Methane emission from stems of European beech (Fagus sylvatica) offsets as much as half of methane oxidation in soil
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36631959
DOI
10.1111/nph.18726
Knihovny.cz E-zdroje
- Klíčová slova
- CH4 flux, European beech, emission, seasonal dynamics, soil, temperate montane forest, tree stem, uptake,
- MeSH
- buk (rod) * MeSH
- ekosystém MeSH
- lesy MeSH
- methan MeSH
- oxid uhličitý MeSH
- půda * MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methan MeSH
- oxid uhličitý MeSH
- půda * MeSH
Trees are known to be atmospheric methane (CH4 ) emitters. Little is known about seasonal dynamics of tree CH4 fluxes and relationships to environmental conditions. That prevents the correct estimation of net annual tree and forest CH4 exchange. We aimed to explore the contribution of stem emissions to forest CH4 exchange. We determined seasonal CH4 fluxes of mature European beech (Fagus sylvatica) stems and adjacent soil in a typical temperate beech forest of the White Carpathians with high spatial heterogeneity in soil moisture. The beech stems were net annual CH4 sources, whereas the soil was a net CH4 sink. High CH4 emitters showed clear seasonality in their stem CH4 emissions that followed stem CO2 efflux. Elevated CH4 fluxes were detected during the vegetation season. Observed high spatial variability in stem CH4 emissions was neither explicably by soil CH4 exchange nor by CH4 concentrations, water content, or temperature studied in soil profiles near each measured tree. The stem CH4 emissions offset the soil CH4 uptake by up to 46.5% and on average by 13% on stand level. In Central Europe, widely grown beech contributes markedly to seasonal dynamics of ecosystem CH4 exchange. Its contribution should be included into forest greenhouse gas flux inventories.
Zobrazit více v PubMed
Barba J, Bradford MA, Brewer PE, Bruhn D, Covey K, van Haren J, Megonigal JP, Mikkelsen TN, Pangala SR, Pihlatie M et al. 2019a. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytologist 222: 18-28.
Barba J, Poyatos R, Capooci M, Vargas R. 2021. Spatiotemporal variability and origin of CO2 and CH4 tree stem fluxes in an upland forest. Global Change Biology 27: 4879-4893.
Barba J, Poyatos R, Vargas R. 2019b. Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers. Scientific Reports 9: 4005.
Borken W, Xu YJ, Beese F. 2003. Conversion of hardwood forests to spruce and pine plantations strongly reduced soil methane sink in Germany. Global Change Biology 9: 956-966.
Brunet J, Fritz Ö, Richnau G. 2010. Biodiversity in European beech forests - a review with recommendations for sustainable forest management. Ecological Bulletins 53: 77-94.
Butterbach-Bahl K, Papen H. 2002. Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant and Soil 240: 77-90.
Christiansen JR, Outhwaite J, Smukler SM. 2015. Comparison of CO2, CH4, and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agricultural and Forest Meteorology 211-212: 48-57.
Covey KR, Megonigal JP. 2019. Methane production and emissions in trees and forests. New Phytologist 222: 35-51.
Covey KR, Wood SA, Warren RJ, Lee X, Bradford MA. 2012. Elevated methane concentrations in trees of an upland forest. Geophysical Research Letters 39: L15705.
Dalal RC, Allen DE. 2008. Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany 56: 369-407.
Darenova E, Pavelka M, Macalkova L. 2016. Spatial heterogeneity of CO2 efflux and optimization of the number of measurement positions. European Journal of Soil Biology 75: 123-134.
Dinno A. 2017. dunn.test: Dunn's test of multiple comparisons using rank sums. R package v.1.3.5. [WWW document] URL https://CRAN.R-project.org/package=dunn.test [accessed 23 July 2020].
FAO. 2006. World reference base for soil resources 2006. World Soil Resources Reports 103. Rome, Italy: Food and Agriculture Organization of the United Nations.
