Association of COVID-19 with Comorbidities: An Update

. 2023 Mar 10 ; 6 (3) : 334-354. [epub] 20230227

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36923110

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.

Zobrazit více v PubMed

Zhu N.; Zhang D.; Wang W.; Li X.; Yang B.; Song J.; Zhao X.; Huang B.; Shi W.; Lu R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727. 10.1056/NEJMoa2001017. PubMed DOI PMC

Coronavirus resources center.https://coronavirus.jhu.edu/ (acccessed 05–12–2022).

Ejaz H.; Alsrhani A.; Zafar A.; Javed H.; Junaid K.; Abdalla A. E.; Abosalif K. O.; Ahmed Z.; Younas S. COVID-19 and comorbidities: Deleterious impact on infected patients. Journal of infection public health 2020, 13 (12), 1833–1839. 10.1016/j.jiph.2020.07.014. PubMed DOI PMC

Yin Y.; Wunderink R. G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2018, 23 (2), 130–137. 10.1111/resp.13196. PubMed DOI PMC

Al-Qahtani A. A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): emergence, history, basic and clinical aspects. Saudi journal of biological sciences 2020, 27 (10), 2531–2538. 10.1016/j.sjbs.2020.04.033. PubMed DOI PMC

Yang J.; Petitjean S. J.; Koehler M.; Zhang Q.; Dumitru A. C.; Chen W.; Derclaye S.; Vincent S. P.; Soumillion P.; Alsteens D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 2020, 11 (1), 1–10. 10.1038/s41467-020-18319-6. PubMed DOI PMC

Guo Y.-R.; Cao Q.-D.; Hong Z.-S.; Tan Y.-Y.; Chen S.-D.; Jin H.-J.; Tan K.-S.; Wang D.-Y.; Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Military medical research 2020, 7 (1), 1–10. 10.1186/s40779-020-00240-0. PubMed DOI PMC

Nouchi A.; Chastang J.; Miyara M.; Lejeune J.; Soares A.; Ibanez G.; Saadoun D.; Morélot-Panzini C.; Similowski T.; Amoura Z.; et al. Prevalence of hyposmia and hypogeusia in 390 COVID-19 hospitalized patients and outpatients: a cross-sectional study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40 (4), 691–697. 10.1007/s10096-020-04056-7. PubMed DOI PMC

Butowt R.; von Bartheld C. S. Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection. neuroscientist 2021, 27 (6), 582–603. 10.1177/1073858420956905. PubMed DOI PMC

Biswas M.; Rahaman S.; Biswas T. K.; Haque Z.; Ibrahim B. Association of sex, age, and comorbidities with mortality in COVID-19 patients: a systematic review and meta-analysis. Intervirology 2021, 64 (1), 36–47. 10.1159/000512592. PubMed DOI PMC

Cajamarca-Baron J.; Guavita-Navarro D.; Buitrago-Bohorquez J.; Gallego-Cardona L.; Navas A.; Cubides H.; Arredondo A. M.; Escobar A.; Rojas-Villarraga A. SARS-CoV-2 (COVID-19) en pacientes con algún grado de inmunosupresión. Reumatologia clinica 2021, 17 (7), 408–419. 10.1016/j.reumae.2020.08.001. PubMed DOI PMC

Gold M. S.; Sehayek D.; Gabrielli S.; Zhang X.; McCusker C.; Ben-Shoshan M. COVID-19 and comorbidities: a systematic review and meta-analysis. Postgraduate medicine 2020, 132 (8), 749–755. 10.1080/00325481.2020.1786964. PubMed DOI

Adab P.; Haroon S.; O’Hara M.; Jordan R. Comorbidities and covid-19 Better understanding is essential for health system planning. Bmj 2022, 377, o1431. 10.1136/bmj.o1431. PubMed DOI

Sanyaolu A.; Okorie C.; Marinkovic A.; Patidar R.; Younis K.; Desai P.; Hosein Z.; Padda I.; Mangat J.; Altaf M. J. S. c. c. m. Comorbidity and its impact on patients with COVID-19. SN Comprehensive clinical medicine 2020, 2 (8), 1069–1076. 10.1007/s42399-020-00363-4. PubMed DOI PMC

U.S. National Library of Medicine . ClinicalTrials.gov, https://clinicaltrials.gov/ (acccessed 05–12–2022).

SARS-CoV-2 Variant Classifications and Definitions; Centers for Disease Control and Prevention, https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html/ (accessed 07-02-2023).

Jian F.; Yu Y.; Song W.; Yisimayi A.; Yu L.; Gao Y.; Zhang N.; Wang Y.; Shao F.; Hao X.; et al. Further humoral immunity evasion of emerging SARS-CoV-2 BA. 4 and BA. 5 subvariants. Lancet Infect. Dis. 2022, 22 (11), 1535–1537. 10.1016/S1473-3099(22)00642-9. PubMed DOI PMC

Chen C.; Nadeau S.; Yared M.; Voinov P.; Xie N.; Roemer C.; Stadler T. CoV-Spectrum: analysis of globally shared SARS-CoV-2 data to identify and characterize new variants. Bioinformatics 2022, 38 (6), 1735–1737. 10.1093/bioinformatics/btab856. PubMed DOI PMC

Bal A.; Simon B.; Destras G.; Chalvignac R.; Semanas Q.; Oblette A.; Queromes G.; Fanget R.; Regue H.; Morfin F.; et al. Detection and prevalence of SARS-CoV-2 co-infections during the Omicron variant circulation, France, December 2021-February 2022. Nat. Commun. 2022, 13 (1), 6316. 10.1038/s41467-022-33910-9. PubMed DOI PMC

Kumar S.; Thambiraja T. S.; Karuppanan K.; Subramaniam G. J. J. o. m. v. Omicron and Delta variant of SARS-CoV-2: a comparative computational study of spike protein 2022, 94 (4), 1641–1649. 10.1002/jmv.27526. PubMed DOI

Kumar S.; Thambiraja T. S.; Karuppanan K.; Subramaniam G. Omicron and Delta variant of SARS-CoV-2: a comparative computational study of spike protein. Journal of medical virology 2022, 94 (4), 1641–1649. 10.1002/jmv.27526. PubMed DOI

Wu Z.; McGoogan J. M. J. j. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. jama 2020, 323 (13), 1239–1242. 10.1001/jama.2020.2648. PubMed DOI

Chen Y.; Klein S. L.; Garibaldi B. T.; Li H.; Wu C.; Osevala N. M.; Li T.; Margolick J. B.; Pawelec G.; Leng S. X. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing research reviews 2021, 65, 101205. 10.1016/j.arr.2020.101205. PubMed DOI PMC

Onder G.; Rezza G.; Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. jama 2020, 323 (18), 1775–1776. 10.1001/jama.2020.4683. PubMed DOI

Richardson S.; Hirsch J. S.; Narasimhan M.; Crawford J. M.; McGinn T.; Davidson K. W.; Barnaby D. P.; Becker L. B.; Chelico J. D.; Cohen S. L. J. P. C.; et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020, 323 (20), 2052–2059. 10.1001/jama.2020.6775. PubMed DOI PMC

Barrasa H.; Rello J.; Tejada S.; Martín A.; Balziskueta G.; Vinuesa C.; Fernández-Miret B.; Villagra A.; Vallejo A.; San Sebastián A.; et al. SARS-CoV-2 in Spanish intensive care units: early experience with 15-day survival in Vitoria. Anaesthesia critical care & pain medicine 2020, 39 (5), 553–561. 10.1016/j.accpm.2020.04.001. PubMed DOI PMC

Alimohamadi Y.; Tola H. H.; Abbasi-Ghahramanloo A.; Janani M.; Sepandi M. Case fatality rate of COVID-19: a systematic review and meta-analysis. J. Prev. Med. Hyg. 2021, 62 (2), E311–E320. 10.15167/2421-4248/jpmh2021.62.2.1627. PubMed DOI PMC

Grein J.; Ohmagari N.; Shin D.; Diaz G.; Asperges E.; Castagna A.; Feldt T.; Green G.; Green M. L.; Lescure F.-X.; et al. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 2020, 382 (24), 2327–2336. 10.1056/NEJMoa2007016. PubMed DOI PMC

Nikpouraghdam M.; Jalali Farahani A.; Alishiri G.; Heydari S.; Ebrahimnia M.; Samadinia H.; Sepandi M.; Jafari N. J.; Izadi M.; Qazvini A.; et al. Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. J. Clin. Virol. 2020, 127, 104378. 10.1016/j.jcv.2020.104378. PubMed DOI PMC

Nemati H.; Ramezani M.; Najafi F.; Sayad B.; Nazeri M.; Sadeghi M. Evaluation of Angiotensin-converting Enzyme 2 (ACE2) in COVID-19: A Systematic Review on All Types of Studies for Epidemiologic, Diagnostic, and Therapeutic Purposes: Angiotensin-converting enzyme 2 (ACE2) in COVID-19. Open Access Macedonian J. Med. Sci. 2020, 8 (T1), 84–91. 10.3889/oamjms.2020.4763. DOI

Singh B. B.; Ward M. P.; Lowerison M.; Lewinson R. T.; Vallerand I. A.; Deardon R.; Gill J. P.; Singh B.; Barkema H. W. Meta-analysis and adjusted estimation of COVID-19 case fatality risk in India and its association with the underlying comorbidities. One health 2021, 13, 100283. 10.1016/j.onehlt.2021.100283. PubMed DOI PMC

Bajaj V.; Gadi N.; Spihlman A. P.; Wu S. C.; Choi C. H.; Moulton V. R. Aging, immunity, and COVID-19: how age influences the host immune response to coronavirus infections?. Frontiers in physiology 2021, 11, 571416. 10.3389/fphys.2020.571416. PubMed DOI PMC

Shaw A. C.; Goldstein D. R.; Montgomery R. R. Age-dependent dysregulation of innate immunity. Nature reviews immunology 2013, 13 (12), 875–887. 10.1038/nri3547. PubMed DOI PMC

Zhai H.; Lv Y.; Xu Y.; Wu Y.; Zeng W.; Wang T.; Cao X.; Xu Y. Characteristic of Parkinson’s disease with severe COVID-19: a study of 10 cases from Wuhan. Journal of Neural Transmission 2021, 128 (1), 37–48. 10.1007/s00702-020-02283-y. PubMed DOI PMC

Grasselli G.; Zangrillo A.; Zanella A.; Antonelli M.; Cabrini L.; Castelli A.; Cereda D.; Coluccello A.; Foti G.; Fumagalli R. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323 (16), 1574–1581. 10.1001/jama.2020.5394. PubMed DOI PMC

Bhatraju P. K.; Ghassemieh B. J.; Nichols M.; Kim R.; Jerome K. R.; Nalla A. K.; Greninger A. L.; Pipavath S.; Wurfel M. M.; Evans L.; et al. Covid-19 in critically ill patients in the Seattle region - case series. N. Engl. J. Med. 2020, 382 (21), 2012–2022. 10.1056/NEJMoa2004500. PubMed DOI PMC

Li Z.; Wu M.; Yao J.; Guo J.; Liao X.; Song S.; Li J.; Duan G.; Zhou Y.; Wu X.. Caution on kidney dysfunctions of COVID-19 patients. MedRxiv (Infections Disease (except HIV/AIDS)), March 27, 2020,2020.02.08.20021212, ver. 2. DOI: 10.1101/2020.02.08.20021212.

Bartleson J. M.; Radenkovic D.; Covarrubias A. J.; Furman D.; Winer D. A.; Verdin E. SARS-CoV-2, COVID-19 and the aging immune system. Nature aging 2021, 1 (9), 769–782. 10.1038/s43587-021-00114-7. PubMed DOI PMC

Moccia F.; Gerbino A.; Lionetti V.; Miragoli M.; Munaron L.; Pagliaro P.; Pasqua T.; Penna C.; Rocca C.; Samaja M.; et al. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. Geroscience 2020, 42 (4), 1021–1049. 10.1007/s11357-020-00198-w. PubMed DOI PMC

Fanaroff A. C.; Garcia S.; Giri J. Myocardial infarction during the COVID-19 pandemic. Jama 2021, 326 (19), 1916–1918. 10.1001/jama.2021.19608. PubMed DOI

Li Q.; Guan X.; Wu P.; Wang X.; Zhou L.; Tong Y.; Ren R.; Leung K. S.; Lau E. H.; Wong J. Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382 (13), 1199–1207. 10.1056/NEJMoa2001316. PubMed DOI PMC

Zhou F.; Yu T.; Du R.; Fan G.; Liu Y.; Liu Z.; Xiang J.; Wang Y.; Song B.; Gu X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020, 395 (10229), 1054–1062. 10.1016/S0140-6736(20)30566-3. PubMed DOI PMC

Webb Hooper M.; Napoles A. M.; Perez-Stable E. J. COVID-19 and racial/ethnic disparities. JAMA 2020, 323 (24), 2466–2467. 10.1001/jama.2020.8598. PubMed DOI PMC

Pan D.; Sze S.; Minhas J. S.; Bangash M. N.; Pareek N.; Divall P.; Williams C. M.; Oggioni M. R.; Squire I. B.; Nellums L. B.; et al. The impact of ethnicity on clinical outcomes in COVID-19: a systematic review. EClinicalMedicine 2020, 23, 100404. 10.1016/j.eclinm.2020.100404. PubMed DOI PMC

Karaca-Mandic P.; Georgiou A.; Sen S. Assessment of COVID-19 hospitalizations by race/ethnicity in 12 states. Jama internal medicine 2021, 181 (1), 131–134. 10.1001/jamainternmed.2020.3857. PubMed DOI PMC

Williamson E. J.; McDonald H. I.; Bhaskaran K.; Walker A. J.; Bacon S.; Davy S.; Schultze A.; Tomlinson L.; Bates C.; Ramsay M. J. b. Risks of covid-19 hospital admission and death for people with learning disability: population based cohort study using the OpenSAFELY platform. BMJ 2021, 374, n1592. 10.1136/bmj.n1592. PubMed DOI PMC

Zakeri R.; Bendayan R.; Ashworth M.; Bean D. M.; Dodhia H.; Durbaba S.; O’Gallagher K.; Palmer C.; Curcin V.; Aitken E.; et al. A case-control and cohort study to determine the relationship between ethnic background and severe COVID-19. EClinicalMedicine 2020, 28, 100574. 10.1016/j.eclinm.2020.100574. PubMed DOI PMC

Goodman K. E.; Magder L. S.; Baghdadi J. D.; Pineles L.; Levine A. R.; Perencevich E. N.; Harris A. D. Impact of sex and metabolic comorbidities on coronavirus disease 2019 (COVID-19) mortality risk across age groups: 66 646 inpatients across 613 US hospitals. Clinical Infectious diseases 2021, 73 (11), e4113–e4123. 10.1093/cid/ciaa1787. PubMed DOI PMC

Iaccarino G.; Grassi G.; Borghi C.; Carugo S.; Fallo F.; Ferri C.; Giannattasio C.; Grassi D.; Letizia C.; Mancusi C.; et al. Gender differences in predictors of intensive care units admission among COVID-19 patients: The results of the SARS-RAS study of the Italian Society of Hypertension. PLoS One 2020, 15 (10), e0237297 10.1371/journal.pone.0237297. PubMed DOI PMC

Ya’qoub L.; Elgendy I. Y.; Pepine C. J. Sex and gender differences in COVID-19: More to be learned!. Am. Heart J. Plus 2021, 3, 100011. 10.1016/j.ahjo.2021.100011. PubMed DOI PMC

Sha J.; Qie G.; Yao Q.; Sun W.; Wang C.; Zhang Z.; Wang X.; Wang P.; Jiang J.; Bai X.; et al. Sex differences on clinical characteristics, severity, and mortality in adult patients with COVID-19: A multicentre retrospective study. Frontiers in medicine 2021, 8, 607059. 10.3389/fmed.2021.607059. PubMed DOI PMC

Spiering A. E.; De Vries T. J. Why females do better: the X chromosomal TLR7 gene-dose effect in COVID-19. Front. Immunol. 2021, 12, 756262. 10.3389/fimmu.2021.756262. PubMed DOI PMC

Alwani M.; Yassin A.; Al-Zoubi R. M.; Aboumarzouk O. M.; Nettleship J.; Kelly D.; AL-Qudimat A. R.; Shabsigh R. Sex-based differences in severity and mortality in COVID-19. Rev. Med. Virol. 2021, 31 (6), e2223 10.1002/rmv.2223. PubMed DOI PMC

Channappanavar R.; Fett C.; Mack M.; Ten Eyck P. P.; Meyerholz D. K.; Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. journal of immunology 2017, 198 (10), 4046–4053. 10.4049/jimmunol.1601896. PubMed DOI PMC

Meyyazhagan A.; Pushparaj K.; Balasubramanian B.; Kuchi Bhotla H.; Pappusamy M.; Arumugam V. A.; Easwaran M.; Pottail L.; Mani P.; Tsibizova V.; et al. COVID-19 in pregnant women and children: Insights on clinical manifestations, complexities, and pathogenesis. Int. J. Gynecol. Obstet. 2022, 156 (2), 216–224. 10.1002/ijgo.14007. PubMed DOI PMC

Zhou Z.; Kang H.; Li S.; Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. Journal of neurology 2020, 267 (8), 2179–2184. 10.1007/s00415-020-09929-7. PubMed DOI PMC

Solomon I. H.; Normandin E.; Bhattacharyya S.; Mukerji S. S.; Keller K.; Ali A. S.; Adams G.; Hornick J. L.; Padera R. F. Jr; Sabeti P. Neuropathological features of Covid-19. New england journal of medicine 2020, 383 (10), 989–992. 10.1056/NEJMc2019373. PubMed DOI PMC

Stoessl A. J.; Bhatia K. P.; Merello M. Movement Disorders in the World of COVID-19. Mov. Disord. Clin. Pract. 2020, 7 (4), 355–356. 10.1002/mdc3.12952. PubMed DOI PMC

Li Y. C.; Bai W. Z.; Hashikawa T. Response to Commentary on “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients. Journal of medical virology 2020, 92 (7), 707–709. 10.1002/jmv.25824. PubMed DOI PMC

Mao L.; Jin H.; Wang M.; Hu Y.; Chen S.; He Q.; Chang J.; Hong C.; Zhou Y.; Wang D.; et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. JAMA Neurol. 2020, 77, 683. 10.1001/jamaneurol.2020.1127. PubMed DOI PMC

Antonini A.; Leta V.; Teo J.; Chaudhuri K. R. Outcome of Parkinson’s disease patients affected by COVID-19. Movement disorders 2020, 35, 905. 10.1002/mds.28104. PubMed DOI PMC

Lippi A.; Domingues R.; Setz C.; Outeiro T. F.; Krisko A. SARS-CoV-2: at the crossroad between aging and neurodegeneration. Movement disorders 2020, 35 (5), 716. 10.1002/mds.28084. PubMed DOI PMC

Alquisiras-Burgos I.; Peralta-Arrieta I.; Alonso-Palomares L. A.; Zacapala-Gómez A. E.; Salmerón-Bárcenas E. G.; Aguilera P. Neurological complications associated with the blood-brain barrier damage induced by the inflammatory response during SARS-CoV-2 infection. Molecular neurobiology 2021, 58 (2), 520–535. 10.1007/s12035-020-02134-7. PubMed DOI PMC

Sharma M.; Malim F. M.; Goswami A.; Sharma N.; Juvvalapalli S. S.; Chatterjee S.; Kate A. S.; Khairnar A. Neuroprotective Effect of Swertiamarin in a Rotenone Model of Parkinson’s Disease: Role of Neuroinflammation and Alpha-Synuclein Accumulation. ACS pharmacology translational science 2023, 6, 40. 10.1021/acsptsci.2c00120. PubMed DOI PMC

Gómez-Benito M.; Granado N.; García-Sanz P.; Michel A.; Dumoulin M.; Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol. 2020, 11, 356. 10.3389/fphar.2020.00356. PubMed DOI PMC

Ait Wahmane S.; Achbani A.; Ouhaz Z.; Elatiqi M.; Belmouden A.; Nejmeddine M. The possible protective role of α-synuclein against severe acute respiratory syndrome coronavirus 2 infections in patients with Parkinson’s disease. Mov. Disord. 2020, 35 (8), 1293–1294. 10.1002/mds.28185. PubMed DOI PMC

Jo T.; Yasunaga H.; Michihata N.; Sasabuchi Y.; Hasegawa W.; Takeshima H.; Sakamoto Y.; Matsui H.; Fushimi K.; Nagase T.; et al. Influence of Parkinsonism on outcomes of elderly pneumonia patients. Parkinsonism 2018, 54, 25–29. 10.1016/j.parkreldis.2018.03.028. PubMed DOI

Lehtonen Š.; Sonninen T.-M.; Wojciechowski S.; Goldsteins G.; Koistinaho J. Dysfunction of cellular proteostasis in Parkinson’s disease. Frontiers in neuroscience 2019, 13, 457. 10.3389/fnins.2019.00457. PubMed DOI PMC

Tanaka K.; Matsuda N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochimica et biophysica acta -molecular cell research 2014, 1843 (1), 197–204. 10.1016/j.bbamcr.2013.03.012. PubMed DOI

Wang H. Q.; Takahashi R. J. A. Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxid. Redox Signaling 2007, 9 (5), 553–561. 10.1089/ars.2006.1524. PubMed DOI

Park J.-S.; Davis R. L.; Sue C. M. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Current neurology neuroscience reports 2018, 18 (5), 1–11. 10.1007/s11910-018-0829-3. PubMed DOI PMC

Ponomarenko A.The Host Heat Shock Response, Viral Immune Escape and Viral Replication; Massachusetts Institute of Technology, 2020.

Momose F.; Naito T.; Yano K.; Sugimoto S.; Morikawa Y.; Nagata K. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J. Biol. Chem. 2002, 277 (47), 45306–45314. 10.1074/jbc.M206822200. PubMed DOI

Pandey P.; Saleh A.; Nakazawa A.; Kumar S.; Srinivasula S. M.; Kumar V.; Weichselbaum R.; Nalin C.; Alnemri E. S.; Kufe D. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO journal 2000, 19 (16), 4310–4322. 10.1093/emboj/19.16.4310. PubMed DOI PMC

Beere H. M.; Wolf B. B.; Cain K.; Mosser D. D.; Mahboubi A.; Kuwana T.; Tailor P.; Morimoto R. I.; Cohen G. M.; Green D. R. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature cell biology 2000, 2 (8), 469–475. 10.1038/35019501. PubMed DOI

Parekh P.; Sharma N.; Sharma M.; Gadepalli A.; Sayyed A. A.; Chatterjee S.; Kate A.; Khairnar A. AMPK-dependent autophagy activation and alpha-Synuclein clearance: a putative mechanism behind alpha-mangostin’s neuroprotection in a rotenone-induced mouse model of Parkinson’s disease. Metab. Brain Dis. 2022, 37, 2853–2870. 10.1007/s11011-022-01087-1. PubMed DOI

Marreiros R.; Müller-Schiffmann A.; Trossbach S. V.; Prikulis I.; Hänsch S.; Weidtkamp-Peters S.; Moreira A. R.; Sahu S.; Soloviev I.; Selvarajah S.; et al. Disruption of cellular proteostasis by H1N1 influenza A virus causes α-synuclein aggregation. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (12), 6741–6751. 10.1073/pnas.1906466117. PubMed DOI PMC

Gack M. U.; Albrecht R. A.; Urano T.; Inn K.-S.; Huang I.-C.; Carnero E.; Farzan M.; Inoue S.; Jung J. U.; García-Sastre A. J. C. h.; et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell host microbiome 2009, 5 (5), 439–449. 10.1016/j.chom.2009.04.006. PubMed DOI PMC

Widjaja I.; de Vries E.; Tscherne D. M.; García-Sastre A.; Rottier P. J.; de Haan C. A. Inhibition of the ubiquitin-proteasome system affects influenza A virus infection at a postfusion step. Journal of virology 2010, 84 (18), 9625–9631. 10.1128/JVI.01048-10. PubMed DOI PMC

Chan C.-P.; Siu K.-L.; Chin K.-T.; Yuen K.-Y.; Zheng B.; Jin D.-Y. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. Journal of virology 2006, 80 (18), 9279–9287. 10.1128/JVI.00659-06. PubMed DOI PMC

Shi C.-S.; Qi H.-Y.; Boularan C.; Huang N.-N.; Abu-Asab M.; Shelhamer J. H.; Kehrl J. H. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. journal of immunology 2014, 193 (6), 3080–3089. 10.4049/jimmunol.1303196. PubMed DOI PMC

Ye Z.; Wong C. K.; Li P.; Xie Y. A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis. Biochimica et biophysica acta -general subjects 2008, 1780 (12), 1383–1387. 10.1016/j.bbagen.2008.07.009. PubMed DOI PMC

Costela-Ruiz V. J.; Illescas-Montes R.; Puerta-Puerta J. M.; Ruiz C.; Melguizo-Rodríguez L. J. C. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. 10.1016/j.cytogfr.2020.06.001. PubMed DOI PMC

Zhang W.; Zhao Y.; Zhang F.; Wang Q.; Li T.; Liu Z.; Wang J.; Qin Y.; Zhang X.; Yan X.; et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020, 214, 108393. 10.1016/j.clim.2020.108393. PubMed DOI PMC

Chang Z. Important aspects of Toll-like receptors, ligands and their signaling pathways. inflammation research 2010, 59 (10), 791–808. 10.1007/s00011-010-0208-2. PubMed DOI

Alexopoulou L.; Holt A. C.; Medzhitov R.; Flavell R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001, 413 (6857), 732–738. 10.1038/35099560. PubMed DOI

Onofrio L.; Caraglia M.; Facchini G.; Margherita V.; Placido S. D.; Buonerba C. J. F. S. O. Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future science OA 2020, 6, FSO605. 10.2144/fsoa-2020-0091. PubMed DOI PMC

Bassani T. B.; Vital M. A.; Rauh L. K. Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs. Arq. Neuro-Psiquiatr. 2015, 73, 616–623. 10.1590/0004-282X20150057. PubMed DOI

Lim S.; Chun Y.; Lee J. S.; Lee S. J. Neuroinflammation in synucleinopathies. Brain pathology 2016, 26 (3), 404–409. 10.1111/bpa.12371. PubMed DOI PMC

Vieira B. D. M.; Radford R. A.; Chung R. S.; Guillemin G. J.; Pountney D. L. Neuroinflammation in multiple system atrophy: response to and cause of α-synuclein aggregation. Frontiers in cellular neuroscience 2015, 9, 437. 10.3389/fncel.2015.00437. PubMed DOI PMC

Jacob J. E.; Wagner M. L.; Sage J. I. Safety of selegiline with cold medications. Annals of pharmacotherapy 2003, 37 (3), 438–441. 10.1345/aph.1C175. PubMed DOI

Reardon K.; Mendelsohn F.; Chai S. Y.; Horne M. K. The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Australian New Zealand journal of medicine 2000, 30 (1), 48–53. 10.1111/j.1445-5994.2000.tb01054.x. PubMed DOI

Sonsalla P. K.; Coleman C.; Wong L.-Y.; Harris S. L.; Richardson J. R.; Gadad B. S.; Li W.; German D. C. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Experimental neurology 2013, 250, 376–383. 10.1016/j.expneurol.2013.10.014. PubMed DOI PMC

Laudisio A.; Lo Monaco M. R.; Silveri M. C.; Bentivoglio A. R.; Vetrano D. L.; Pisciotta M. S.; Brandi V.; Bernabei R.; Zuccala G. Use of ACE-inhibitors and falls in patients with Parkinson’s disease. Gait Posture 2017, 54, 39–44. 10.1016/j.gaitpost.2017.02.007. PubMed DOI

Sharma N.; Soni R.; Sharma M.; Chatterjee S.; Parihar N.; Mukarram M.; kale R.; Sayyed A. A.; Behera S. K.; Khairnar A. Chlorogenic Acid: A Polyphenol from Coffee Rendered Neuroprotection Against Rotenone-Induced Parkinson’s Disease by GLP-1 Secretion. Mol. Neurobiol. 2022, 59 (11), 6834–6856. 10.1007/s12035-022-03005-z. PubMed DOI

Hedya S. A.; Safar M. M.; Bahgat A. K. Hydroxychloroquine antiparkinsonian potential: Nurr1 modulation versus autophagy inhibition. Behavioural brain research 2019, 365, 82–88. 10.1016/j.bbr.2019.02.033. PubMed DOI

Cady S. D.; Hong M. Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (5), 1483–1488. 10.1073/pnas.0711500105. PubMed DOI PMC

Telcian A. G.; Zdrenghea M. T.; Edwards M. R.; Laza-Stanca V.; Mallia P.; Johnston S. L.; Stanciu L. A. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral research 2017, 137, 93–101. 10.1016/j.antiviral.2016.11.004. PubMed DOI

