Common snowdrop as a climate change bioindicator in Czechia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SustES-CZ.02.1.01 / 0.0 / 0.0 / 16_019 / 0000797
Ministerstvo Školství, Mládeže a Tělovýchovy
SS02030018 (DivLand)
Technology Agency of the Czech Republic
SS02030040 (PERUN)
Technology Agency of the Czech Republic
PubMed
36652002
DOI
10.1007/s00484-023-02426-2
PII: 10.1007/s00484-023-02426-2
Knihovny.cz E-zdroje
- Klíčová slova
- Air temperature, Flowering, Galanthus nivalis, Long-term meteorological data, Snow cover, Sunshine duration,
- MeSH
- bioindikátory * MeSH
- klimatické změny * MeSH
- květy MeSH
- roční období MeSH
- sněženka MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bioindikátory * MeSH
The phenological response to climate change differs among species. We examined the beginning of flowering of the common snowdrop (Galanthus nivalis) in connection with meteorological variables in Czechia in the period 1923-2021. The long-term series were analyzed from phenological and meteorological stations of the Czech Hydrometeorological Institute (CHMI). Temporal and spatial evaluation (using Geographic Information System) in timing of beginning of flowering (BBCH 61) of G. nivalis was investigated under urban and rural settings. Furthermore, the detailed analysis of selected meteorological variables to onset of G. nivalis flowering was performed. Moreover, the trends (using Mann-Kendall test) and Pearson's correlation coefficients between phenological phase and meteorological variable were calculated. The main finding of this study was that the trend of the beginning of flowering of the common snowdrop during the studied period (1923-2021) is negative, and it varies in urban and rural environments. The results showed most significant acceleration of the beginning of flowering of G. nivalis by - 0.20 day year-1 in urban area and by - 0.11 day year-1 in rural area. Above that, a major turning point occurred between 1987 and 1988 (both, in phenological observations and meteorological variables), and the variability of the beginning of flowering is significantly higher in the second period 1988-2021. On top of, the study proved that the beginning of flowering of G. nivalis closely correlated with number of days with snow cover above 1 cm (December-March) at both types of stations (urban and rural), and with mean air temperature in February, maximum air temperature in January, and minimum air temperature in March. The Mann-Kendall test showed a reduction in the number of days with snow cover above 1 cm (December-March) during 99 years period at Klatovy station (a long-term time series) by - 0.06 day year-1, i.e., by - 5.94 days per the whole period. Conversely, air temperatures increase (maximum and minimum air temperature by 0.03 °C year-1 (2.97 °C per the whole period) and average air temperature by 0.02 °C year-1 (1.98 °C per the whole period)). Thus, our results indicate significant changes in the beginning of flowering of G. nivalis in Czechia as a consequence of climate change.
Zobrazit více v PubMed
Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738 DOI
Anonymous (2009) Methodical instructions number 10 for phenological stations – wild plants. CHMI, Prague
Bartošová L, Fischer M, Balek J, Bláhová M, Kudláčková L, Chuchma F, Hlavinka P, Možný M, Zahradníček P, Wall N, Hayes M, Hain C, Anderson M, Wagner W, Žalud Z, Trnka M (2022a) Validity and reliability of drought reporters in estimating soil water content and drought impacts in central Europe, Agricultural and Forest Meteorology, Volume 315, 2022. ISSN 108808:0168–1923. https://doi.org/10.1016/j.agrformet.2022.108808 DOI
Bartošová L, Dížková P, Bauerová J, Hájková L, Fischer M, Balek J, Bláhová M, Možný M, Zahradníček P, Štěpánek P, Žalud Z, Trnka M (2022b) Phenological response of flood plain forest ecosystem species to climate change during 1961–2021. Atmosphere 2022(13):978. https://doi.org/10.3390/atmos13060978 DOI
Büntgen U, Piermattei A, Krusic PJ, Esper J, Sparks T, Crivellaro A (2022) Plants in the UK flower a month earlier under recent warming. Proc R Soc B 289:20212456. https://doi.org/10.1098/rspb.2021.2456 DOI
Chuine I, Yiou P, Viovy N et al (2004) Grape ripening as a past climate indicator. Nature 432:289–290 DOI
Coufal L, Houška V, Reitschlager JD, Valter J, Vráblík T (2004) Phenological atlas, CHMI, 1st edition, ISBN 80-86690-21-0, 204, 204 pp
Hájková L, Kožnarová V, Možný M, Bartošová L (2020) Influence of climate change on flowering season of birch in the Czech Republic. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01869-1 DOI
Hájková L, Možný M, Oušková V, Bartošová L, Dížková P, Žalud Z (2021) Meteorological variables that affect beginning of flowering of the winter oilseed rape in the Czech Republic. Atmosphere 12(1444):311. https://doi.org/10.3390/atmos12111444 DOI
Hájková L et al. (2012) Atlas of phenological conditions in Czechia. 1
https://www.ipcc.ch/reports . (n.d.). Accessed 1 Sept 2022
Kalvậne G, Romanovskaja D, Briede A (2009) Bakšiené E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Clim Res 39:209–219. https://doi.org/10.3354/cr00813 DOI
Langvall O, Löfvenius MO (2021) Long-term standardized forest phenology in Sweden: a climate change indicator. Int J Biometeorol 65:381–391. https://doi.org/10.1007/s00484-019-01817-8 DOI
Libiseller C, Grimvall A (2002) Performance of partial Mann Kendall tests for trend detection in the presence of covariates. Environmetrics 13:71–84 DOI
Meier U (ed) (1997) Growth stages of mono-and dicotyledonous plants. BBCH monograph. Federal Biological Research Centre for Agriculture and Forestry, Blackwell Wissenschafts-Verlag, Berlin
Menzel A (2000) Trend in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81 DOI
Menzel A (2003) Trends in phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263 DOI
Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666
Menzel A et al (2006) European phenological response to climate change matches the warming patterns. Glob Change Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193x DOI
Menzel A (1997) Phaenologie von Waldbaumen unter sich andernden Klimabedingungen Auswertung der Beobachtungen in den Internationalen Phaenologischen Garten und Moglichkeiten der Modellierung von Phaenodaten. ForstlicheForschungsberichte 164, Forest Faculty, Munchen
Poikolainen J, Tolvanen A, Karhu J, Kubin E (2016) Seventeen-year trends in spring and autumn phenophases of Betula pubescens in a boreal environment. Int J Biometeorol 60:1227–1236. https://doi.org/10.1007/s00484-015-1118-3 DOI
Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66 DOI
Snopková Z, Hýrošová T (2017) Snow cover and its influence on the beginning of flowering of snowdrop (Galanthus nivalis L) at the international phenological station (GPM) in Banská Bystrica over the period from 2003 to 2017. In Šiška, B. et al.: Snow an ecological phenomenon Smolenice, Slovakia, 19th – 21st September 2017
Sparks TH, Mizera T, Wójtowicz W, Tryjanowski P (2012) Synchrony in the phenology of a culturally iconic spring flower. Int J Biometeorol 56:407–409. https://doi.org/10.1007/s00484-011-0435-4 DOI
Spieksma FTM, Emberlin J, Hjelmroos M, Jager S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: trend and fluctuations in annual quantities and the starting dates of the season. Grana 34:51–37 DOI
Tolasz R, Míková T, Valeriánová A, & Voženílek V (2007) Climate atlas of Czechia. Prague/Olomouc: CHMI/UPOL. 1st edition. 255 pp
Tooke F, Battey NH (2010) Temperate flowering phenology. J Exp Bot 61(11):2853–2862. https://doi.org/10.1093/jxb/erq165 DOI
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, Thompson L, Vose J, Weltzin JF, Whyte KP (2020) Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ 733:137782. https://doi.org/10.1016/j.scitotenv.2020.137782 DOI
Whitfield J (2001) The budding amateurs. Nature 414:578–579 DOI