Neuroprotective Effect of Swertiamarin in a Rotenone Model of Parkinson's Disease: Role of Neuroinflammation and Alpha-Synuclein Accumulation

. 2023 Jan 13 ; 6 (1) : 40-51. [epub] 20221214

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36654754

Parkinson's disease (PD) is a progressive neurodegenerative disease with no permanent cure affecting around 1% of the population over 65. There is an urgency to search for a disease-modifying agent with fewer untoward effects. PD pathology involves the accumulation of toxic alpha-synuclein (α-syn) and neuronal inflammation leading to the degeneration of dopaminergic (DAergic) neurons. Swertiamarin (SWE), a well-studied natural product, possesses a strong anti-inflammatory effect. It is a secoiridoid glycoside isolated from Enicostemma littorale Blume. SWE showed a reversal effect on the α-syn accumulation in the 6-hydroxydopamine (6-OHDA)-induced Caenorhabditis elegans model of PD. However, there are no reports in the literature citing the effect of SWE as a neuroprotective agent in rodents. The present study aimed to evaluate the anti-inflammatory activity of SWE against lipopolysaccharide (LPS)-induced C6 glial cell activation and its neuroprotective effect in the intrastriatal rotenone mouse PD model. SWE treatment showed a significant reduction in interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels in LPS-induced C6 glial cell activation. Further, our studies demonstrated the suppression of microglial and astroglial activation in substantia nigra (SN) after administration of SWE (100 mg/kg, intraperitoneally) in a rotenone mouse model. Moreover, SWE alleviated the rotenone-induced α-syn overexpression in the striatum and SN. SWE ameliorated the motor impairment against rotenone-induced neurotoxicity and mitigated the loss of DAergic neurons in the nigrostriatal pathway. Therefore, SWE has the potential to develop as an adjunct therapy for PD, but it warrants further mechanistic studies.

Zobrazit více v PubMed

Gokcal E.; Gur V. E.; Selvitop R.; Yildiz G. B.; Asil T. Motor and non-motor symptoms in Parkinson’s disease: effects on quality of life. Arch. Neuropsychiatry 2017, 54, 143–149. 10.5152/npa.2016.12758. PubMed DOI PMC

Amara A. W.; Memon A. A. Effects of exercise on non-motor symptoms in Parkinson’s disease. Clin. Ther. 2018, 40, 8–15. 10.1016/j.clinthera.2017.11.004. PubMed DOI PMC

Chan C. S.; Guzman J. N.; Ilijic E.; Mercer J. N.; Rick C.; Tkatch T.; Meredith G. E.; Surmeier D. J. Rejuvenation’protects neurons in mouse models of Parkinson’s disease. Nature 2007, 447, 1081–1086. 10.1038/nature05865. PubMed DOI

Gómez-Benito M.; Granado N.; García-Sanz P.; Michel A.; Dumoulin M.; Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol. 2020, 11, 356.10.3389/fphar.2020.00356. PubMed DOI PMC

Rizek P.; Kumar N.; Jog M. S. An update on the diagnosis and treatment of Parkinson disease. Cmaj 2016, 188, 1157–1165. 10.1503/cmaj.151179. PubMed DOI PMC

McGeer P. L.; McGeer E. G. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord. 2004, 10, S3–S7. 10.1016/j.parkreldis.2004.01.005. PubMed DOI

McGeer P. L.; McGeer E. G. Glial reactions in Parkinson’s disease. Mov. Disord. 2008, 23, 474–483. 10.1002/mds.21751. PubMed DOI

Hirsch E. C.; Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection?. Lancet Neurol. 2009, 8, 382–397. 10.1016/S1474-4422(09)70062-6. PubMed DOI

Blum-Degena D.; Müller T.; Kuhn W.; Gerlach M.; Przuntek H.; Riederer P. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 1995, 202, 17–20. 10.1016/0304-3940(95)12192-7. PubMed DOI

Dobbs R.; Charlett A.; Purkiss A.; Dobbs S.; Weller C.; Peterson D. Association of circulating TNF-α and IL-6 with ageing and parkinsonism. Acta Neurol. Scand. 1999, 100, 34–41. 10.1111/j.1600-0404.1999.tb00721.x. PubMed DOI

Hunot S.; Brugg B.; Ricard D.; Michel P. P.; Muriel M.-P.; Ruberg M.; Faucheux B. A.; Agid Y.; Hirsch E. C. Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease. Proc. Natl. Acad. Sci. 1997, 94, 7531–7536. 10.1073/pnas.94.14.7531. PubMed DOI PMC

