• This record comes from PubMed

The role of optogenetic stimulations of parvalbumin-positive interneurons in the prefrontal cortex and the ventral hippocampus on an acute MK-801 model of schizophrenia-like cognitive inflexibility

. 2023 Feb ; 252 () : 198-205. [epub] 20230117

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Schizophrenia research has increased in recent decades and focused more on its neural basis. Decision-making and cognitive flexibility are the main cognitive functions that are impaired and considered schizophrenia endophenotypes. Cognitive impairment was recently connected with altered functions of N-methyl-d-aspartate (NMDAR) glutamatergic receptors, which increased cortical activity. Selective NMDAR antagonists, such as MK-801, have been used to model cognitive inflexibility in schizophrenia. Decreased GABAergic inhibitory activity has been shown elsewhere with enhanced cortical activity. This imbalance in the excitatory/inhibitory may reduce the entrainment of prefrontal gamma and hippocampal theta rhythms and result in gamma/theta band de-synchronization. The current study established an acute MK-801 administration model of schizophrenia-like cognitive inflexibility in rats and used the attentional set-shifting task in which rats learned to switch/reverse the relevant rule. During the task, we used in vivo optogenetic stimulations of parvalbumin-positive interneurons at specific light pulses in the prefrontal cortex and ventral hippocampus. The first experiments showed that acute dizocilpine in rats produced schizophrenia-like cognitive inflexibility. The second set of experiments demonstrated that specific optogenetic stimulation at specific frequencies of parvalbumin-positive interneurons in the prefrontal cortex and ventral hippocampus rescued the cognitive flexibility rats that received acute MK-801. These findings advance our knowledge of the pivotal role of parvalbumin interneurons in schizophrenia-like cognitive impairment and may guide further research on this severe psychiatric disorder.

References provided by Crossref.org

Newest 20 citations...

See more in
Medvik | PubMed

Interfacing with the Brain: How Nanotechnology Can Contribute

. 2025 Mar 25 ; 19 (11) : 10630-10717. [epub] 20250310

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...