Measuring Nonapoptotic Caspase Activity with a Transgenic Reporter in Mice

. 2022 Sep-Oct ; 9 (5) : . [epub] 20221004

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid36635920

Grantová podpora
P41 EB015897 NIBIB NIH HHS - United States
R01 MH079201 NIMH NIH HHS - United States
R21 NS081513 NINDS NIH HHS - United States
R37 MH073853 NIMH NIH HHS - United States
HHSN271201300017C NIMH NIH HHS - United States

Odkazy

PubMed 36635920
PubMed Central PMC9536855
DOI 10.1523/eneuro.0147-21.2022
PII: ENEURO.0147-21.2022
Knihovny.cz E-zdroje

The protease caspase-3 is a key mediator of apoptotic programmed cell death. But weak or transient caspase activity can contribute to neuronal differentiation, axonal pathfinding, and synaptic long-term depression. Despite the importance of sublethal, or nonapoptotic, caspase activity in neurodevelopment and neural plasticity, there has been no simple method for mapping and quantifying nonapoptotic caspase activity (NACA) in rodent brains. We therefore generated a transgenic mouse expressing a highly sensitive and specific fluorescent reporter of caspase activity, with peak signal localized to the nucleus. As a proof of concept, we first obtained evidence that NACA influences neurophysiology in an amygdalar circuit. Then focusing on the amygdala, we were able to quantify a sex-specific persistent elevation in caspase activity in females after restraint stress. This simple in vivo caspase activity reporter will facilitate systems-level studies of apoptotic and nonapoptotic phenomena in behavioral and pathologic models.

Zobrazit více v PubMed

Bardet PL, Kolahgar G, Mynett A, Miguel-Aliaga I, Briscoe J, Meier P, Vincent JP (2008) A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci U S A 105:13901–13905. 10.1073/pnas.0806983105 PubMed DOI PMC

Beevor C (1883) Die Kleinhirnrinde. Arch Amt Physiol 365–388.

Beraldo FH, Arantes CP, Santos TG, Queiroz NG, Young K, Rylett RJ, Markus RP, Prado MA, Martins VR (2010) Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J Biol Chem 285:36542–36550. 10.1074/jbc.M110.157263 PubMed DOI PMC

Beraldo FH, et al.. (2013) Stress-inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia via the prion protein. FASEB J 27:3594–3607. 10.1096/fj.13-232280 PubMed DOI

Besnard J, et al.. (2012) Automated design of ligands to polypharmacological profiles. Nature 492:215–220. 10.1038/nature11691 PubMed DOI PMC

Billinton N, Knight AW (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291:175–197. 10.1006/abio.2000.5006 PubMed DOI

Cammermeyer J (1960) The post-mortem origin and mechanism of neuronal hyperchromatosis and nuclear pyknosis. Exp Neurol 2:379–405. 10.1016/0014-4886(60)90022-4 PubMed DOI

Campbell DS, Okamoto H (2013) Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J Cell Biol 203:657–672. 10.1083/jcb.201303072 PubMed DOI PMC

Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352. PubMed

Chen SX, Cherry A, Tari PK, Podgorski K, Kwong YK, Haas K (2012) The transcription factor MEF2 directs developmental visually driven functional and structural metaplasticity. Cell 151:41–55. 10.1016/j.cell.2012.08.028 PubMed DOI

Chu X, Zhou Y, Hu Z, Lou J, Song W, Li J, Liang X, Chen C, Wang S, Yang B, Chen L, Zhang X, Song J, Dong Y, Chen S, He L, Xie Q, Chen X, Li W (2016) 24-hour-restraint stress induces long-term depressive-like phenotypes in mice. Sci Rep 6:32935. PubMed PMC

Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040. 10.1093/protein/12.12.1035 PubMed DOI

Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A (2011) Two-photon absorption properties of fluorescent proteins. Nat Methods 8:393–399. 10.1038/nmeth.1596 PubMed DOI PMC

Du L, Bayir H, Lai Y, Zhang X, Kochanek PM, Watkins SC, Graham SH, Clark RS (2004) Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biol Chem 279:38563–38570. 10.1074/jbc.M405461200 PubMed DOI

Dzirasa K, Kumar S, Sachs BD, Caron MG, Nicolelis MA (2013) Cortical-amygdalar circuit dysfunction in a genetic mouse model of serotonin deficiency. J Neurosci 33:4505–4513. 10.1523/JNEUROSCI.4891-12.2013 PubMed DOI PMC

Ertürk A, Wang Y, Sheng M (2014) Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J Neurosci 34:1672–1688. 10.1523/JNEUROSCI.3121-13.2014 PubMed DOI PMC

Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094. 10.1074/jbc.275.13.9091 PubMed DOI

Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673. 10.1096/fj.04-2981fje PubMed DOI

Fu Q, Duan X, Yan S, Wang L, Zhou Y, Jia S, Du J, Wang X, Zhang Y, Zhan L (2013) Bioluminescence imaging of caspase-3 activity in mouse liver. Apoptosis 18:998–1007. 10.1007/s10495-013-0849-z PubMed DOI

Galbán S, Jeon YH, Bowman BM, Stevenson J, Sebolt KA, Sharkey LM, Lafferty M, Hoff BA, Butler BL, Wigdal SS, Binkowski BF, Otto P, Zimmerman K, Vidugiris G, Encell LP, Fan F, Wood KV, Galbán CJ, Ross BD, Rehemtulla A (2013) Imaging proteolytic activity in live cells and animal models. PLoS One 8:e66248. 10.1371/journal.pone.0066248 PubMed DOI PMC

Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Annu Rev Microbiol 56:263–287. 10.1146/annurev.micro.56.012302.160741 PubMed DOI

Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17:1367–1376. 10.1038/nsmb.1931 PubMed DOI

Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A, Miyawaki A (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488. 10.1038/nn.2928 PubMed DOI

He Y, Lee T, Leong SK (2000) 6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra. Brain Res 858:163–166. 10.1016/S0006-8993(99)02459-2 PubMed DOI

Jiao S, Li Z (2011) Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 70:758–772. 10.1016/j.neuron.2011.04.004 PubMed DOI PMC

Jortner BS (2006) The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 27:628–634. 10.1016/j.neuro.2006.03.002 PubMed DOI

Khanna D, Hamilton CA, Bhojani MS, Lee KC, Dlugosz A, Ross BD, Rehemtulla A (2010) A transgenic mouse for imaging caspase-dependent apoptosis within the skin. J Invest Dermatol 130:1797–1806. 10.1038/jid.2010.55 PubMed DOI PMC

Kim IH, Racz B, Wang H, Burianek L, Weinberg R, Yasuda R, Wetsel WC, Soderling SH (2013) Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 33:6081–6092. 10.1523/JNEUROSCI.0035-13.2013 PubMed DOI PMC

Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S (2016) Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci 19:1636–1646. 10.1038/nn.4414 PubMed DOI PMC

Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S (2017) Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93:1464–1479.e5. 10.1016/j.neuron.2017.02.034 PubMed DOI PMC

Lein ES, et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176. PubMed

Lennon CW, Belfort M (2017) Inteins. Curr Biol 27:R204–R206. 10.1016/j.cub.2017.01.016 PubMed DOI

Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273:34970–34975. 10.1074/jbc.273.52.34970 PubMed DOI

Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871. 10.1016/j.cell.2010.03.053 PubMed DOI PMC

Liu F, Li Z, Li J, Siegel C, Yuan R, McCullough LD (2009) Sex differences in caspase activation after stroke. Stroke 40:1842–1848. 10.1161/STROKEAHA.108.538686 PubMed DOI PMC

Liu F, Lang J, Li J, Benashski SE, Siegel M, Xu Y, McCullough LD (2011) Sex differences in the response to poly(ADP-ribose) polymerase-1 deletion and caspase inhibition after stroke. Stroke 42:1090–1096. 10.1161/STROKEAHA.110.594861 PubMed DOI PMC

McStay GP, Salvesen GS, Green DR (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15:322–331. 10.1038/sj.cdd.4402260 PubMed DOI

Neely MD, Robert EM, Baucum AJ, Colbran RJ, Muly EC, Deutch AY (2009) Localization of myocyte enhancer factor 2 in the rodent forebrain: regionally-specific cytoplasmic expression of MEF2A. Brain Res 1274:55–65. 10.1016/j.brainres.2009.03.067 PubMed DOI PMC

Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199. PubMed

Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319. 10.1016/S0014-5793(97)00313-X PubMed DOI

Renolleau S, Fau S, Goyenvalle C, Joly LM, Chauvier D, Jacotot E, Mariani J, Charriaut-Marlangue C (2007) Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem 100:1062–1071. 10.1111/j.1471-4159.2006.04269.x PubMed DOI

Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449. 10.1038/nbt945 PubMed DOI

Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433. 10.1038/nrn2651 PubMed DOI

Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461. 10.1039/C3SC52951G PubMed DOI PMC

Tang HL, Tang HM, Fung MC, Hardwick JM (2015) In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep 5:9015. PubMed PMC

Unsain N, Barker PA (2015) New views on the misconstrued: executioner caspases and their diverse non-apoptotic roles. Neuron 88:461–474. 10.1016/j.neuron.2015.08.029 PubMed DOI

Wang P, Chen T, Sakurai K, Han BX, He Z, Feng G, Wang F (2012) Intersectional Cre driver lines generated using split-intein mediated split-Cre reconstitution. Sci Rep 2:497. PubMed PMC

Westphal D, Sytnyk V, Schachner M, Leshchyns'ka I (2010) Clustering of the neural cell adhesion molecule (NCAM) at the neuronal cell surface induces caspase-8- and -3-dependent changes of the spectrin meshwork required for NCAM-mediated neurite outgrowth. J Biol Chem 285:42046–42057. 10.1074/jbc.M110.177147 PubMed DOI PMC

Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 95:9226–9231. 10.1073/pnas.95.16.9226 PubMed DOI PMC

Yamaguchi Y, Shinotsuka N, Nonomura K, Takemoto K, Kuida K, Yosida H, Miura M (2011) Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure. J Cell Biol 195:1047–1060. 10.1083/jcb.201104057 PubMed DOI PMC

Yang L, Sugama S, Mischak RP, Kiaei M, Bizat N, Brouillet E, Joh TH, Beal MF (2004) A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 17:250–259. 10.1016/j.nbd.2004.07.021 PubMed DOI

Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652. 10.1016/0092-8674(93)90485-9 PubMed DOI

Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg H (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96:1016–1027. 10.1111/j.1471-4159.2005.03639.x PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...