Domingues A. V.; Pereira I. M.; Vilaça-Faria H.; Salgado A. J.; Rodrigues A. J.; Teixeira F. G. Glial cells in Parkinson’ s disease: protective or deleterious?. Cell. Mol. Life Sci. 2020, 1–18. 10.1007/s00018-020-03584-x. PubMed DOI PMC

Goldman S. M. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 141–164. 10.1146/annurev-pharmtox-011613-135937. PubMed DOI

Sherer T. B.; Kim J.-H.; Betarbet R.; Greenamyre J. T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 2003, 179, 9–16. 10.1006/exnr.2002.8072. PubMed DOI

Betarbet R.; Sherer T. B.; MacKenzie G.; Garcia-Osuna M.; Panov A. V.; Greenamyre J. T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 2000, 3, 1301–1306. 10.1038/81834. PubMed DOI

Gao H.-M.; Hong J.-S.; Zhang W.; Liu B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 2002, 22, 782–790. 10.1523/JNEUROSCI.22-03-00782.2002. PubMed DOI PMC

Gao H.-M.; Liu B.; Hong J.-S. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 2003, 23, 6181–6187. 10.1523/JNEUROSCI.23-15-06181.2003. PubMed DOI PMC

Sherer T. B.; Betarbet R.; Kim J.-H.; Greenamyre J. T. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci. Lett. 2003, 341, 87–90. 10.1016/s0304-3940(03)00172-1. PubMed DOI

Sala G.; Arosio A.; Stefanoni G.; Melchionda L.; Riva C.; Marinig D.; Brighina L.; Ferrarese C. Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition. BioMed Res. Int. 2013, 2013, 1.10.1155/2013/846725. PubMed DOI PMC

Saravanan S.; Islam V. H.; Babu N. P.; Pandikumar P.; Thirugnanasambantham K.; Chellappandian M.; Raj C. S. D.; Paulraj M. G.; Ignacimuthu S. Swertiamarin attenuates inflammation mediators via modulating NF-κB/I κB and JAK2/STAT3 transcription factors in adjuvant induced arthritis. Eur. J. Pharm. Sci. 2014, 56, 70–86. 10.1016/j.ejps.2014.02.005. PubMed DOI

Vaijanathappa J.; Badami S. Antiedematogenic and free radical scavenging activity of swertiamarin isolated from Enicostemma axillare. Planta Med. 2009, 75, 12–17. 10.1055/s-0028-1088333. PubMed DOI

Vaidya H.; Goyal R. K.; Cheema S. K. Anti-diabetic activity of swertiamarin is due to an active metabolite, gentianine, that upregulates PPAR-γ gene expression in 3T3-L1 cells. Phytother. Res. 2013, 27, 624–627. 10.1002/ptr.4763. PubMed DOI

Pandey T.; Shukla A.; Trivedi M.; Khan F.; Pandey R. Swertiamarin from Enicostemma littorale, counteracts PD associated neurotoxicity via enhancement α-synuclein suppressive genes and SKN-1/NRF-2 activation through MAPK pathway. Bioorg. Chem. 2021, 108, 104655.10.1016/j.bioorg.2021.104655. PubMed DOI

Vishwakarma S.; Rajani M.; Bagul M.; Goyal R. A rapid method for the isolation of swertiamarin from Enicostemma littorale. Pharm. Biol. 2004, 42, 400–403. 10.1080/13880200490885095. DOI

Jaishree V.; Badami S.; Kumar M. R.; Tamizhmani T. Antinociceptive activity of swertiamarin isolated from Enicostemma axillare. Phytomedicine 2009, 16, 227–232. 10.1016/j.phymed.2008.09.010. PubMed DOI

Rana V. Separation and identification of swertiamarin from Enicostema axillare Lam. Raynal by centrifugal partition chromatography and nuclear magnetic resonance-Mass Spectrometry. J. Pharm Sci. Emerg. Drugs 2014, 1, 2.10.4172/jpsed.1000102. DOI

Li Z.; Welbeck E.; Yang L.; He C.; Hu H.; Song M.; Bi K.; Wang Z. A quantitative 1H nuclear magnetic resonance (qHNMR) method for assessing the purity of iridoids and secoiridoids. Fitoterapia 2015, 100, 187–194. 10.1016/j.fitote.2014.12.001. PubMed DOI

Bhattacharya S.; Reddy P.; Ghosal S.; Singh A.; Sharma P. Chemical constituents of gentianaceae XIX: CNS-depressant effects of swertiamarin. J. Pharm. Sci. 1976, 65, 1547–1549. 10.1002/jps.2600651037. PubMed DOI

Wang H.; Wei W.; Lan X.; Liu N.; Li Y.; Ma H.; Sun T.; Peng X.; Zhuang C.; Yu J. Neuroprotective effect of swertiamain on cerebral ischemia/reperfusion injury by inducing the Nrf2 protective pathway. ACS Chem. Neurosci. 2019, 10, 2276–2286. 10.1021/acschemneuro.8b00605. PubMed DOI

Fadzil N. S. M.; Sekar M.; Gan S. H.; Bonam S. R.; Wu Y. S.; Vaijanathappa J.; Ravi S.; Lum P. T.; Dhadde S. B. Chemistry, Pharmacology and Therapeutic Potential of Swertiamarin–A Promising Natural Lead for New Drug Discovery and Development. Drug Des., Dev. Ther. 2021, 15, 2721.10.2147/DDDT.S299753. PubMed DOI PMC

Zhou H.-F.; Liu X.-Y.; Niu D.-B.; Li F.-Q.; He Q.-H.; Wang X.-M. Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by Lipopolysaccharide intranigral injection. Neurobiol. Dis. 2005, 18, 441–449. 10.1016/j.nbd.2004.12.005. PubMed DOI

Tai W.; Ye X.; Bao X.; Zhao B.; Wang X.; Zhang D. Inhibition of Src tyrosine kinase activity by squamosamide derivative FLZ attenuates neuroinflammation in both in vivo and in vitro Parkinson’s disease models. Neuropharmacology 2013, 75, 201–212. 10.1016/j.neuropharm.2013.07.020. PubMed DOI

Hoban D. B.; Connaughton E.; Connaughton C.; Hogan G.; Thornton C.; Mulcahy P.; Moloney T. C.; Dowd E. Further characterisation of the LPS model of Parkinson’s disease: a comparison of intra-nigral and intra-striatal lipopolysaccharide administration on motor function, microgliosis and nigrostriatal neurodegeneration in the rat. Brain, Behav., Immun. 2013, 27, 91–100. 10.1016/j.bbi.2012.10.001. PubMed DOI

Zhang M.; Ma X.; Xu H.; Wu W.; He X.; Wang X.; Jiang M.; Hou Y.; Bai G. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS J. 2020, 287, 1816–1829. 10.1111/febs.15112. PubMed DOI

Wu T.; Zhang Q.; Song H. Swertiamarin attenuates carbon tetrachloride (CCl4)-induced liver injury and inflammation in rats by regulating the TLR4 signaling pathway. Braz. J. Pharm. Sci. 2018, 54, 54.10.1590/s2175-97902018000417449. DOI

Deng X.-H.; Zhang X.; Wang J.; Ma P.-S.; Ma L.; Niu Y.; Sun T.; Zhou R.; Yu J.-Q. Anticonvulsant effect of Swertiamarin against Pilocarpine-induced seizures in adult male mice. Neurochem. Res. 2017, 42, 3103–3113. 10.1007/s11064-017-2347-0. PubMed DOI

Lee K. M.; Lee Y.; Chun H. J.; Kim A. H.; Kim J. Y.; Lee J. Y.; Ishigami A.; Lee J. Neuroprotective and anti-inflammatory effects of morin in a murine model of Parkinson’s disease. J. Neurosci. Res. 2016, 94, 865–878. 10.1002/jnr.23764. PubMed DOI

Ghosh A.; Kanthasamy A.; Joseph J.; Anantharam V.; Srivastava P.; Dranka B. P.; Kalyanaraman B.; Kanthasamy A. G. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J. Neuroinflammation 2012, 9, 1–16. 10.1186/1742-2094-9-241. PubMed DOI PMC

Leonoudakis D.; Rane A.; Angeli S.; Lithgow G. J.; Andersen J. K.; Chinta S. J. Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells: implications for Parkinson’s disease. Mediators Inflammation 2017, 2017, 1.10.1155/2017/8302636. PubMed DOI PMC

Rahul PG R. W. Sameer SS, To Study the Effect of Swertiamarin in Animal Model of Huntington’s Disease. J. Pharm. Res. 2018, 2, 1–8. 10.23880/oajpr-16000163. DOI

Kim W.-G.; Mohney R. P.; Wilson B.; Jeohn G.-H.; Liu B.; Hong J.-S. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 2000, 20, 6309–6316. 10.1523/JNEUROSCI.20-16-06309.2000. PubMed DOI PMC

Cafaro T.; Carnicelli V.; Caprioli G.; Maggi F.; Celenza G.; Perilli M.; Bozzi A.; Amicosante G.; Brisdelli F. Anti-apoptotic and anti-inflammatory activity of Gentiana lutea root extract. Adv. Tradit. Med. 2020, 20, 619–630. 10.1007/s13596-020-00447-5. DOI

Xiang Y.; Haixia W.; Zenggen L.; Yanduo T. Anti-inflammatory activity of compounds isolated from Swertia mussotii. Nat. Prod. Res. 2019, 33, 598–601. 10.1080/14786419.2017.1399385. PubMed DOI

Xu L.; Li D.; Zhu Y.; Cai S.; Liang X.; Tang Y.; Jin S.; Ding C. Swertiamarin supplementation prevents obesity-related chronic inflammation and insulin resistance in mice fed a high-fat diet. Adipocyte 2021, 10, 160–173. 10.1080/21623945.2021.1906510. PubMed DOI PMC

Carta A.; Frau L.; Pisanu A.; Wardas J.; Spiga S.; Carboni E. Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 2011, 194, 250–261. 10.1016/j.neuroscience.2011.07.046. PubMed DOI

Chaturvedi R. K.; Beal M. F. PPAR: a therapeutic target in Parkinson’s disease. J. Neurochem. 2008, 106, 506–518. 10.1111/j.1471-4159.2008.05388.x. PubMed DOI

Mulcahy P.; Walsh S.; Paucard A.; Rea K.; Dowd E. Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone. Neuroscience 2011, 181, 234–242. 10.1016/j.neuroscience.2011.01.038. PubMed DOI

Carriere C.; Kang N.; Niles L. Neuroprotection by valproic acid in an intrastriatal rotenone model of Parkinson’s disease. Neuroscience 2014, 267, 114–121. 10.1016/j.neuroscience.2014.02.028. PubMed DOI

Perez-Pardo P.; Dodiya H. B.; Broersen L. M.; Douna H.; van Wijk N.; Lopes da Silva S.; Garssen J.; Keshavarzian A.; Kraneveld A. D. Gut–brain and brain–gut axis in Parkinson’s disease models: effects of a uridine and fish oil diet. Nutr. Neurosci. 2018, 21, 391–402. 10.1080/1028415X.2017.1294555. PubMed DOI

Maniyath S. P.; Solaiappan N.; Rathinasamy M. Neurobehavioural changes in a hemiparkinsonian rat model induced by rotenone. J. Clin. Diagn. Res. 2017, 11, AF01.10.7860/JCDR/2017/24955.9604. PubMed DOI PMC

Grealish S.; Mattsson B.; Draxler P.; Björklund A. Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur. J. Neurosci. 2010, 31, 2266–2278. 10.1111/j.1460-9568.2010.07265.x. PubMed DOI

Shiotsuki H.; Yoshimi K.; Shimo Y.; Funayama M.; Takamatsu Y.; Ikeda K.; Takahashi R.; Kitazawa S.; Hattori N. A rotarod test for evaluation of motor skill learning. J. Neurosci. Methods 2010, 189, 180–185. 10.1016/j.jneumeth.2010.03.026. PubMed DOI

Sharma M.; Kaur J.; Rakshe S.; Sharma N.; Khunt D.; Khairnar A. Intranasal Exposure to Low-Dose Rotenone Induced Alpha-Synuclein Accumulation and Parkinson’s Like Symptoms Without Loss of Dopaminergic Neurons. Neurotoxic. Res. 2022, 40, 215–229. 10.1007/s12640-022-00497-4. PubMed DOI

Farrand A. Q.; Verner R. S.; McGuire R. M.; Helke K. L.; Hinson V. K.; Boger H. A. Differential effects of vagus nerve stimulation paradigms guide clinical development for Parkinson’s disease. Brain Stimul. 2020, 13, 1323–1332. 10.1016/j.brs.2020.06.078. PubMed DOI

Jewett M.; Jimenez-Ferrer I.; Swanberg M. Astrocytic expression of GSTA4 is associated to dopaminergic neuroprotection in a rat 6-OHDA model of Parkinson’s disease. Brain Sci. 2017, 7, 73.10.3390/brainsci7070073. PubMed DOI PMC

Wang S.-j.; Wang Q.; Ma J.; Yu P.-h.; Wang Z.-m.; Wang B. Effect of moxibustion on mTOR-mediated autophagy in rotenone-induced Parkinson’s disease model rats. Neural Regener. Res. 2018, 13, 112.10.4103/1673-5374.224380. PubMed DOI PMC

Xavier L. L.; Viola G. G.; Ferraz A. C.; Da Cunha C.; Deonizio J. M. D.; Netto C. A.; Achaval M. A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Res. Protoc. 2005, 16, 58–64. 10.1016/j.brainresprot.2005.10.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...