Design and Synthesis of Novel HIV-1 NNRTIs with Bicyclic Cores and with Improved Physicochemical Properties
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
36652602
PubMed Central
PMC10017027
DOI
10.1021/acs.jmedchem.2c01574
Knihovny.cz E-zdroje
- MeSH
- HIV infekce * farmakoterapie MeSH
- HIV reverzní transkriptasa metabolismus MeSH
- HIV-1 * metabolismus MeSH
- inhibitory reverzní transkriptasy MeSH
- látky proti HIV * chemie MeSH
- lidé MeSH
- racionální návrh léčiv MeSH
- rilpivirin terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- etravirine MeSH Prohlížeč
- HIV reverzní transkriptasa MeSH
- inhibitory reverzní transkriptasy MeSH
- látky proti HIV * MeSH
- rilpivirin MeSH
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent cornerstones of current regimens for treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, NNRTIs usually suffer from low aqueous solubility and the emergence of resistant viral strains. In the present work, novel bicyclic NNRTIs derived from etravirine (ETV) and rilpivirine (RPV), bearing modified purine, tetrahydropteridine, and pyrimidodiazepine cores, were designed and prepared. Compounds 2, 4, and 6 carrying the acrylonitrile moiety displayed single-digit nanomolar activities against the wild-type (WT) virus (EC50 = 2.5, 2.7, and 3.0 nM, respectively), where the low nanomolar activity was retained against HXB2 (EC50 = 2.2-2.8 nM) and the K103N and Y181C mutated strains (fold change, 1.2-6.7×). Most importantly, compound 2 exhibited significantly improved phosphate-buffered saline solubility (10.4 μM) compared to ETV and RPV (≪1 μM). Additionally, the binding modes of compounds 2, 4, and 6 to the reverse transcriptase were studied by X-ray crystallography.
Zobrazit více v PubMed
Hu W. S.; Hughes S. H. HIV-1 reverse transcription. Cold Spring Harbor Perspect. Med. 2012, 2, a006882.10.1101/cshperspect.a006882. PubMed DOI PMC
De Clercq E.; Li G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 2016, 29, 695–747. 10.1128/cmr.00102-15. PubMed DOI PMC
Arts E. J.; Hazuda D. J. HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspect. Med. 2012, 2, a007161.10.1101/cshperspect.a007161. PubMed DOI PMC
Balzarini J.; De Clercq E.. [25] Analysis of inhibition of retroviral reverse transcriptase. Methods in Enzymology; Academic Press, 1996; Vol. 275, pp 472–502. PubMed
Saag M. S.; Gandhi R. T.; Hoy J. F.; Landovitz R. J.; Thompson M. A.; Sax P. E.; Smith D. M.; Benson C. A.; Buchbinder S. P.; del Rio C.; Eron J. J. Jr.; Fätkenheuer G.; Günthard H. F.; Molina J. M.; Jacobsen D. M.; Volberding P. A. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2020 Recommendations of the international antiviral society-USA panel. JAMA, J. Am. Med. Assoc. 2020, 324, 1651–1669. 10.1001/jama.2020.17025. PubMed DOI PMC
Kohlstaedt L. A.; Wang J.; Friedman J. M.; Rice P. A.; Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 1992, 256, 1783–1790. 10.1126/science.1377403. PubMed DOI
Tuske S.; Sarafianos S. G.; Clark A. D. Jr.; Ding J.; Naeger L. K.; White K. L.; Miller M. D.; Gibbs C. S.; Boyer P. L.; Clark P.; Wang G.; Gaffney B. L.; Jones R. A.; Jerina D. M.; Hughes S. H.; Arnold E. Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir. Nat. Struct. Mol. Biol. 2004, 11, 469–474. 10.1038/nsmb760. PubMed DOI
Shafer R. W.; Vuitton D. A. Highly active antiretroviral therapy (Haart) for the treatment of infection with human immunodeficiency virus type 1. Biomed. Pharmacother. 1999, 53, 73–86. 10.1016/s0753-3322(99)80063-8. PubMed DOI
Usach I.; Melis V.; Peris J. E. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability. J. Int. AIDS Soc. 2013, 16, 1–14. 10.7448/IAS.16.1.18567. PubMed DOI PMC
de Béthune M. P. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989-2009). Antivir. Res. 2010, 85, 75–90. 10.1016/j.antiviral.2009.09.008. PubMed DOI
Apostolova N.; Funes H. A.; Blas-Garcia A.; Galindo M. J.; Alvarez A.; Esplugues J. V. Efavirenz and the CNS: What we already know and questions that need to be answered. J. Antimicrob. Chemother. 2015, 70, 2693–2708. 10.1093/jac/dkv183. PubMed DOI
Namasivayam V.; Vanangamudi M.; Kramer V. G.; Kurup S.; Zhan P.; Liu X.; Kongsted J.; Byrareddy S. N. The journey of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) from lab to clinic. J. Med. Chem. 2019, 62, 4851–4883. 10.1021/acs.jmedchem.8b00843. PubMed DOI PMC
Côté B.; Burch J. D.; Asante-Appiah E.; Bayly C.; Bédard L.; Blouin M.; Campeau L. C.; Cauchon E.; Chan M.; Chefson A.; Coulombe N.; Cromlish W.; Debnath S.; Deschênes D.; Dupont-Gaudet K.; Falgueyret J. P.; Forget R.; Gagné S.; Gauvreau D.; Girardin M.; Guiral S.; Langlois E.; Li C. S.; Nguyen N.; Papp R.; Plamondon S.; Roy A.; Roy S.; Seliniotakis R.; St-Onge M.; Ouellet S.; Tawa P.; Truchon J. F.; Vacca J.; Wrona M.; Yan Y.; Ducharme Y. Discovery of MK-1439, an orally bioavailable non-nucleoside reverse transcriptase inhibitor potent against a wide range of resistant mutant HIV viruses. Bioorg. Med. Chem. Lett. 2014, 24, 917–922. 10.1016/j.bmcl.2013.12.070. PubMed DOI
Das K.; Bauman J. D.; Clark A. D. Jr.; Frenkel Y. V.; Lewi P. J.; Shatkin A. J.; Hughes S. H.; Arnold E. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: Strategic flexibility explains potency against resistance mutations. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1466–1471. 10.1073/pnas.0711209105. PubMed DOI PMC
Lansdon E. B.; Brendza K. M.; Hung M.; Wang R.; Mukund S.; Jin D.; Birkus G.; Kutty N.; Liu X. Crystal structures of HIV-1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): implications for drug design. J. Med. Chem. 2010, 53, 4295–4299. 10.1021/jm1002233. PubMed DOI
Rhee S. Y.; Kassaye S. G.; Barrow G.; Sundaramurthi J. C.; Jordan M. R.; Shafer R. W. HIV-1 transmitted drug resistance surveillance: shifting trends in study design and prevalence estimates. J. Int. AIDS Soc. 2020, 23, e2561110.1002/jia2.25611. PubMed DOI PMC
Huang B.; Chen W.; Zhao T.; Li Z.; Jiang X.; Ginex T.; Vílchez D.; Luque F. J.; Kang D.; Gao P.; Zhang J.; Tian Y.; Daelemans D.; De Clercq E.; Pannecouque C.; Zhan P.; Liu X. Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket: Discovery of potent diarylpyrimidine-typed HIV-1 NNRTIs against wild-type and E138K mutant virus with significantly improved water solubility and favorable safety profiles. J. Med. Chem. 2019, 62, 2083–2098. 10.1021/acs.jmedchem.8b01729. PubMed DOI
Kang D.; Zhang H.; Wang Z.; Zhao T.; Ginex T.; Luque F. J.; Yang Y.; Wu G.; Feng D.; Wei F.; Zhang J.; De Clercq E.; Pannecouque C.; Chen C. H.; Lee K.-H.; Murugan N. A.; Steitz T. A.; Zhan P.; Liu X. Identification of dihydrofuro[3,4-d]pyrimidine derivatives as novel HIV-1 non-nucleoside reverse transcriptase inhibitors with promising antiviral activities and desirable physicochemical properties. J. Med. Chem. 2019, 62, 1484–1501. 10.1021/acs.jmedchem.8b01656. PubMed DOI PMC
Kang D. W.; Zhao T.; Wang Z.; Feng D.; Zhang H.; Huang B. S.; Wu G. C.; Wei F. J.; Zhou Z. X.; Jing L. L.; Zuo X. F.; Tian Y.; Poongavanam V.; Kongsted J.; De Clercq E.; Pannecouque C.; Zhan P.; Liu X. Y. Discovery of piperidine-substituted thiazolo 5,4-d pyrimidine derivatives as potent and orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitors. Commun. Chem. 2019, 2, 74.10.1038/s42004-019-0174-8. DOI
Fraczek T.; Kaminski R.; Krakowiak A.; Naessens E.; Verhasselt B.; Paneth P. Diaryl ethers with carboxymethoxyphenacyl motif as potent HIV-1 reverse transcriptase inhibitors with improved solubility. J. Enzym. Inhib. Med. Chem. 2018, 33, 9–16. 10.1080/14756366.2017.1387542. PubMed DOI PMC
Chen W. M.; Zhan P.; Daelemans D.; Yang J. P.; Huang B.; De Clercq E.; Pannecouque C.; Liu X. Y. Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. Eur. J. Med. Chem. 2016, 121, 352–363. 10.1016/j.ejmech.2016.05.054. PubMed DOI
Kang D. W.; Fang Z. J.; Li Z. Y.; Huang B. S.; Zhang H.; Lu X. Y.; Xu H. R.; Zhou Z. X.; Ding X.; Daelemans D.; De Clercq E.; Pannecouque C.; Zhan P.; Liu X. Y. Design, synthesis, and evaluation of thiophene 3,2-d pyrimidine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors with significantly improved drug resistance profiles. J. Med. Chem. 2016, 59, 7991–8007. 10.1021/acs.jmedchem.6b00738. PubMed DOI
Liu N.; Wei L.; Huang L.; Yu F.; Zheng W. F.; Qin B. J.; Zhu D. Q.; Morris-Natschke S. L.; Jiang S. B.; Chen C. H.; Lee K. H.; Xie L. Novel HIV-1 non-nucleoside reverse transcriptase inhibitor agents: Optimization of diarylanilines with high potency against wild-type and rilpivirine-resistant E138K mutant virus. J. Med. Chem. 2016, 59, 3689–3704. 10.1021/acs.jmedchem.5b01827. PubMed DOI PMC
Frey K. M.; Puleo D. E.; Spasov K. A.; Bollini M.; Jorgensen W. L.; Anderson K. S. Structure-based evaluation of non-nucleoside inhibitors with improved potency and solubility that target HIV reverse transcriptase variants. J. Med. Chem. 2015, 58, 2737–2745. 10.1021/jm501908a. PubMed DOI PMC
Kang D.; Sun Y.; Feng D.; Gao S.; Wang Z.; Jing L.; Zhang T.; Jiang X.; Lin H.; De Clercq E.; Pannecouque C.; Zhan P.; Liu X. Development of novel dihydrofuro[3,4-d]pyrimidine derivatives as HIV-1 NNRTIs to overcome the highly resistant mutant strains F227L/V106A and K103N/Y181C. J. Med. Chem. 2022, 65, 2458–2470. 10.1021/acs.jmedchem.1c01885. PubMed DOI
Jin X.; Piao H.-R.; Pannecouque C.; De Clercq E.; Zhuang C.; Chen F.-E. Design of the naphthyl-diarylpyrimidines as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) via structure-based extension into the entrance channel. Eur. J. Med. Chem. 2021, 226, 113868.10.1016/j.ejmech.2021.113868. PubMed DOI
Zhang T.; Zhou Z.; Zalloum W. A.; Wang Z.; Fu Z.; Cherukupalli S.; Feng D.; Sun Y.; Gao S.; De Clercq E.; Pannecouque C.; Kang D.; Zhan P.; Liu X. Design, synthesis, and antiviral evaluation of novel piperidine-substituted arylpyrimidines as HIV-1 NNRTIs by exploring the hydrophobic channel of NNIBP. Bioorganic Chemistry 2021, 116, 105353.10.1016/j.bioorg.2021.105353. PubMed DOI
Huang B.; Ginex T.; Luque F. J.; Jiang X.; Gao P.; Zhang J.; Kang D.; Daelemans D.; De Clercq E.; Pannecouque C.; Zhan P.; Liu X. Structure-based design and discovery of pyridyl-bearing fused bicyclic HIV-1 inhibitors: Synthesis, biological characterization, and molecular modeling studies. J. Med. Chem. 2021, 64, 13604–13621. 10.1021/acs.jmedchem.1c00987. PubMed DOI
Ding L.; Pannecouque C.; De Clercq E.; Zhuang C.; Chen F.-E. Improving druggability of novel diarylpyrimidine NNRTIs by a fragment-based replacement strategy: From biphenyl-DAPYs to heteroaromatic-biphenyl-DAPYs. J. Med. Chem. 2021, 64, 10297–10311. 10.1021/acs.jmedchem.1c00708. PubMed DOI
Fu Z.; Zhang T.; Zhou Z.; Kang D.; Sun L.; Gao S.; Cherukupalli S.; De Clercq E.; Pannecouque C.; Liu X.; Zhan P. Exploiting the hydrophobic channel of the NNIBP: Discovery of novel diarylpyrimidines as HIV-1 NNRTIs against wild-type and K103N mutant viruses. Bioorg. Med. Chem. 2021, 42, 116239.10.1016/j.bmc.2021.116239. PubMed DOI
Gao P.; Song S.; Wang Z.; Sun L.; Zhang J.; Pannecouque C.; De Clercq E.; Zhan P.; Liu X. Design, synthesis and anti-HIV evaluation of novel 5-substituted diarylpyrimidine derivatives as potent HIV-1 NNRTIs. Bioorg. Med. Chem. 2021, 40, 116195.10.1016/j.bmc.2021.116195. PubMed DOI
Jiang X.; Huang B.; Olotu F. A.; Li J.; Kang D.; Wang Z.; De Clercq E.; Soliman M. E. S.; Pannecouque C.; Liu X.; Zhan P. Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket. Part 2: Discovery of diarylpyrimidine derivatives as potent HIV-1 NNRTIs with high Fsp3 values and favorable drug-like properties. Eur. J. Med. Chem. 2021, 213, 113051.10.1016/j.ejmech.2020.113051. PubMed DOI
Feng D.; Zuo X.; Jing L.; Chen C.-H.; Olotu F. A.; Lin H.; Soliman M.; De Clercq E.; Pannecouque C.; Lee K.-H.; Kang D.; Liu X.; Zhan P. Design, synthesis, and evaluation of “dual-site”-binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase. Eur. J. Med. Chem. 2021, 211, 113063.10.1016/j.ejmech.2020.113063. PubMed DOI
Chen X.; Ding L.; Tao Y.; Pannecouque C.; De Clercq E.; Zhuang C.; Chen F.-E. Bioisosterism-based design and enantiomeric profiling of chiral hydroxyl-substituted biphenyl-diarylpyrimidine nonnucleoside HIV-1 reverse transcriptase inhibitors. Eur. J. Med. Chem. 2020, 202, 112549.10.1016/j.ejmech.2020.112549. PubMed DOI
Kang D.; Sun Y.; Murugan N. A.; Feng D.; Wei F.; Li J.; Jiang X.; De Clercq E.; Pannecouque C.; Zhan P.; Liu X. Structure–activity relationship exploration of NNIBP tolerant region I leads to potent HIV-1 NNRTIs. ACS Infect. Dis. 2020, 6, 2225–2234. 10.1021/acsinfecdis.0c00327. PubMed DOI
Yang Y.; Pannecouque C.; Clercq E. D.; Zhuang C.; Chen F.-E. Privileged scaffold inspired design of novel oxime-biphenyl-DAPYs in treatment of HIV-1. Bioorg. Chem. 2020, 99, 103825.10.1016/j.bioorg.2020.103825. PubMed DOI
Sang Y.; Han S.; Pannecouque C.; De Clercq E.; Zhuang C.; Chen F. Conformational restriction design of thiophene-biphenyl-DAPY HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur. J. Med. Chem. 2019, 182, 111603.10.1016/j.ejmech.2019.111603. PubMed DOI
Wang Z.; Cherukupalli S.; Xie M.; Wang W.; Jiang X.; Jia R.; Pannecouque C.; De Clercq E.; Kang D.; Zhan P.; Liu X. Contemporary medicinal chemistry strategies for the discovery and development of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. J. Med. Chem. 2022, 65, 3729–3757. 10.1021/acs.jmedchem.1c01758. PubMed DOI
Gu S.-X.; Xiao T.; Zhu Y.-Y.; Liu G.-Y.; Chen F.-E. Recent progress in HIV-1 inhibitors targeting the entrance channel of HIV-1 non-nucleoside reverse transcriptase inhibitor binding pocket. Eur. J. Med. Chem. 2019, 174, 277–291. 10.1016/j.ejmech.2019.04.054. PubMed DOI
Das K.; Clark A. D. Jr.; Lewi P. J.; Heeres J.; de Jonge M. R.; Koymans L. M.; Vinkers H. M.; Daeyaert F.; Ludovici D. W.; Kukla M. J.; De Corte B.; Kavash R. W.; Ho C. Y.; Ye H.; Lichtenstein M. A.; Andries K.; Pauwels R.; de Béthune M. P.; Boyer P. L.; Clark P.; Hughes S. H.; Janssen P. A.; Arnold E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem. 2004, 47, 2550–2560. 10.1021/jm030558s. PubMed DOI
Guillemont J.; Pasquier E.; Palandjian P.; Vernier D.; Gaurrand S.; Lewi P. J.; Heeres J.; de Jonge M. R.; Koymans L. M. H.; Daeyaert F. F. D.; Vinkers M. H.; Arnold E.; Das K.; Pauwels R.; Andries K.; de Béthune M. P.; Bettens E.; Hertogs K.; Wigerinck P.; Timmerman P.; Janssen P. A. J. Synthesis of novel diarylpyrimidine analogues and their antiviral activity against human immunodeficiency virus type 1. J. Med. Chem. 2005, 48, 2072–2079. 10.1021/jm040838n. PubMed DOI
Andrei G.; Carter K.; Janeba Z.; Sampath A.; Schang L. M.; Tarbet E. B.; Vere Hodge R. A.; Bray M.; Esté J. A. Highlights of the 30th International Conference on Antiviral Research. Antivir. Res. 2017, 145, 184–196. 10.1016/j.antiviral.2017.07.017. PubMed DOI PMC
Ge Y.; Jin Y.; Wang C.; Zhang J.; Tang Z.; Peng J.; Liu K.; Li Y.; Zhou Y.; Ma X. Discovery of novel Bruton’s tyrosine kinase (BTK) inhibitors bearing a N,9-Diphenyl-9H-purin-2-amine scaffold. ACS Med. Chem. Lett. 2016, 7, 1050–1055. 10.1021/acsmedchemlett.6b00235. PubMed DOI PMC
Vandecruys R. P. G.; Peeters J.; Brewster M. E.; Peeters J. J. P.; Brewster M. E. J. P.; Brewster M.. Pharmaceutical composition useful for medical prophylaxis, therapy or diagnosis, comprises basic or acidic drug compound, water soluble acid or base, respectively and surfactant. WO 2004050058-A2, 2004.