Feng H, Guo J, Ma X, Han M, Kneeshaw D, Sun H, Malghani S, Chen H, Wang W. 2022. Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. New Phytologist 233: 182-193.
Guckland A, Flessa H, Prenzel J. 2009. Controls of temporal and spatial variability of methane uptake in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). Soil Biology & Biochemistry 41: 1659-1667.
Hutchinson GL, Livingston GP. 2002. Soil-atmosphere gas exchange. In: Dane JH, Topp GC, eds. Methods of soil analysis: part 4 physical methods. Madison, WI, USA: Soil Science Society of America, 1159-1182.
Jeffrey LC, Maher DT, Chiri E, Leung PM, Nauer PA, Arndt SK, Tait DR, Greening C, Johnston SG. 2021a. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nature Communications 12: 2127.
Jeffrey LC, Maher DT, Tait DR, Euler S, Johnston SG. 2020. Tree stem methane emissions from subtropical lowland forest (Melaleuca quinquenervia) regulated by local and seasonal hydrology. Biogeochemistry 151: 273-290.
Jeffrey LC, Maher DT, Tait DR, Reading MJ, Chiri E, Greening C, Johnston SG. 2021b. Isotopic evidence for axial tree stem methane oxidation within subtropical lowland forests. New Phytologist 230: 2200-2212.
Keppler F, Hamilton JTG, Brass M, Röckmann T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191.
Knoke T. 2003. Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecological Modelling 169: 295-312.
Köhn D, Günther A, Schwabe I, Jurasinski G. 2021. Short-lived peaks of stem methane emissions from mature black alder (Alnus glutinosa (L.) Gaertn.) - Irrelevant for ecosystem methane budgets? Plant-Environment Interactions 2: 16-27.
Krupková L, Havránková K, Krejza J, Sedlák P, Marek MV. 2019. Impact of water scarcity on spruce and beech forests. Journal of Forestry Research 30: 899-909.
Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F. 2015. Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21: 3889-3900.
Li HL, Zhang XM, Deng FD, Han XG, Xiao CW, Han SJ, Wang ZP. 2020. Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees 34: 243-254.
Machacova K, Bäck J, Vanhatalo A, Halmeenmäki E, Kolari P, Mammarella I, Pumpanen J, Acosta M, Urban O, Pihlatie M. 2016a. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Scientific Reports 6: 23410.
Machacova K, Borak L, Agyei T, Schindler T, Soosaar K, Mander Ü, Ah-Peng C. 2021. Trees as net sinks for methane (CH4) and nitrous oxide (N2O) in the lowland tropical rain forest on volcanic Réunion Island. New Phytologist 229: 1983-1994.
Machacova K, Halmeenmäki E, Pihlatie M, Urban O. 2016b. Seasonal courses of methane fluxes in boreal trees. Report Series in Aerosol Science 189: 308-311.
Machacova K, Maier M, Svobodova K, Lang F, Urban O. 2017. Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees. Scientific Reports 7: 13243.
Machacova K, Papen H, Kreuzwieser J, Rennenberg H. 2013. Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant and Soil 364: 287-301.
Machacova K, Pihlatie M, Halmeenmäki E, Pavelka M, Dušek J, Bäck J, Urban O. 2015. Summer fluxes of nitrous oxide from boreal forest. In: Urban O, Šprtová M, Klem K, eds. Global change: a complex challenge, conference proceedings. Global Change Research Center: Brno, Czech Republic, 78-81.
Machacova K, Vainio E, Urban O, Pihlatie M. 2019. Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees. Nature Communications 10: 4989.
Maechler M, Rousseeuw P, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke T, Koller M, Conceicao EL, Anna di Palma M. 2021. robustbase: basic robust statistics. R package v.0.93-8. [WWW document] URL http://robustbase.r-forge.r-project.org/ [accessed 2 May 2021].
Maier M, Machacova K, Lang F, Svobodova K, Urban O. 2018. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests. Journal of Plant Nutrition and Soil Science 181: 31-35.