Hribar C. A.; Cobbold P. H.; Church F. C. Potential role of vitamin D in the elderly to resist COVID-19 and to slow progression of Parkinson’s disease. Brain sciences 2020, 10 (5), 284. 10.3390/brainsci10050284. PubMed DOI PMC

Bone N. B.; Liu Z.; Pittet J. F.; Zmijewski J. W. Frontline Science: D1 dopaminergic receptor signaling activates the AMPK-bioenergetic pathway in macrophages and alveolar epithelial cells and reduces endotoxin-induced ALI. Journal of leukocyte biology 2017, 101 (2), 357–365. 10.1189/jlb.3HI0216-068RR. PubMed DOI PMC

Zhang L.; Zhu F.; Xie L.; Wang C.; Wang J.; Chen R.; Jia P.; Guan H.; Peng L.; Chen Y.; et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. 2020, 31 (7), 894–901. 10.1016/j.annonc.2020.03.296. PubMed DOI PMC

Liang W.; Guan W.; Chen R.; Wang W.; Li J.; Xu K.; Li C.; Ai Q.; Lu W.; Liang H.; et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020, 21 (3), 335–337. 10.1016/S1470-2045(20)30096-6. PubMed DOI PMC

Saini K. S.; Tagliamento M.; Lambertini M.; McNally R.; Romano M.; Leone M.; Curigliano G.; de Azambuja E. Mortality in patients with cancer and coronavirus disease 2019: a systematic review and pooled analysis of 52 studies. European journal of cancer 2020, 139, 43–50. 10.1016/j.ejca.2020.08.011. PubMed DOI PMC

Grifoni A.; Weiskopf D.; Ramirez S. I.; Mateus J.; Dan J. M.; Moderbacher C. R.; Rawlings S. A.; Sutherland A.; Premkumar L.; Jadi R. S.; et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020, 181 (7), 1489–1501. 10.1016/j.cell.2020.05.015. PubMed DOI PMC

Luo J.; Rizvi H.; Preeshagul I. R.; Egger J. V.; Hoyos D.; Bandlamudi C.; McCarthy C. G.; Falcon C. J.; Schoenfeld A. J.; Arbour K. C.; et al. COVID-19 in patients with lung cancer. Ann. Oncol. 2020, 31 (10), 1386–1396. 10.1016/j.annonc.2020.06.007. PubMed DOI PMC

Mehta V.; Goel S.; Kabarriti R.; Cole D.; Goldfinger M.; Acuna-Villaorduna A.; Pradhan K.; Thota R.; Reissman S.; Sparano J. A.; et al. Case fatality rate of cancer patients with COVID-19 in a New York hospital system. Cancer Discovery 2020, 10 (7), 935–941. 10.1158/2159-8290.CD-20-0516. PubMed DOI PMC

Vargas A. J.; Harris C. C. Biomarker development in the precision medicine era: lung cancer as a case study. Nature reviews cancer 2016, 16 (8), 525–537. 10.1038/nrc.2016.56. PubMed DOI PMC

Derosa L.; Melenotte C.; Griscelli F.; Gachot B.; Marabelle A.; Kroemer G.; Zitvogel L. The immuno-oncological challenge of COVID-19. Nature cancer 2020, 1 (10), 946–964. 10.1038/s43018-020-00122-3. PubMed DOI

Berretta A. A.; Silveira M. A. D.; Cóndor Capcha J. M.; De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19. Biomed. Pharmacother. 2020, 131, 110622. 10.1016/j.biopha.2020.110622. PubMed DOI PMC

Yang Z.; Wang H.; Xia L.; Oyang L.; Zhou Y.; Zhang B.; Chen X.; Luo X.; Liao Q.; Liang J. Overexpression of PAK1 correlates with aberrant expression of EMT markers and poor prognosis in non-small cell lung cancer. Journal of cancer 2017, 8 (8), 1484. 10.7150/jca.18553. PubMed DOI PMC

John Von Freyend S.; Kwok-Schuelein T.; Netter H. J.; Haqshenas G.; Semblat J.-P.; Doerig C. Subverting host cell P21-activated kinase: a case of convergent evolution across pathogens. Pathogens 2017, 6 (2), 17. 10.3390/pathogens6020017. PubMed DOI PMC

Maruta H.; He H. PAK1-blockers: Potential Therapeutics against COVID-19. Medicine in drug discovery 2020, 6, 100039. 10.1016/j.medidd.2020.100039. PubMed DOI PMC

Curigliano G. Cancer patients and risk of mortality for COVID-19. Cancer cell 2020, 38 (2), 161–163. 10.1016/j.ccell.2020.07.006. PubMed DOI PMC

Kuchi Bhotla H.; Kaul T.; Balasubramanian B.; Easwaran M.; Arumugam V. A.; Pappusamy M.; Muthupandian S.; Meyyazhagan A. Platelets to surrogate lung inflammation in COVID-19 patients. Med. Hypotheses 2020, 143, 110098. 10.1016/j.mehy.2020.110098. PubMed DOI PMC

Pathania A. S.; Prathipati P.; Abdul B. A.; Chava S.; Katta S. S.; Gupta S. C.; Gangula P. R.; Pandey M. K.; Durden D. L.; Byrareddy S. N.; et al. COVID-19 and cancer comorbidity: therapeutic opportunities and challenges. Theranostics 2021, 11 (2), 731. 10.7150/thno.51471. PubMed DOI PMC

Turnquist C.; Ryan B. M.; Horikawa I.; Harris B. T.; Harris C. C. Cytokine storms in cancer and COVID-19. Cancer Cell 2020, 38 (5), 598–601. 10.1016/j.ccell.2020.09.019. PubMed DOI PMC

Tripathi A.; Kashyap A.; Tripathi G.; Yadav J.; Bibban R.; Aggarwal N.; Thakur K.; Chhokar A.; Jadli M.; Sah A. K.; et al. Tumor reversion: a dream or a reality. Biomarker Res. 2021, 9 (1), 1–27. 10.1186/s40364-021-00280-1. PubMed DOI PMC

Callender L. A.; Curran M.; Bates S. M.; Mairesse M.; Weigandt J.; Betts C. J. The impact of pre-existing comorbidities and therapeutic interventions on COVID-19. Frontiers in immunology 2020, 11, 1991. 10.3389/fimmu.2020.01991. PubMed DOI PMC

Leng Z.; Zhu R.; Hou W.; Feng Y.; Yang Y.; Han Q.; Shan G.; Meng F.; Du D.; Wang S.; et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020, 11 (2), 216–228. 10.14336/AD.2020.0228. PubMed DOI PMC

Kumar P.; Sah A. K.; Tripathi G.; Kashyap A.; Tripathi A.; Rao R.; Mishra P. C.; Mallick K.; Husain A.; Kashyap M. K. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19. Molecular cellular biochemistry 2021, 476 (2), 553–574. 10.1007/s11010-020-03924-2. PubMed DOI PMC

Liu C.; Zhao Y.; Okwan-Duodu D.; Basho R.; Cui X. Medicine. COVID-19 in cancer patients: risk, clinical features, and management. Cancer Biol. Med. 2020, 17 (3), 519. 10.20892/j.issn.2095-3941.2020.0289. PubMed DOI PMC