Banker P.; Boros E. E.; Dickerson S. H.; Kaldor I.; Koble C. S.; Martin M. T.; Sparks S. M.; Thomson S. A.; Bankeo P.; Boroseu E. Y.; Dikkeoseun S. H.; Kobeul S. E.; Mareutin M. T.; Seupakeuseu S. M.; Tomseun S. A.. Glycogen phosphorylase inhibitor compound and pharmaceutical composition thereof. WO 2009045830-A1, 2009.
Boon W. R.; Jones W. G. M.; Ramage G. R. 21. Pteridines. Part I. An unambiguous synthesis of 7 : 8-dihydro-6-hydroxypteridines. J. Chem. Soc. 1951, 96–102. 10.1039/jr9510000096. DOI
Li D. R.; Sun C. Y.; Su C.; Lin G. Q.; Zhou W. S. Toward the total synthesis of phorboxazole B: an efficient synthesis of the C20-C46 segment. Org. Lett. 2004, 6, 4261–4264. 10.1021/ol048275x. PubMed DOI
Roethle P. A.; McFadden R. M.; Yang H.; Hrvatin P.; Hui H.; Graupe M.; Gallagher B.; Chao J.; Hesselgesser J.; Duatschek P.; Zheng J.; Lu B.; Tumas D. B.; Perry J.; Halcomb R. L. Identification and optimization of pteridinone toll-like receptor 7 (TLR7) agonists for the oral treatment of viral hepatitis. J. Med. Chem. 2013, 56, 7324–7333. 10.1021/jm400815m. PubMed DOI
Kulkarni R.; Babaoglu K.; Lansdon E. B.; Rimsky L.; Van Eygen V.; Picchio G.; Svarovskaia E.; Miller M. D.; White K. L. The HIV-1 reverse transcriptase M184I mutation enhances the E138K-associated resistance to rilpivirine and decreases viral fitness. J. Acquir. Immune Defic. Syndr. 2012, 59, 47–54. 10.1097/qai.0b013e31823aca74. PubMed DOI
Gall M.; McCall J. M.; TenBrink R. E.; Von Voigtlander P. F.; Mohrland J. S. Arylformamidines with antinociceptive properties. J. Med. Chem. 1988, 31, 1816–1820. 10.1021/jm00117a023. PubMed DOI
Goldstein S. L.; McNelis E. Migrations in oxidations of mesidine. J. Org. Chem. 1984, 49, 1613–1620. 10.1021/jo00183a024. DOI
Li A. P. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today 2001, 6, 357–366. 10.1016/s1359-6446(01)01712-3. PubMed DOI
Kabsch W. Xds. Acta Crystallogr. 2010, 66, 125–132. 10.1107/S0907444909047337. PubMed DOI PMC
Adams P. D.; Afonine P. V.; Bunkóczi G.; Chen V. B.; Davis I. W.; Echols N.; Headd J. J.; Hung L. W.; Kapral G. J.; Grosse-Kunstleve R. W.; McCoy A. J.; Moriarty N. W.; Oeffner R.; Read R. J.; Richardson D. C.; Richardson J. S.; Terwilliger T. C.; Zwart P. H. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. 2010, 66, 213–221. 10.1107/S0907444909052925. PubMed DOI PMC
Emsley P.; Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. 2004, 60, 2126–2132. 10.1107/S0907444904019158. PubMed DOI