding the PRS had a similar sensitivity but improved the specificity by 11% (P < 0.001) in the screening-eligible age group. In the younger-age group it improved the sensitivity by 27% (P = 0.04) with similar specificity. CONCLUSIONS: The proposed PRS-enhanced model provides a well-calibrated 5-year colorectal cancer risk prediction and improves discriminatory accuracy in the external cohort. IMPACT: The proposed model has potential utility in risk-stratified colorectal cancer prevention.

Behavioral and Epidemiology Research Group American Cancer Society Atlanta Georgia

Biomedical Center Faculty of Medicine Pilsen Charles University Prague Czech Republic

Biostatistics Unit Kaiser Permanente Washington Health Research Institute Seattle Washington

Cancer Epidemiology Division Cancer Council Victoria Melbourne Victoria Australia

Center for Gastrointestinal Biology and Disease University of North Carolina Chapel Hill North Carolina

Center for Public Health Genomics University of Virginia Charlottesville Virginia

Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Melbourne Victoria Australia

Clinical and Translational Epidemiology Unit Massachusetts General Hospital and Harvard Medical School Boston Massachusetts

Colorectal Oncogenomics Group Department of Clinical Pathology The University of Melbourne Parkville Victoria Australia

Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden

Department of Community Medicine and Epidemiology Lady Davis Carmel Medical Center and Technion Israel Institute of Technology Haifa Israel

Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York

Department of Epidemiology Geisel School of Medicine at Dartmouth Hanover New Hampshire

Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore Maryland

Department of Epidemiology University of Michigan Ann Arbor Michigan

Department of Family Medicine University of Virginia Charlottesville Virginia

Department of Gastroenterology Kaiser Permanente San Francisco Medical Center San Francisco California

Department of Health Systems Science Kaiser Permanente Bernard J Tyson School of Medicine Pasadena California

Department of Internal Medicine University of Utah Salt Lake City Utah

Department of Medicine 1 University Hospital Dresden Technische Universität Dresden Dresden Germany

Department of Medicine and Epidemiology University of Pittsburgh Medical Center Pittsburgh Pennsylvania

Department of Medicine Samuel Oschin Comprehensive Cancer Institute Cedars Sinai Medical Center Los Angeles California

Department of Medicine University of North Carolina School of Medicine Chapel Hill North Carolina

Department of Molecular Biology of Cancer Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic

Department of Preventive Medicine Keck School of Medicine University of Southern California Los Angeles California

Department of Public Health and Primary Care University of Cambridge Cambridge United Kingdom

Department of Public Health Erasmus MC University Medical Center Rotterdam the Netherlands

Department of Radiation Sciences Oncology Unit Umeå University Umeå Sweden

Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany

Division of Clinical Epidemiology and Aging Research German Cancer Research Center Heidelberg Germany

Division of Epidemiology Department of Population Health New York University School of Medicine New York New York

Division of Gastroenterology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts

Division of Human Genetics Department of Internal Medicine The Ohio State University Comprehensive Cancer Center Columbus Ohio

Division of Human Nutrition and Health Wageningen University and Research Wageningen the Netherlands

Division of Research Kaiser Permanente Northern California Oakland California

Gastroenterology Department Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer University of Barcelona Barcelona Spain

Institute for Health Research Kaiser Permanente Colorado Denver Colorado

Institute of Cancer Research Department of Medicine 1 Medical University Vienna Vienna Austria

Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden

Leeds Institute of Cancer and Pathology University of Leeds Leeds United Kingdom

Lunenfeld Tanenbaum Research Institute Mount Sinai Hospital University of Toronto Toronto Ontario Canada

Memorial University of Newfoundland Discipline of Genetics St John's Canada

Nutrition and Metabolism Section International Agency for Research on Cancer World Health Organization Lyon France

Oncology Data Analytics Program Catalan Institute of Oncology IDIBELL L'Hospitalet de Llobregat Barcelona Spain

Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle Washington

University of Hawaii Cancer Center Honolulu Hawaii

USC Norris Comprehensive Cancer Center Keck School of Medicine University of Southern California Los Angeles California

VA Cooperative Studies Program Epidemiology Center Durham Veterans Affairs Health Care System Durham North Carolina

Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden

Zobrazit více v PubMed

American Cancer Society. Cancer Facts & Figures for African Americans 2019–2021. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-facts-and-figures-for-african-americans/cancer-facts-and-figures-for-african-americans-2019-2021.pdf

Murphy CC, Singal AG, Baron JA, Sandler RS. Decrease in Incidence of Young-Onset Colorectal Cancer Before Recent Increase. Gastroenterology. 2018;155(6):1716–1719.e4. doi:10.1053/j.gastro.2018.07.045 PubMed DOI PMC

US Preventive Services Task Force. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2021;325(19):1965. doi:10.1001/jama.2021.6238 PubMed DOI

Lieberman DA. Targeted colon cancer screening: a concept whose time has almost come. Am J Gastroenterol. 1992;87(9):1085–1093. PubMed

Knudsen AB, Zauber AG, Rutter CM, Naber SK, Doria-Rose VP, Pabiniak C, et al. Estimation of Benefits, Burden, and Harms of Colorectal Cancer Screening Strategies: Modeling Study for the US Preventive Services Task Force. JAMA. 2016;315(23):2595–2609. doi:10.1001/jama.2016.6828 PubMed DOI PMC

Campos FG. Colorectal cancer in young adults: A difficult challenge. World J Gastroenterol. 2017;23(28):5041–5044. doi:10.3748/wjg.v23.i28.5041 PubMed DOI PMC

Rex DK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, et al. Colorectal Cancer Screening: Recommendations for Physicians and Patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol. 2017;112(7):1016–1030. doi:10.1038/ajg.2017.174 PubMed DOI

Corley DA, Peek RM. When Should Guidelines Change? A Clarion Call for Evidence Regarding the Benefits and Risks of Screening for Colorectal Cancer at Earlier Ages. Gastroenterology. 2018;155(4):947–949. doi:10.1053/j.gastro.2018.08.040 PubMed DOI PMC

Wolf AMD, Fontham ETH, Church TR, Flowers CR, Guerra CE, LaMonte SJ, et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J Clin. 2018;68(4):250–281. doi:10.3322/caac.21457 PubMed DOI

Weinberg BA, Marshall JL. Colon Cancer in Young Adults: Trends and Their Implications. Curr Oncol Rep. 2019;21(1):3. doi:10.1007/s11912-019-0756-8 PubMed DOI

Dunlop MG, Tenesa A, Farrington SM, Ballereau S, Brewster DH, Koessler T, et al. Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42,103 individuals. Gut. 2013;62(6):871–881. doi:10.1136/gutjnl-2011-300537 PubMed DOI PMC

Ibáñez-Sanz G, Díez-Villanueva A, Alonso MH, Rodríguez-Moranta F, Pérez-Gómez B, Bustamante M, et al. Risk Model for Colorectal Cancer in Spanish Population Using Environmental and Genetic Factors: Results from the MCC-Spain study. Sci Rep. 2017;7:43263. doi:10.1038/srep43263 PubMed DOI PMC

Hsu L, Jeon J, Brenner H, Gruber SB, Schoen RE, Berndt SI, et al. A model to determine colorectal cancer risk using common genetic susceptibility loci. Gastroenterology. 2015;148(7):1330–1339.e14. doi:10.1053/j.gastro.2015.02.010 PubMed DOI PMC

Weigl K, Chang-Claude J, Knebel P, Hsu L, Hoffmeister M, Brenner H. Strongly enhanced colorectal cancer risk stratification by combining family history and genetic risk score. Clin Epidemiol. 2018;10:143–152. doi:10.2147/CLEP.S145636 PubMed DOI PMC

Jeon J, Du M, Schoen RE, Hoffmeister M, Newcomb PA, Berndt SI, et al. Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology. 2018;154(8):2152–2164.e19. doi:10.1053/j.gastro.2018.02.021 PubMed DOI PMC

Smith T, Gunter MJ, Tzoulaki I, Muller DC. The added value of genetic information in colorectal cancer risk prediction models: development and evaluation in the UK Biobank prospective cohort study. Br J Cancer. 2018;119(8):1036–1039. doi:10.1038/s41416-018-0282-8 PubMed DOI PMC

Saunders GL, Kilian B, Thompson DJ, McGeoch LJ, Griffin SJ, Antoniou AC, et al. External Validation of Risk Prediction Models Incorporating Common Genetic Variants for Incident Colorectal Cancer Using UK Biobank. Cancer Prev Res. 2020;13(6):509–520. doi:10.1158/1940-6207.CAPR-19-0521 PubMed DOI PMC

McGeoch L, Saunders CL, Griffin SJ, Emery JD, Walter FM, Thompson DJ, et al. Risk Prediction Models for Colorectal Cancer Incorporating Common Genetic Variants: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2019;28(10):1580–1593. doi:10.1158/1055-9965.EPI-19-0059 PubMed DOI PMC

Iwasaki M, Tanaka-Mizuno S, Kuchiba A, Yamaji T, Sawada N, Goto A, et al. Inclusion of a Genetic Risk Score into a Validated Risk Prediction Model for Colorectal Cancer in Japanese Men Improves Performance. Cancer Prev Res (Phila). 2017;10(9):535–541. doi:10.1158/1940-6207.CAPR-17-0141 PubMed DOI PMC

Kachuri L, Graff RE, Smith-Byrne K, Meyers TJ, Rashkin SR, Ziv E, et al. Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction. Nat Commun. 2020;11(1):6084. doi:10.1038/s41467-020-19600-4 PubMed DOI PMC

Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76–87. doi:10.1038/s41588-018-0286-6 PubMed DOI PMC

Gordon N, Lin T. The Kaiser Permanente Northern California Adult Member Health Survey. Perm J. 2016;20(4):15–225. doi:10.7812/TPP/15-225 PubMed DOI PMC

The PRACTICAL consortium, Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun. 2019;10(1):2154. doi:10.1038/s41467-019-09775-w PubMed DOI PMC

Lu Y, Kweon SS, Tanikawa C, Jia WH, Xiang YB, Cai Q, et al. Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated With Risk for Colorectal Cancer. Gastroenterology. 2019;156(5):1455–1466. doi:10.1053/j.gastro.2018.11.066 PubMed DOI PMC

Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879–1886. doi:10.1093/jnci/81.24.1879 PubMed DOI

Banda Y, Kvale MN, Hoffmann TJ, Hesselson SE, Ranatunga D, Tang H, et al. Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015;200(4):1285–1295. doi:10.1534/genetics.115.178616 PubMed DOI PMC

Kvale MN, Hesselson S, Hoffmann TJ, Cao Y, Chan D, Connell S, et al. Genotyping Informatics and Quality Control for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015;200(4):1051–1060. doi:10.1534/genetics.115.178905 PubMed DOI PMC

Freedman AN, Slattery ML, Ballard-Barbash R, Willis G, Cann BJ, Pee D, et al. Colorectal cancer risk prediction tool for white men and women without known susceptibility. J Clin Oncol. 2009;27(5):686–693. doi:10.1200/JCO.2008.17.4797 PubMed DOI PMC

Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–138. doi:10.1097/EDE.0b013e3181c30fb2 PubMed DOI PMC

Aalen O Nonparametric Estimation of Partial Transition Probabilities in Multiple Decrement Models. Ann Statist. 1978;6(3). doi:10.1214/aos/1176344198 DOI

Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical. John Wiley & Sons, Inc.; 2002. doi:10.1002/9781118032985 DOI

Saha P, Heagerty PJ. Time-dependent predictive accuracy in the presence of competing risks. Biometrics. 2010;66(4):999–1011. doi:10.1111/j.1541-0420.2009.01375.x PubMed DOI PMC

R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/.