Kajiwara C.; Kusaka Y.; Kimura S.; Yamaguchi T.; Nanjo Y.; Ishii Y.; Udono H.; Standiford T. J.; Tateda K. Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. journal of immunology 2018, 200 (2), 623–631. 10.4049/jimmunol.1700474. PubMed DOI

Martinez N.; Kornfeld H. Diabetes and immunity to tuberculosis. European journal of immunology 2014, 44 (3), 617–626. 10.1002/eji.201344301. PubMed DOI PMC

Yang J.; Feng Y.; Yuan M.; Yuan S.; Fu H.; Wu B.; Sun G.; Yang G.; Zhang X.; Wang L.; et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabetic Med. 2006, 23 (6), 623–628. 10.1111/j.1464-5491.2006.01861.x. PubMed DOI

Zhang J.-j.; Dong X.; Cao Y.-y.; Yuan Y.-d.; Yang Y.-b.; Yan Y.-q.; Akdis C. A.; Gao Y.-d. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020, 75 (7), 1730–1741. 10.1111/all.14238. PubMed DOI

Guan W.-j.; Ni Z.-y.; Hu Y.; Liang W.-h.; Ou C.-q.; He J.-x.; Liu L.; Shan H.; Lei C.-l.; Hui D. S.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382 (18), 1708–1720. 10.1056/NEJMoa2002032. PubMed DOI PMC

Fadini G.; Morieri M.; Longato E.; Avogaro d. A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. Journal of endocrinological 2020, 43 (6), 867–869. 10.1007/s40618-020-01236-2. PubMed DOI PMC

Ebekozien O. A.; Noor N.; Gallagher M. P.; Alonso G. T. Type 1 diabetes and COVID-19: preliminary findings from a multicenter surveillance study in the US. Diabetes Care 2020, 43 (8), e83–e85. 10.2337/dc20-1088. PubMed DOI PMC

Wang D.; Hu B.; Hu C.; Zhu F.; Liu X.; Zhang J.; Wang B.; Xiang H.; Cheng Z.; Xiong Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323 (11), 1061–1069. 10.1001/jama.2020.1585. PubMed DOI PMC

Guo W.; Li M.; Dong Y.; Zhou H.; Zhang Z.; Tian C.; Qin R.; Wang H.; Shen Y.; Du K.; et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/metabolism research 2020, 36 (7), e3319 10.1002/dmrr.3319. PubMed DOI PMC

Sandler M. Is the lung a’target organ’in diabetes mellitus?. Archives of internal medicine 1990, 150 (7), 1385–1388. 10.1001/archinte.150.7.1385. PubMed DOI

Jafar N.; Edriss H.; Nugent K. The effect of short-term hyperglycemia on the innate immune system. American journal of the medical sciences 2016, 351 (2), 201–211. 10.1016/j.amjms.2015.11.011. PubMed DOI

Mehta P.; McAuley D.; Brown M.; Sanchez E.; Tattersall R.; Manson J.; et al. COVID-19: Consider cytokine storm syndromes immunosuppression. Lancet 2020, 395 (10229), 1033. 10.1016/S0140-6736(20)30628-0. PubMed DOI PMC

Codo A. C.; Davanzo G. G.; Monteiro L. d. B.; de Souza G. F.; Muraro S. P.; Virgilio-da-Silva J. V.; Prodonoff J. S.; Carregari V. C.; de Biagi Junior C. A. O.; Crunfli F.; et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020, 32 (3), 437–446.e5. 10.1016/j.cmet.2020.07.007. PubMed DOI PMC

Groop L. C.; Bonadonna R. C.; DelPrato S.; Ratheiser K.; Zyck K.; Ferrannini E.; DeFronzo R. A. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J. Clin. Invest. 1989, 84 (1), 205–213. 10.1172/JCI114142. PubMed DOI PMC

Tang N.; Bai H.; Chen X.; Gong J.; Li D.; Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemostasis 2020, 18 (5), 1094–1099. 10.1111/jth.14817. PubMed DOI PMC

Chawla U.; Kashyap M. K.; Husain A. Aging and diabetes drive the COVID-19 forwards; unveiling nature and existing therapies for the treatment. Molecular cellular biochemistry 2021, 476 (11), 3911–3922. 10.1007/s11010-021-04200-7. PubMed DOI PMC

Kulcsar K.; Coleman C.; Beck S.; Frieman M. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 2019, 4 (20), e131774 10.1172/jci.insight.131774. PubMed DOI PMC

Kloc M.; Ghobrial R. M.; Lewicki S.; Kubiak J. Z. Macrophages in diabetes mellitus (DM) and COVID-19: do they trigger DM?. Journal of Diabetes Metabolic Disorders 2020, 19 (2), 2045–2048. 10.1007/s40200-020-00665-3. PubMed DOI PMC

Tikellis C.; Bernardi S.; Burns W. C. Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease. Curr. Opin. Nephrol. Hypertens. 2011, 20 (1), 62–68. 10.1097/MNH.0b013e328341164a. PubMed DOI

Rutkowska-Zapała M.; Suski M.; Szatanek R.; Lenart M.; Węglarczyk K.; Olszanecki R.; Grodzicki T.; Strach M.; Gąsowski J.; Siedlar M. Human monocyte subsets exhibit divergent angiotensin I-converting activity. Clinical experimental immunology 2015, 181 (1), 126–132. 10.1111/cei.12612. PubMed DOI PMC

Ziegler C. G.; Allon S. J.; Nyquist S. K.; Mbano I. M.; Miao V. N.; Tzouanas C. N.; Cao Y.; Yousif A. S.; Bals J.; Hauser B. M.; et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020, 181 (5), 1016–1035. 10.1016/j.cell.2020.04.035. PubMed DOI PMC

Yang J.-K.; Lin S.-S.; Ji X.-J.; Guo L.-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta diabetologica 2010, 47 (3), 193–199. 10.1007/s00592-009-0109-4. PubMed DOI PMC

Lim S.; Bae J. H.; Kwon H.-S.; Nauck M. A. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17 (1), 11–30. 10.1038/s41574-020-00435-4. PubMed DOI PMC

Drucker D. J. Coronavirus infections and type 2 diabetes—shared pathways with therapeutic implications. Endocrine reviews 2020, 41 (3), bnaa011. 10.1210/endrev/bnaa011. PubMed DOI PMC

Hwang J. L.; Weiss R. E. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes/metabolism research reviews 2014, 30 (2), 96–102. 10.1002/dmrr.2486. PubMed DOI PMC

Bindom S. M.; Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Molecular cellular endocrinology 2009, 302 (2), 193–202. 10.1016/j.mce.2008.09.020. PubMed DOI PMC

Kumar A.; Arora A.; Sharma P.; Anikhindi S. A.; Bansal N.; Singla V.; Khare S.; Srivastava A. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes metabolic syndrome: Clinical research Reviews 2020, 14 (4), 535–545. 10.1016/j.dsx.2020.04.044. PubMed DOI PMC

Ye M.; Wysocki J.; Gonzalez-Pacheco F. R.; Salem M.; Evora K.; Garcia-Halpin L.; Poglitsch M.; Schuster M.; Batlle D. Murine Recombinant Angiotensin-Converting Enzyme 2: Effect on Angiotensin II-Dependent Hypertension and Distinctive Angiotensin-Converting Enzyme 2 Inhibitor Characteristics on Rodent and Human Angiotensin-Converting Enzyme 2. Hypertension 2012, 60 (3), 730–740. 10.1161/HYPERTENSIONAHA.112.198622. PubMed DOI PMC

Sardu C.; D’Onofrio N.; Balestrieri M. L.; Barbieri M.; Rizzo M. R.; Messina V.; Maggi P.; Coppola N.; Paolisso G.; Marfella R. J. D. c. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control?. Diabetes care 2020, 43 (7), 1408–1415. 10.2337/dc20-0723. PubMed DOI PMC

Cameron A. R.; Morrison V. L.; Levin D.; Mohan M.; Forteath C.; Beall C.; McNeilly A. D.; Balfour D. J.; Savinko T.; Wong A. K.; et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 2016, 119 (5), 652–665. 10.1161/CIRCRESAHA.116.308445. PubMed DOI PMC

Kernan W. N.; Viscoli C. M.; Furie K. L.; Young L. H.; Inzucchi S. E.; Gorman M.; Guarino P. D.; Lovejoy A. M.; Peduzzi P. N.; Conwit R.; et al. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med. 2016, 374, 1321–1331. 10.1056/NEJMoa1506930. PubMed DOI PMC

Nesto R. W.; Bell D.; Bonow R. O.; Fonseca V.; Grundy S. M.; Horton E. S.; Le Winter M.; Porte D.; Semenkovich C. F.; Smith S. J. C.; et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 2004, 27, 256–263. 10.2337/diacare.27.1.256. PubMed DOI

Chung M. K.; Zidar D. A.; Bristow M. R.; Cameron S. J.; Chan T.; Harding III C. V.; Kwon D. H.; Singh T.; Tilton J. C.; Tsai E. J. COVID-19 and cardiovascular disease: from bench to bedside. Circ. Res. 2021, 128 (8), 1214–1236. 10.1161/CIRCRESAHA.121.317997. PubMed DOI PMC

Momtazmanesh S.; Shobeiri P.; Hanaei S.; Mahmoud-Elsayed H.; Dalvi B.; Malakan Rad E. Cardiovascular disease in COVID-19: a systematic review and meta-analysis of 10,898 patients and proposal of a triage risk stratification tool. Egyptian heart journal 2020, 72 (1), 1–17. 10.1186/s43044-020-00075-z. PubMed DOI PMC

Oleszak F.; Maryniak A.; Botti E.; Abrahim C.; Salifu M. O.; Youssef M.; Henglein V. L.; McFarlane S. I. Myocarditis associated with COVID-19. Am. J. Med. Case Rep. 2020, 8 (12), 498. 10.12691/ajmcr-8-12-19. DOI

Siripanthong B.; Nazarian S.; Muser D.; Deo R.; Santangeli P.; Khanji M. Y.; Cooper L. T. Jr; Chahal C. A. A. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart rhythm 2020, 17 (9), 1463–1471. 10.1016/j.hrthm.2020.05.001. PubMed DOI PMC

Diaz-Arocutipa C.; Saucedo-Chinchay J.; Imazio M. Pericarditis in patients with COVID-19: a systematic review. Journal of cardiovascular medicine 2021, 22 (9), 693–700. 10.2459/JCM.0000000000001202. PubMed DOI

Bozkurt B.; Kamat I.; Hotez P. J. Myocarditis with COVID-19 mRNA vaccines. Circulation research 2021, 144 (6), 471–484. 10.1161/CIRCULATIONAHA.121.056135. PubMed DOI PMC

Lionetti V.; Bollini S.; Coppini R.; Gerbino A.; Ghigo A.; Iaccarino G.; Madonna R.; Mangiacapra F.; Miragoli M.; Moccia F.; et al. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacological Res. 2021, 168, 105581. 10.1016/j.phrs.2021.105581. PubMed DOI PMC

Srivastava A.; Rockman-Greenberg C.; Sareen N.; Lionetti V.; Dhingra S. An insight into the mechanisms of COVID-19, SARS-CoV2 infection severity concerning β-cell survival and cardiovascular conditions in diabetic patients. Molecular Cell. Biochem. 2022, 477, 1681–1695. 10.1007/s11010-022-04396-2. PubMed DOI PMC

Pinto E. Blood pressure and ageing. Postgraduate medical journal 2007, 83 (976), 109–114. 10.1136/pgmj.2006.048371. PubMed DOI PMC

Chobanian A. V.; Bakris G. L.; Black H. R.; Cushman W. C.; Green L. A.; Izzo J. L. Jr; Jones D. W.; Materson B. J.; Oparil S.; Wright J. T. J. J. Jr; et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. 10.1161/01.HYP.0000107251.49515.c2. PubMed DOI

Schiffrin E. L.; Flack J. M.; Ito S.; Muntner P.; Webb R. C. Hypertension and COVID-19. Am. J. Hypertens. 2020, 33, 373–374. 10.1093/ajh/hpaa057. PubMed DOI PMC

Wu C.; Chen X.; Cai Y.; Xia J.; Zhou X.; Xu S.; Huang H.; Zhang L.; Zhou X.; Du C.; et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern.l Med. 2020, 180 (7), 934–943. 10.1001/jamainternmed.2020.0994. PubMed DOI PMC

Forouzanfar M. H.; Afshin A.; Alexander L. T.; Anderson H. R.; Bhutta Z. A.; Biryukov S.; Brauer M.; Burnett R.; Cercy K.; Charlson F. J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388 (10053), 1659–1724. 10.1016/S0140-6736(16)31679-8. PubMed DOI PMC

Zores F.; Rebeaud M. E. COVID and the renin-angiotensin system: are hypertension or its treatments deleterious?. Frontiers in cardiovascular medicine 2020, 7, 71. 10.3389/fcvm.2020.00071. PubMed DOI PMC

Kuba K.; Imai Y.; Ohto-Nakanishi T.; Penninger J. M. Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology therapeutics 2010, 128 (1), 119–128. 10.1016/j.pharmthera.2010.06.003. PubMed DOI PMC

Deshotels M. R.; Xia H.; Sriramula S.; Lazartigues E.; Filipeanu C. M. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin ii type i receptor-dependent mechanism. Hypertension 2014, 64 (6), 1368–1375. 10.1161/HYPERTENSIONAHA.114.03743. PubMed DOI PMC

Soler M. J.; Wysocki J.; Batlle D. ACE2 alterations in kidney disease. Nephrology dialysis transplantation 2013, 28 (11), 2687–2697. 10.1093/ndt/gft320. PubMed DOI PMC

Haga S.; Yamamoto N.; Nakai-Murakami C.; Osawa Y.; Tokunaga K.; Sata T.; Yamamoto N.; Sasazuki T.; Ishizaka Y. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (22), 7809–7814. 10.1073/pnas.0711241105. PubMed DOI PMC

Kuba K.; Imai Y.; Rao S.; Gao H.; Guo F.; Guan B.; Huan Y.; Yang P.; Zhang Y.; Deng W. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Med. 2005, 11 (8), 875–879. 10.1038/nm1267. PubMed DOI PMC

Glowacka I.; Bertram S.; Herzog P.; Pfefferle S.; Steffen I.; Muench M. O.; Simmons G.; Hofmann H.; Kuri T.; Weber F. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J. Virol. 2010, 84 (2), 1198–1205. 10.1128/JVI.01248-09. PubMed DOI PMC

Jia H. P.; Look D. C.; Tan P.; Shi L.; Hickey M.; Gakhar L.; Chappell M. C.; Wohlford-Lenane C.; McCray P. B. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol.: Lung Cell. Mol. Physiol. 2009, 297 (1), L84–L96. 10.1152/ajplung.00071.2009. PubMed DOI PMC

Hoffmann M.; Kleine-Weber H.; Schroeder S.; Krüger N.; Herrler T.; Erichsen S.; Schiergens T. S.; Herrler G.; Wu N.-H.; Nitsche A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181 (2), 271–280.e8. 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Patel V. B.; Zhong J.-C.; Grant M. B.; Oudit G. Y. Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ. Res. 2016, 118 (8), 1313–1326. 10.1161/CIRCRESAHA.116.307708. PubMed DOI PMC

Santos R. A. S.; Sampaio W. O.; Alzamora A. C.; Motta-Santos D.; Alenina N.; Bader M.; Campagnole-Santos M. J. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol. Rev. 2018, 98, 505. 10.1152/physrev.00023.2016. PubMed DOI PMC

Jiang F.; Yang J.; Zhang Y.; Dong M.; Wang S.; Zhang Q.; Liu F. F.; Zhang K.; Zhang C. Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets. Nature reviews cardiology 2014, 11 (7), 413–426. 10.1038/nrcardio.2014.59. PubMed DOI PMC

Zhong J.; Basu R.; Guo D.; Chow F. L.; Byrns S.; Schuster M.; Loibner H.; Wang X.-h.; Penninger J. M.; Kassiri Z.; et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 2010, 122 (7), 717–728. 10.1161/CIRCULATIONAHA.110.955369. PubMed DOI

Oudit G. Y.; Kassiri Z.; Patel M. P.; Chappell M.; Butany J.; Backx P. H.; Tsushima R. G.; Scholey J. W.; Khokha R.; Penninger J. M. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc. Res. 2007, 75 (1), 29–39. 10.1016/j.cardiores.2007.04.007. PubMed DOI

Patel V. B.; Bodiga S.; Basu R.; Das S. K.; Wang W.; Wang Z.; Lo J.; Grant M. B.; Zhong J.; Kassiri Z.; et al. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ. Res. 2012, 110 (10), 1322–1335. 10.1161/CIRCRESAHA.112.268029. PubMed DOI PMC

Oudit G.; Kassiri Z.; Jiang C.; Liu P.; Poutanen S.; Penninger J.; Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European journal of clinical investigation 2009, 39 (7), 618–625. 10.1111/j.1365-2362.2009.02153.x. PubMed DOI PMC

Li W.; Moore M. J.; Vasilieva N.; Sui J.; Wong S. K.; Berne M. A.; Somasundaran M.; Sullivan J. L.; Luzuriaga K.; Greenough T. C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426 (6965), 450–454. 10.1038/nature02145. PubMed DOI PMC

Batlle D.; Wysocki J.; Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy?. Clinical science 2020, 134 (5), 543–545. 10.1042/CS20200163. PubMed DOI

Khan A.; Benthin C.; Zeno B.; Albertson T. E.; Boyd J.; Christie J. D.; Hall R.; Poirier G.; Ronco J. J.; Tidswell M.; et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care 2017, 21 (1), 234. 10.1186/s13054-017-1823-x. PubMed DOI PMC

Arentz M.; Yim E.; Klaff L.; Lokhandwala S.; Riedo F. X.; Chong M.; Lee M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. Jama 2020, 323 (16), 1612–1614. 10.1001/jama.2020.4326. PubMed DOI PMC

Shi S.; Qin M.; Shen B.; Cai Y.; Liu T.; Yang F.; Gong W.; Liu X.; Liang J.; Zhao Q.; et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5 (7), 802–810. 10.1001/jamacardio.2020.0950. PubMed DOI PMC

Liu Y.; Yang Y.; Zhang C.; Huang F.; Wang F.; Yuan J.; Wang Z.; Li J.; Li J.; Feng C.; et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020, 63 (3), 364–374. 10.1007/s11427-020-1643-8. PubMed DOI PMC

Razeghian-Jahromi I.; Zibaeenezhad M. J.; Lu Z.; Zahra E.; Mahboobeh R.; Lionetti V. Angiotensin-converting enzyme 2: a double-edged sword in COVID-19 patients with an increased risk of heart failure. Heart Fail. Rev. 2021, 26 (2), 371–380. 10.1007/s10741-020-10016-2. PubMed DOI PMC

Bosso M.; Thanaraj T. A.; Abu-Farha M.; Alanbaei M.; Abubaker J.; Al-Mulla F. The two faces of ACE2: the role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Mol. Ther.--Methods Clin. Dev. 2020, 18, 321–327. 10.1016/j.omtm.2020.06.017. PubMed DOI PMC

Zhang P.; Zhu L.; Cai J.; Lei F.; Qin J.-J.; Xie J.; Liu Y.-M.; Zhao Y.-C.; Huang X.; Lin L.; et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020, 126 (12), 1671–1681. 10.1161/CIRCRESAHA.120.317134. PubMed DOI PMC

Mehta N.; Kalra A.; Nowacki A. S.; Anjewierden S.; Han Z.; Bhat P.; Carmona-Rubio A. E.; Jacob M.; Procop G. W.; Harrington S.; et al. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5 (9), 1020–1026. 10.1001/jamacardio.2020.1855. PubMed DOI PMC

Vilas-Boas W. W.; Ribeiro-Oliveira A. Jr.; da Cunha Ribeiro R.; Vieira R. L. P.; Almeida J.; Nadu A. P.; e Silva A. C. S.; Santos R. A. S. Effect of propranolol on the splanchnic and peripheral renin angiotensin system in cirrhotic patients. World J. Gastroenterol. 2008, 14 (44), 6824. 10.3748/wjg.14.6824. PubMed DOI PMC

Iizuka K.; Kusunoki A.; Machida T.; Hirafuji M. Angiotensin II reduces membranous angiotensin-converting enzyme 2 in pressurized human aortic endothelial cells. Journal of the renin-angiotensin-aldosterone system 2009, 10 (4), 210–215. 10.1177/1470320309343710. PubMed DOI

Jessup J. A.; Brosnihan K. B.; Gallagher P. E.; Chappell M. C.; Ferrario C. M. Differential effect of low-dose thiazides on the renin angiotensin system in genetically hypertensive and normotensive rats. Journal of the American society of hypertension 2008, 2 (2), 106–115. 10.1016/j.jash.2007.10.005. PubMed DOI PMC

Takeda Y.; Zhu A.; Yoneda T.; Usukura M.; Takata H.; Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. American journal of hypertension 2007, 20 (10), 1119–1124. 10.1016/j.amjhyper.2007.05.008. PubMed DOI

Keidar S.; Gamliel-Lazarovich A.; Kaplan M.; Pavlotzky E.; Hamoud S.; Hayek T.; Karry R.; Abassi Z. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circulation research 2005, 97 (9), 946–953. 10.1161/01.RES.0000187500.24964.7A. PubMed DOI

Villa A.; Brunialti E.; Dellavedova J.; Meda C.; Rebecchi M.; Conti M.; Donnici L.; De Francesco R.; Reggiani A.; Lionetti V.; et al. DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic. Pharmacol. Res. 2022, 175, 105982. 10.1016/j.phrs.2021.105982. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...