Mander Ü, Krasnova A, Schindler T, Megonigal JP, Escuer-Gatius J, Espenberg M, Machacova K, Maddison M, Pärn J, Ranniku R et al. 2022. Long-term dynamics of soil, tree stem and ecosystem methane fluxes in a riparian forest. Science of the Total Environment 809: 151723.
McGill R, Tukey JW, Larsen WA. 1978. Variations of box plots. The American Statistician 32: 12-16.
Menyailo OV, Hungate BA. 2005. Tree species effects on potential production and consumption of carbon dioxide, methane, and nitrous oxide: the Siberian afforestation experiment. In: Binkley D, Menyailo OV, eds. Tree species effects on soils: implications for global change. Dordrecht, the Netherlands: NATO Science Series, Kluwer Academic Publishers, 293-305.
Moldaschl E, Kitzler B, Machacova K, Schindler T, Schindlbacher A. 2021. Stem CH4 and N2O fluxes of Fraxinus excelsior and Populus alba trees along a flooding gradient. Plant and Soil 461: 407-420.
Mukhin VA, Voronin PY. 2009. Methanogenic activity of woody plants. Russian Journal of Plant Physiology 56: 138-140.
Mukhin VA, Voronin PY. 2011. Methane emission from living tree wood. Russian Journal of Plant Physiology 58: 344-350.
Nickerson N. 2016. Evaluating gas emission measurements using Minimum Detectable Flux (MDF). White Paper. [WWW document] URL www.eosense.com [accessed 5 September 2022].
Pangala SR, Gowing DJ, Hornibrook ERC, Gauci V. 2014. Controls on methane emissions from Alnus glutinosa saplings. New Phytologist 201: 887-896.
Pangala SR, Hornibrook ERC, Gowing DJ, Gauci V. 2015. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Global Change Biology 21: 2642-2654.
Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologist 197: 524-531.
Pitz S, Megonigal JP. 2017. Temperate forest methane sink diminished by tree emissions. New Phytologist 214: 1432-1439.
Pitz SL, Megonigal JP, Chang C-H, Szlavecz K. 2018. Methane fluxes from tree stems and soils along a habitat gradient. Biogeochemistry 137: 307-320.
Plain C, Ndiaye FK, Bonnaud P, Ranger J, Epron D. 2019. Impact of vegetation on the methane budget of a temperate forest. New Phytologist 221: 1447-1456.
Schindler T, Mander Ü, Machacova K, Espenberg M, Krasnov D, Escuer-Gatius J, Veber G, Pärn J, Soosaar K. 2020. Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum. Scientific Reports 10: 3204.
Sjögersten S, Siegenthaler A, Lopez OR, Aplin P, Turner B, Gauci V. 2020. Methane emissions from tree stems in neotropical peatlands. New Phytologist 225: 769-781.
Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A. 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science 54: 779-791.
Sundqvist E, Crill P, Mölder M, Vestin P, Lindroth A. 2012. Atmospheric methane removal by boreal plants. Geophysical Research Letters 39: L21806.
Terazawa K, Yamada K, Ohno Y, Sakata T, Ishizuka S. 2015. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest. Biogeochemistry 123: 349-362.
Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Röckmann T. 2008. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5: 937-947.
Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lu XT, Li LH, Chang S, Zhang YH et al. 2016. Methane emissions from the trunks of living trees on upland soils. New Phytologist 211: 429-439.
Wang ZP, Han SJ, Li HL, Deng FD, Zheng YH, Liu HF, Han XG. 2017. Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal of Geophysical Research: Biogeosciences 122: 2479-2489.
Warner DL, Villarreal S, McWilliams K, Inamdar S, Vargas R. 2017. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20: 1205-1216.
Yip DZ, Veach AM, Yang ZK, Cregger MA, Schadt CW. 2019. Methanogenic Archaea dominate mature heartwood habitats of Eastern Cottonwood (Populus deltoides). New Phytologist 222: 115-121.
Zeikus JG, Ward JC. 1974. Methane formation in living trees: a microbial origin. Science 184: 1181-1183.