Wickham H Ggplot2. Springer; New York; 2009. doi:10.1007/978-0-387-98141-3 DOI

MacInnis RJ, Knight JA, Chung WK, Milne RL, Whittemore AS, Buchsbaum R, et al. Comparing 5-Year and Lifetime Risks of Breast Cancer using the Prospective Family Study Cohort. J Natl Cancer Inst. 2021;113(6):785–791. doi:10.1093/jnci/djaa178 PubMed DOI PMC

Etzioni R, Shen Y, Shih YCT. Identifying Preferred Breast Cancer Risk Predictors: A Holistic Perspective. J Natl Cancer Inst. 2021;113(6):660–661. doi:10.1093/jnci/djaa181 PubMed DOI PMC

Jo J, Nam CM, Sull JW, Yun JE, Kim SY, Lee SJ, et al. Prediction of Colorectal Cancer Risk Using a Genetic Risk Score: The Korean Cancer Prevention Study-II (KCPS-II). Genomics Inform. 2012;10(3):175–183. doi:10.5808/GI.2012.10.3.175 PubMed DOI PMC

Wang HM, Chang TH, Lin FM, Chao TH, Huang WC, Liang C, et al. A new method for post Genome-Wide Association Study (GWAS) analysis of colorectal cancer in Taiwan. Gene. 2013;518(1):107–113. doi:10.1016/j.gene.2012.11.067 PubMed DOI

Yarnall JM, Crouch DJM, Lewis CM. Incorporating non-genetic risk factors and behavioural modifications into risk prediction models for colorectal cancer. Cancer Epidemiol. 2013;37(3):324–329. doi:10.1016/j.canep.2012.12.008 PubMed DOI

Collins GS, Reitsma JB, Altman DG, Moons K. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 2015;13(1):1. doi:10.1186/s12916-014-0241-z PubMed DOI PMC

Carr PR, Weigl K, Edelmann D, Jansen L, Chang-Claude J, Brenner H, et al. Estimation of Absolute Risk of Colorectal Cancer Based on Healthy Lifestyle, Genetic Risk, and Colonoscopy Status in a Population-Based Study. Gastroenterology. 2020;159(1):129–138.e9. doi:10.1053/j.gastro.2020.03.016 PubMed DOI PMC

Lo A, Chernoff H, Zheng T, Lo SH. Why significant variables aren’t automatically good predictors. Proc Natl Acad Sci U S A. 2015;112(45):13892–13897. doi:10.1073/pnas.1518285112 PubMed DOI PMC

Archambault AN, Su YR, Jeon J, Thomas M, Lin Y, Conti DV, et al. Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology. 2020;158(5):1274–1286.e12. doi:10.1053/j.gastro.2019.12.012 PubMed DOI PMC

Bailey CE, Hu CY, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM, et al. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975–2010. JAMA Surg. 2015;150(1):17–22. doi:10.1001/jamasurg.2014.1756 PubMed DOI PMC

Slunecka JL, van der Zee MD, Beck JJ, Johnson BN, Finnicum CT, Pool R, et al. Implementation and implications for polygenic risk scores in healthcare. Hum Genomics. 2021;15(1):46. doi:10.1186/s40246-021-00339-y PubMed DOI PMC

Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am J Hum Genet. 2017;100(4):635–649. doi:10.1016/j.ajhg.2017.03.004 PubMed DOI PMC

Hindorff LA, Bonham VL, Brody LC, Ginoza MEC, Hutter CM, Manolio TA, et al. Prioritizing diversity in human genomics research. Nat Rev Genet. 2018;19(3):175–185. doi:10.1038/nrg.2017.89 PubMed DOI PMC

Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51(4):584–591. doi:10.1038/s41588-019-0379-x PubMed DOI PMC

Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570(7762):514–518. doi:10.1038/s41586-019-1310-4 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...