Nucleos(t)ide analogues entecavir (ETV) and tenofovir disoproxil fumarate (TDF) are recommended as first-line monotherapies for chronic hepatitis B (CHB). Multiple HBV genotypes/subgenotypes have been described, but their impact on treatment response remains largely elusive. We investigated the effectiveness of ETV/TDF on HBV/D-subgenotypes, D1/D2/D3/D5, studied the structural/functional differences in subgenotype-specific reverse transcriptase (RT) domains of viral polymerase, and identified novel molecules with robust inhibitory activity on various D-subgenotypes. Transfection of Huh7 cells with full-length D1/D2/D3/D5 and in vitro TDF/ETV susceptibility assays demonstrated that D1/D2 had greater susceptibility to TDF/ETV while D3/D5 exhibited poorer response. Additionally, HBV load was substantially reduced in TDF-treated CHB patients carrying D1/D2 but minimally reduced in D3/D5-infected patients. Comparison of RT sequences of D-subgenotypes led to identification of unique subgenotype-specific residues, and molecular modeling/docking/simulation studies depicted differential bindings of TDF/ETV to the active site of their respective RTs. Replacement of signature residues in D3/D5 HBV clones with corresponding amino acids seen in D1/D2 improved their susceptibility to TDF/ETV. Using high throughput virtual screening, we identified N(9)-[3-fluoro-2-(phosphonomethoxy)propyl] (FPMP) derivatives of purine bases, including N6-substituted (S)-FPMP derivative of 2,6-diaminopurine (DAP) (OB-123-VK), as potential binders of RT of different D-subgenotypes. We synthesized (S)-FPMPG prodrugs (FK-381-FEE/FK-381-SEE/FK-382) and tested their effectiveness along with OB-123-VK. Both OB-123-VK and FK-381-FEE exerted similar antiviral activities against all D-subgenotypes, although FK-381-FEE was more potent. Our study highlighted the natural variation in therapeutic response of D1/D2/D3/D5 and emphasized the need for HBV subgenotype determination before treatment. Novel molecules described here could benefit future design/discovery of pan-D-subgenotypic inhibitors. IMPORTANCE Current treatment of chronic hepatitis B relies heavily on nucleotide/nucleoside analogs in particular, tenofovir disoproxil fumarate (TDF) and entecavir (ETV) to keep HBV replication under control and prevent end-stage liver diseases. However, it was unclear whether the therapeutic effects of TDF/ETV differ among patients infected with different HBV genotypes and subgenotypes. HBV genotype D is the most widespread of all HBV genotypes and multiple D-subgenotypes have been described. We here report that different subgenotypes of HBV genotype-D exhibit variable response toward TDF and ETV and this could be attributed to naturally occurring amino acid changes in the reverse transcriptase domain of the subgenotype-specific polymerase. Further, we identified novel molecules and also synthesized prodrugs that are equally effective on different D-subgenotypes and could facilitate management of HBV/D-infected patients irrespective of D-subgenotype.
- MeSH
- antivirové látky chemie farmakologie terapeutické užití MeSH
- chronická hepatitida B farmakoterapie virologie MeSH
- genotyp MeSH
- guanin analogy a deriváty chemie farmakologie terapeutické užití MeSH
- inhibitory reverzní transkriptasy chemie farmakologie terapeutické užití MeSH
- lidé MeSH
- mutace MeSH
- organofosfonáty chemie farmakologie MeSH
- prekurzory léčiv MeSH
- proteinové domény MeSH
- racionální návrh léčiv * MeSH
- reverzní transkriptasa chemie genetika MeSH
- tenofovir chemie farmakologie terapeutické užití MeSH
- virová léková rezistence účinky léků genetika MeSH
- virová nálož účinky léků MeSH
- virus hepatitidy B účinky léků enzymologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.
- MeSH
- amidy chemie MeSH
- antivirové látky chemie farmakologie MeSH
- fenol chemie MeSH
- hepatocyty virologie MeSH
- HIV-1 účinky léků MeSH
- kyseliny fosforečné chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- objevování léků * MeSH
- prekurzory léčiv chemie farmakologie MeSH
- stereoizomerie MeSH
- tenofovir chemie farmakologie MeSH
- tyrosin chemie MeSH
- virus hepatitidy B účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tenofovir disoproxil fumarate (TDF, form I) is an orally delivered pharmaceutical salt used for the treatment of HIV and chronic hepatitis, which acts as an inhibitor of nucleotide reverse transcriptase. There are many solid forms of TDF described in the literature; 2 of them were identified in the drug products: form I and form A. It seems that during formulation, the active pharmaceutical ingredient undergoes partial to total conversion of TDF form I to TDF form A. The goals of this study were to investigate when and why did the conversion occur and whether the conversion could be avoided and how. The influence of pH and possible interaction with excipients were studied. The conditions enabling using wet granulation in technology while preventing the undesired conversion were found. The stabilization was achieved either by replacement of used disintegrants or by acid addition to the current composition of formulation.
- MeSH
- difrakce rentgenového záření metody MeSH
- koncentrace vodíkových iontů MeSH
- látky proti HIV chemie metabolismus MeSH
- pomocné látky chemie metabolismus MeSH
- příprava léků metody MeSH
- stabilita léku MeSH
- tenofovir chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH