BACKGROUND: Eluforsen is an antisense oligonucleotide designed to bind to the mRNA region around the F508-encoding deletion and restore the cystic fibrosis transmembrane conductance regulator (CFTR) protein function in the airway epithelium. We assessed the safety and tolerability, pharmacokinetics and exploratory measures of efficacy of inhaled eluforsen in cystic fibrosis (CF) patients homozygous for the F508del-CFTR mutation. METHODS: This randomised, double-blind, placebo-controlled, dose escalation 1b study recruited adult CF subjects with a FEV1 > 70% predicted in four single ascending dose cohorts and four multiple ascending dose cohorts. Primary objectives were safety and tolerability. Secondary endpoints included pharmacokinetics, percent predicted forced expiratory volume in 1 s (ppFEV1), and Cystic Fibrosis Questionnaire-Revised (CFQ-R) Respiratory Symptom Score (RSS). RESULTS: Single and multiple doses of inhaled eluforsen up to 50 mg were safe and well tolerated. A maximum tolerated dose was not established. Systemic exposure was low in all cohorts and lung function remained stable throughout the study. Three of four eluforsen-treated groups in the MAD study demonstrated an improvement in CFQ-R RSS at end of treatment with adjusted mean change from baseline values ranging from 6.4 to 12.7 points. In comparison, there was a mean decrease of 6.5 points in the placebo group from baseline to end of treatment. CONCLUSIONS: Inhaled eluforsen up to 50 mg dosed 3 times per week for 4 weeks was safe and well tolerated, showed low systemic exposure, and demonstrated improvement in CFQ-R RSS, a relevant measure of clinical benefit in CF patients.
- MeSH
- Oligonucleotides, Antisense administration & dosage adverse effects MeSH
- Administration, Inhalation MeSH
- Cystic Fibrosis * drug therapy genetics physiopathology MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Cross-Over Studies MeSH
- Humans MeSH
- Drug Monitoring methods MeSH
- Mutation MeSH
- Oligonucleotides * administration & dosage adverse effects MeSH
- Cystic Fibrosis Transmembrane Conductance Regulator genetics MeSH
- Respiratory Function Tests methods MeSH
- Symptom Assessment methods MeSH
- Treatment Outcome MeSH
- Dose-Response Relationship, Drug * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Research Support, N.I.H., Extramural MeSH
Sturgeons (chondrostean, acipenseridae) are ancient fish species, widely known for their caviar. Nowadays, most of them are critically endangered. The sterlet (Acipenser ruthenus) is a common Eurasian sturgeon species with a small body size and the fastest reproductive cycle among sturgeons. Such species can be used as a host for surrogate production; application is of value for recovery of critically endangered and huge sturgeon species with an extremely long reproductive cycle. One prerequisite for production of the donor's gametes only is to have a sterile host. Commonly used sterilization techniques in fishes such as triploidization or hybridization do not guarantee sterility in sturgeon. Alternatively, sterilization can be achieved by using a temporary germ cell exclusion-specific gene by a knockdown agent, the antisense morpholino oligonucleotide (MO). The targeted gene for the MO is the dead end gene (dnd) which is a vertebrate-specific gene encoding a RNA-binding protein which is crucial for migration and survival of primordial germ cells (PGCs). For this purpose, a dnd homologue of Russian sturgeon (Agdnd), resulting in the same sequence in the start codon region with isolated fragments of sterlet dnd (Ardnd), was used. Reverse transcription polymerase chain reaction confirmed tissue-specific expression of Ardnd only in the gonads of both sexes. Dnd-MO for depletion of PGCs together with fluorescein isothiocyanate (FITC)-biotin-dextran for PGCs labeling was injected into the vegetal region of one- to four-cell-stage sterlet embryos. In the control groups, only FITC was injected to validate the injection method and labeling of PGCs. After optimization of MO concentration together with volume injection, 250-μM MO was applied for sterilization of sturgeon embryos. Primordial germ cells were detected under a fluorescent stereomicroscope in the genital ridge of the FITC-labeled control group only, whereas no PGCs were present in the body cavities of morphants at 21 days after fertilization. Moreover, the body cavities of MO-treated and nontreated fish were examined by histology and in situ hybridization, showing gonads which had no germ cells in morphants at various stages (60, 150, and 210 days after fertilization). Taken together, these results report the first known and functional method of sturgeon sterilization.
- MeSH
- Oligonucleotides, Antisense * administration & dosage MeSH
- Cell Death MeSH
- Gene Knockdown Techniques methods veterinary MeSH
- Gonads chemistry MeSH
- DNA, Complementary chemistry MeSH
- Morpholinos * administration & dosage MeSH
- RNA-Binding Proteins analysis genetics MeSH
- Fishes * genetics MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Sterilization, Reproductive methods veterinary MeSH
- Germ Cells physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Dendrimers are artificial polymeric macromolecules which are widely considered to be a promising tool for future gene therapy applications. They have been used as efficient delivery vehicles for antisense oligonucleotides targeting the interior of cells. We demonstrate that dendriplexes formed from anti-HIV oligodeoxynucleotides ANTI-TAR, GEM91, and SREV in complex with generation 4 maltose (PPI-Mal G4) and maltotriose (PPI-Mal-III G4) modified poly(propylene imine) dendrimers are able to self-assemble into highly organized 1D and 3D nanostructures. The resulting nanostructures were characterized by fluorescence methods, laser Doppler electrophoresis, dynamic light scattering (DLS), atomic force microscopy (AFM) and molecular modeling. The results show that ANTI-TAR and GEM 91 dendriplexes self-assemble into fibrils with length scales up to several hundreds of nm. SREV, on the contrary, forms quadrilateral- like 3D nanostructures. A good correlation between the various experimental methods and molecular modeling indicates the formation of those nanostructures in solution. Space symmetry of the oligonucleotides and the resulting dendriplex monomeric units are probably the most important factors which influence the way of self-assembling.
- MeSH
- Oligonucleotides, Antisense administration & dosage chemistry MeSH
- Dendrimers chemistry MeSH
- Fluorescence Polarization MeSH
- HIV Infections drug therapy MeSH
- Anti-HIV Agents administration & dosage chemistry MeSH
- Humans MeSH
- Maltose chemistry MeSH
- Models, Molecular MeSH
- Nanostructures chemistry MeSH
- Polypropylenes chemistry MeSH
- Scattering, Radiation MeSH
- Light MeSH
- Thionucleotides chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH