The development of new antiviral agents such as nucleoside analogues or acyclic nucleotide analogues (ANPs) and prodrugs thereof is an ongoing task. We report on the synthesis of three types of lipophilic triphosphate analogues of (R)-PMPA and dialkylated diphosphate analogues of (R)-PMPA. A highly selective release of the different nucleotide analogues ((R)-PMPA-DP, (R)-PMPA-MP, and (R)-PMPA) from these compounds was achieved. All dialkylated (R)-PMPA-prodrugs proved to be very stable in PBS as well as in CEM/0 cell extracts and human plasma. In primer extension assays, both the monoalkylated and the dialkylated (R)-PMPA-DP derivatives acted as (R)-PMPA-DP as a substrate for HIV-RT. In contrast, no incorporation events were observed using human polymerase γ. The dialkylated (R)-PMPA-compounds exhibited significant anti-HIV efficacy in HIV-1/2 infected cells (CEM/0 and CEM/TK-). Remarkably, the dialkylated (R)-PMPA-MP derivative 9a showed a 326-fold improved activity as compared to (R)-PMPA in HIV-2 infected CEM/TK- cells as well as a very high SI of 14,000. We are convinced that this study may significantly contribute to advancing antiviral agents developed based on nucleotide analogues in the future.
- MeSH
- adenin MeSH
- HIV-2 MeSH
- látky proti HIV * chemie MeSH
- lidé MeSH
- nukleotidy MeSH
- organofosfonáty * chemie MeSH
- prekurzory léčiv * chemie MeSH
- tenofovir farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent cornerstones of current regimens for treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, NNRTIs usually suffer from low aqueous solubility and the emergence of resistant viral strains. In the present work, novel bicyclic NNRTIs derived from etravirine (ETV) and rilpivirine (RPV), bearing modified purine, tetrahydropteridine, and pyrimidodiazepine cores, were designed and prepared. Compounds 2, 4, and 6 carrying the acrylonitrile moiety displayed single-digit nanomolar activities against the wild-type (WT) virus (EC50 = 2.5, 2.7, and 3.0 nM, respectively), where the low nanomolar activity was retained against HXB2 (EC50 = 2.2-2.8 nM) and the K103N and Y181C mutated strains (fold change, 1.2-6.7×). Most importantly, compound 2 exhibited significantly improved phosphate-buffered saline solubility (10.4 μM) compared to ETV and RPV (≪1 μM). Additionally, the binding modes of compounds 2, 4, and 6 to the reverse transcriptase were studied by X-ray crystallography.
- MeSH
- HIV infekce * farmakoterapie MeSH
- HIV reverzní transkriptasa metabolismus MeSH
- HIV-1 * metabolismus MeSH
- inhibitory reverzní transkriptasy MeSH
- látky proti HIV * chemie MeSH
- lidé MeSH
- racionální návrh léčiv MeSH
- rilpivirin terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times. METHODS: The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost. RESULTS: The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one. CONCLUSION: Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.
Shortly after entering the cell, HIV-1 copies its genomic RNA into double-stranded DNA in a process known as reverse transcription. This process starts inside a core consisting of an enclosed lattice of capsid proteins that protect the viral RNA from cytosolic sensors and degradation pathways. To accomplish reverse transcription and integrate cDNA into the host cell genome, the capsid shell needs to be disassembled, or uncoated. Premature or delayed uncoating attenuates reverse transcription and blocks HIV-1 infectivity. Small molecules that bind to the capsid lattice of the HIV-1 core and either destabilize or stabilize its structure could thus function as effective HIV-1 inhibitors. To screen for such compounds, we modified our recently developed FAITH assay to allow direct assessment of the stability of in vitro preassembled HIV-1 capsid-nucleocapsid (CANC) tubular particles. This new assay is a high-throughput fluorescence method based on measuring the amount of nucleic acid released from CANC complexes under disassembly conditions. The amount of disassembled CANC particles and released nucleic acid is proportional to the fluorescence signal, from which the relative percentage of CANC stability can be calculated. We consider our assay a potentially powerful tool for in vitro screening for compounds that alter HIV disassembly.
- MeSH
- HIV infekce farmakoterapie MeSH
- HIV-1 účinky léků fyziologie MeSH
- látky proti HIV chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- nukleokapsida analýza účinky léků MeSH
- proteiny virového jádra chemie genetika metabolismus MeSH
- RNA virová genetika MeSH
- rychlé screeningové testy MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- svlékání virového obalu účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The past decade may be considered as revolutionary in the research field focused on the physiological function of macrophages. Unknown subtypes of these cells involved in pathological mechanisms were described recently, and they are considered as potential drug delivery targets. The innate ability to internalize foreign bodies exhibited by macrophages can be employed as a therapeutic strategy. The efficiency of this uptake depends on the size, shape and surface physiochemical properties of the phagocyted objects. Here, we propose a method of preparation and preliminary evaluation of drug-polymer conjugate-based microspheres for macrophage targeted drug delivery. The aim of the study was to identify crucial uptake-enhancing parameters for solid, surface modified particles. A model drug molecule-lamivudine-was conjugated with poly-ε-caprolactone via ring opening polymerization. The conjugate was utilized in a solvent evaporation method technique to form solid particles. Interactions between particles and a model rat alveolar cell line were evaluated by flow cytometry. The polymerization product was characterized by a molecular weight of 3.8 kDa. The surface of the obtained solid drug-loaded cores of a hydrodynamic diameter equal to 2.4 µm was modified with biocompatible polyelectrolytes via a layer-by-layer assembly method. Differences in the internalization efficiency of four particle batches by the model RAW 264.7 cell line suggest that particle diameter and surface hydrophobicity are the most influential parameters in terms of phagocytic uptake.
- MeSH
- fagocytóza MeSH
- fixní kombinace léků MeSH
- kapronáty aplikace a dávkování chemie MeSH
- laktony aplikace a dávkování chemie MeSH
- lamivudin aplikace a dávkování chemie MeSH
- látky proti HIV aplikace a dávkování chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- makrofágy imunologie metabolismus MeSH
- mikrosféry MeSH
- myši MeSH
- nosiče léků chemie MeSH
- polymery metabolismus MeSH
- RAW 264.7 buňky MeSH
- spektrální analýza MeSH
- systémy cílené aplikace léků * MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tenofovir disoproxil fumarate (TDF, form I) is an orally delivered pharmaceutical salt used for the treatment of HIV and chronic hepatitis, which acts as an inhibitor of nucleotide reverse transcriptase. There are many solid forms of TDF described in the literature; 2 of them were identified in the drug products: form I and form A. It seems that during formulation, the active pharmaceutical ingredient undergoes partial to total conversion of TDF form I to TDF form A. The goals of this study were to investigate when and why did the conversion occur and whether the conversion could be avoided and how. The influence of pH and possible interaction with excipients were studied. The conditions enabling using wet granulation in technology while preventing the undesired conversion were found. The stabilization was achieved either by replacement of used disintegrants or by acid addition to the current composition of formulation.
- MeSH
- difrakce rentgenového záření metody MeSH
- koncentrace vodíkových iontů MeSH
- látky proti HIV chemie metabolismus MeSH
- pomocné látky chemie metabolismus MeSH
- příprava léků metody MeSH
- stabilita léku MeSH
- tenofovir chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In an effort to identify an HIV-1 capsid assembly inhibitor with improved solubility and potency, we synthesized two series of pyrimidine analogues based on our earlier lead compound N-(4-(ethoxycarbonyl)phenyl)-2-(pyridine-4-yl)quinazoline-4-amine. In vitro binding experiments showed that our series of 2-pyridine-4-ylpyrimidines had IC50 values higher than 28μM. Our series of 2-pyridine-3-ylpyrimidines exhibited IC50 values ranging from 3 to 60μM. The congeners with a fluoro substituent introduced at the 4-N-phenyl moiety, along with a methyl at C-6, represent potent HIV capsid assembly inhibitors binding to the C-terminal domain of the capsid protein.
- MeSH
- HIV-1 účinky léků metabolismus MeSH
- kapsida chemie metabolismus MeSH
- látky proti HIV chemická syntéza chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- pyrimidiny chemická syntéza chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
Heterocyclic compounds execute a very important role in drug design and discovery. This article provides the basic milestones of the research for pyrroloaryl and pyrroloheteroaryl based components targeting HIV viral replication cycle. Anti-HIV activity is elaborated for several classes of pyrrolo-compounds as pyrrolopyridines, pyrrolopyrimidines, pyrrolopyridazines, pyrrolobenzodiazepinones, pyrrolobenzothiazepines, pyrrolobenzoxazepinones, pyrrolophenanthridines, pyrroloquinoxalines, pyrrolotriazines, pyrroloquinolines, pyrrolopyrazinones, pyrrolothiatriazines, arylthiopyrroles and pyrrolopyrazolones targeting two essential HIV enzymes, reverse transcriptase and integrase as well as attachment/fusion of HIV virons to the host CD-4 cell. Such attempts were resulted in a discovery of highly potent anti-HIV agents suitable for clinical trials, for example, BMS-378806, BMS-585248, BMS-626529, BMS-663068, BMS-488043 and BMS-663749, etc. as anti-HIV attachment agents, triciribine, QX432, BI-1 and BI-2 as HIV RT inhibitors which are in preclinical or clinical development. Mechanism of action of compounds presented in this article towards the suppression of HIV attachment/fusion as well as against the activities of HIV enzymes reverse transcriptase and integrase has been discussed. Relationships of new compounds' molecular framework and HIV viral target has been overviewed in order to facilitate further construction of promising anti-HIV agents in future drug discovery process.
- MeSH
- HIV infekce farmakoterapie virologie MeSH
- HIV-integrasa metabolismus MeSH
- HIV účinky léků enzymologie fyziologie MeSH
- inhibitory HIV fúze chemie farmakologie MeSH
- inhibitory HIV-integrasy chemie farmakologie MeSH
- inhibitory reverzní transkriptasy chemie farmakologie MeSH
- látky proti HIV chemie farmakologie MeSH
- lidé MeSH
- objevování léků MeSH
- pyrroly chemie farmakologie MeSH
- replikace viru účinky léků MeSH
- reverzní transkriptasa metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
This review summarizes the basic milestones of the research of 5-azacytosine nucleosides chronologically from their discovery and anticancer activity identification, through to subsequent unveiling of their mechanism of action based on DNA hypomethylation and tumor-suppressor gene reactivation, to the final US FDA approval of 5-azacytidine (Vidaza(®)) and 2'-deoxy-5-azacytidine (Dacogen(®)) for the treatment of myelodysplastic syndromes. 5,6-dihydro-2'-deoxy-5-azacytidine, a compound with anti-HIV activity through lethal mutagenesis, representing a unique mechanism of action among existing anti-retroviral drugs, is discussed together with quite recent discovery of its so far unexpected hypomethylation activity. Special attention is paid to 5-azacytosine acyclic nucleoside analogues and phosphonomethyl derivatives with the emphasis on the new potent anti-DNA virus agent (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine and its prodrug forms. Considering the potential pharmaceutical applications, 5-azacytosine and 5,6-dihydro-5-azacytosine appear to be so far the most effective cytosine mimics for the design of novel antiviral and anti-tumor drug candidates.
- MeSH
- antitumorózní látky chemie farmakologie terapeutické užití MeSH
- azacytidin analogy a deriváty chemie farmakologie terapeutické užití MeSH
- cytosin analogy a deriváty chemie farmakologie terapeutické užití MeSH
- HIV infekce farmakoterapie MeSH
- HIV účinky léků MeSH
- látky proti HIV chemie farmakologie terapeutické užití MeSH
- lidé MeSH
- metylace DNA účinky léků MeSH
- nádory farmakoterapie MeSH
- objevování léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Dendrimers are artificial polymeric macromolecules which are widely considered to be a promising tool for future gene therapy applications. They have been used as efficient delivery vehicles for antisense oligonucleotides targeting the interior of cells. We demonstrate that dendriplexes formed from anti-HIV oligodeoxynucleotides ANTI-TAR, GEM91, and SREV in complex with generation 4 maltose (PPI-Mal G4) and maltotriose (PPI-Mal-III G4) modified poly(propylene imine) dendrimers are able to self-assemble into highly organized 1D and 3D nanostructures. The resulting nanostructures were characterized by fluorescence methods, laser Doppler electrophoresis, dynamic light scattering (DLS), atomic force microscopy (AFM) and molecular modeling. The results show that ANTI-TAR and GEM 91 dendriplexes self-assemble into fibrils with length scales up to several hundreds of nm. SREV, on the contrary, forms quadrilateral- like 3D nanostructures. A good correlation between the various experimental methods and molecular modeling indicates the formation of those nanostructures in solution. Space symmetry of the oligonucleotides and the resulting dendriplex monomeric units are probably the most important factors which influence the way of self-assembling.
- MeSH
- antisense oligonukleotidy aplikace a dávkování chemie MeSH
- dendrimery chemie MeSH
- fluorescenční polarizace MeSH
- HIV infekce farmakoterapie MeSH
- látky proti HIV aplikace a dávkování chemie MeSH
- lidé MeSH
- maltosa chemie MeSH
- molekulární modely MeSH
- nanostruktury chemie MeSH
- polypropyleny chemie MeSH
- radiační rozptyl MeSH
- světlo MeSH
- thionukleotidy chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH