• This record comes from PubMed

10 Minutes Frontal 40 Hz tACS-Effects on Working Memory Tested by Luck-Vogel Task

. 2022 Dec 31 ; 13 (1) : . [epub] 20221231

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
2022 Programme Cooperatio, Third Faculty of Medicine, Charles University in Prague.

Working memory is a cognitive process that involves short-term active maintenance, flexible updating, and processing of goal- or task-relevant information. All frequency bands are involved in working memory. The activities of the theta and gamma frequency bands in the frontoparietal network are highly involved in working memory processes; theta oscillations play a role in the temporal organization of working memory items, and gamma oscillations influence the maintenance of information in working memory. Transcranial alternating current stimulation (tACS) results in frequency-specific modulation of endogenous oscillations and has shown promising results in cognitive neuroscience. The electrophysiological and behavioral changes induced by the modulation of endogenous gamma frequency in the prefrontal cortex using tACS have not been extensively studied in the context of working memory. Therefore, we aimed to investigate the effects of frontal gamma-tACS on working memory outcomes. We hypothesized that a 10-min gamma tACS administered over the frontal cortex would significantly improve working memory outcomes. Young healthy participants performed Luck-Vogel cognitive behavioral tasks with simultaneous pre- and post-intervention EEG recording (Sham versus 40 Hz tACS). Data from forty-one participants: sham (15 participants) and tACS (26 participants), were used for the statistical and behavioral analysis. The relative changes in behavioral outcomes and EEG due to the intervention were analyzed. The results show that tACS caused an increase in the power spectral density in the high beta and low gamma EEG bands and a decrease in left-right coherence. On the other hand, tACS had no significant effect on success rates and response times. Conclusion: 10 min of frontal 40 Hz tACS was not sufficient to produce detectable behavioral effects on working memory, whereas electrophysiological changes were evident. The limitations of the current stimulation protocol and future directions are discussed in detail in the following sections.

See more in PubMed

Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin. Neurosci. 2013;15:291–300. doi: 10.31887/DCNS.2013.15.3/ebasar. PubMed DOI PMC

Düzel E., Penny W.D., Burgess N. Brain oscillations and memory. Curr. Opin. Neurobiol. 2010;20:143–149. doi: 10.1016/j.conb.2010.01.004. PubMed DOI

Merker B. Cortical gamma oscillations: The functional key is activation, not cognition. Neurosci. Biobehav. Rev. 2013;37:401–417. doi: 10.1016/j.neubiorev.2013.01.013. PubMed DOI

Symons A.E., El-Deredy W., Schwartze M., Kotz S.A. The functional role of neural oscillations in non-verbal emotional communication. Front. Hum. Neurosci. 2016;10:239. doi: 10.3389/fnhum.2016.00239. PubMed DOI PMC

Marzetti L., Basti A., Chella F., D’Andrea A., Syrjälä J., Pizzella V. Brain Functional Connectivity Through Phase Coupling of Neuronal Oscillations: A Perspective From Magnetoencephalography. Front. Neurosci. 2019;13:964. doi: 10.3389/fnins.2019.00964. PubMed DOI PMC

Andersen L.M., Jerbi K., Dalal S.S. Can EEG and MEG detect signals from the human cerebellum? Neuroimage. 2020;215:116817. doi: 10.1016/j.neuroimage.2020.116817. PubMed DOI PMC

Canolty R.T., Edwards E., Dalal S.S., Soltani M., Nagarajan S.S., Kirsch H.E., Berger M.S., Barbaro N.M., Knight R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628. doi: 10.1126/science.1128115. PubMed DOI PMC

Lakatos P., Shah A.S., Knuth K.H., Ulbert I., Karmos G., Schroeder C.E. An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex. J. Neurophysiol. 2005;94:1904–1911. doi: 10.1152/jn.00263.2005. PubMed DOI

Canolty R.T., Knight R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010;14:506–515. doi: 10.1016/j.tics.2010.09.001. PubMed DOI PMC

Siems M., Siegel M. Dissociated neuronal phase- and amplitude-coupling patterns in the human brain. Neuroimage. 2020;209:116538. doi: 10.1016/j.neuroimage.2020.116538. PubMed DOI PMC

Jirsa V., Müller V. Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 2013;7:78. doi: 10.3389/fncom.2013.00078. PubMed DOI PMC

Jensen O., Colgin L.L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 2007;11:267–269. doi: 10.1016/j.tics.2007.05.003. PubMed DOI

Lynn P.A., Sponheim S.R. Disturbed theta and gamma coupling as a potential mechanism for visuospatial working memory dysfunction in people with schizophrenia. Neuropsychiatr. Electrophysiol. 2016;2:1–30. doi: 10.1186/s40810-016-0022-3. DOI

Wang J., Fang Y., Wang X., Yang H., Yu X., Wang H. Enhanced gamma activity and cross-frequency interaction of resting-state electroencephalographic oscillations in patients with Alzheimer’s disease. Front. Aging Neurosci. 2017;9:243. doi: 10.3389/fnagi.2017.00243. PubMed DOI PMC

Kiesel A., Steinhauser M., Wendt M., Falkenstein M., Jost K., Philipp A.M., Koch I. Control and interference in task switching-a review. Psychol. Bull. 2010;136:849–874. doi: 10.1037/a0019842. PubMed DOI

Pettigrew C., Martin R.C. Cognitive declines in healthy aging: Evidence from multiple aspects of interference resolution. Psychol. Aging. 2014;29:187–204. doi: 10.1037/a0036085. PubMed DOI

Jeffries S., Everatt J. Working memory: Its role in dyslexia and other specific learning difficulties. Dyslexia. 2004;10:196–214. doi: 10.1002/dys.278. PubMed DOI

Logie R.H. The Functional Organization and Capacity Limits of Working Memory. Curr. Dir. Psychol. Sci. 2011;20:240–245. doi: 10.1177/0963721411415340. DOI

Todd J.J., Marois R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature. 2004;428:751–754. doi: 10.1038/nature02466. PubMed DOI

Curtis C.E., D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 2003;7:415–423. doi: 10.1016/S1364-6613(03)00197-9. PubMed DOI

Smith E.E., Jonides J. Storage and Executive Processes in the Frontal Lobes. Science. 1999;283:1657–1661. doi: 10.1126/science.283.5408.1657. PubMed DOI

Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001;24:87–114. doi: 10.1017/S0140525X01003922. PubMed DOI

Kawasaki M., Kitajo K., Yamaguchi Y. Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. Eur. J. Neurosci. 2010;31:1683–1689. doi: 10.1111/j.1460-9568.2010.07217.x. PubMed DOI PMC

Mizuhara H., Yamaguchi Y. Human cortical circuits for central executive function emerge by theta phase synchronization. Neuroimage. 2007;36:232–244. doi: 10.1016/j.neuroimage.2007.02.026. PubMed DOI

Wu X., Chen X., Li Z., Han S., Zhang D. Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency. Neuroimage. 2007;35:1654–1662. doi: 10.1016/j.neuroimage.2007.02.011. PubMed DOI

Lisman J.E., Idiart M.A.P. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–1515. doi: 10.1126/science.7878473. PubMed DOI

Jensen O., Lisman J.E. Novel lists of 7 ± 2 known items can be reliably stored in an oscillatory short-term memory network: Interaction with long-term memory. Learn Mem. 1996;3:257–263. doi: 10.1101/lm.3.2-3.257. PubMed DOI

Roux F., Uhlhaas P.J. Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn. Sci. 2014;18:16–25. doi: 10.1016/j.tics.2013.10.010. PubMed DOI

Herrmann C.S., Rach S., Neuling T., Strüber D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013;7:279. doi: 10.3389/fnhum.2013.00279. PubMed DOI PMC

Van Vugt M.K., Chakravarthi R., Lachaux J.-P. For whom the bell tolls: Periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front. Hum. Neurosci. 2014;8:696. doi: 10.3389/fnhum.2014.00696. PubMed DOI PMC

Smith E.H., Banks G.P., Mikell C., Cash S.S., Patel S.R., Eskandar E.N., Sheth S.A. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex. J. Neurosci. 2015;35:15827. doi: 10.1523/JNEUROSCI.1864-15.2015. PubMed DOI PMC

Ruffini G., Wendling F., Merlet I., Molaee-Ardekani B., Mekonnen A., Salvador R., Soria-Frisch A., Grau C., Dunne S., Miranda P.C. Transcranial current brain stimulation (tCS): Models and technologies. IEEE Trans. Neural. Syst. Rehabil. Eng. 2013;21:333–345. doi: 10.1109/TNSRE.2012.2200046. PubMed DOI

Terney D., Chaieb L., Moliadze V., Antal A., Paulus W. Increasing Human Brain Excitability by Transcranial High-Frequency Random Noise Stimulation. J. Neurosci. 2008;28:14147. doi: 10.1523/JNEUROSCI.4248-08.2008. PubMed DOI PMC

Bikson M., Bulow P., Stiller J.W., Datta A., Battaglia F., Karnup S.V., Postolache T.T. Transcranial Direct Current Transcranial Direct Current Stimulation for Major Depression: Stimulation for Major Depression: A General System for Quantifying A General System for Quantifying Transcranial Electrotherapy Dosage Transcranial Electrotherapy Dosage Opinion statement. Curr. Treat. Options Neurol. 2008;10:377–385. PubMed

Auvichayapat N., Rotenberg A., Gersner R., Ngodklang S., Tiamkao S., Tassaneeyakul W., Auvichayapat P. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul. 2013;6:696–700. doi: 10.1016/j.brs.2013.01.009. PubMed DOI

Frank E., Schecklmann M., Landgrebe M., Burger J., Kreuzer P., Poeppl T.B., Kleinjung T., Hajak G., Langguth B. Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: Outcomes from an open-label pilot study. J. Neurol. 2011;259:327–333. doi: 10.1007/s00415-011-6189-4. PubMed DOI

Fregni F., Boggio P.S., Santos M.C., Lima M., Vieira A.L., Rigonatti S.P., Silva M.T.A., Barbosa E.R., Nitsche M.A., Pascual-Leone A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 2006;21:1693–1702. doi: 10.1002/mds.21012. PubMed DOI

Fregni F., Gimenes R., Valle A.C., Ferreira M.J.L., Rocha R.R., Natalle L., Bravo R., Rigonatti S.P., Freedman S.D., Nitsche M.A., et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54:3988–3998. doi: 10.1002/art.22195. PubMed DOI

Fregni F., Freedman S., Pascual-Leone A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol. 2007;6:188–191. doi: 10.1016/S1474-4422(07)70032-7. PubMed DOI

Schlaug G., Renga V., Nair D. Transcranial Direct Current Stimulation in Stroke Recovery. Arch. Neurol. 2008;65:1571–1576. doi: 10.1001/archneur.65.12.1571. PubMed DOI PMC

Baker J.M., Rorden C., Fridriksson J. Using transcranial direct current stimulation (tDCS) to treat stroke patients with aphasia. Stroke. 2010;41:1229. doi: 10.1161/STROKEAHA.109.576785. PubMed DOI PMC

Jacobson L., Koslowsky M., Lavidor M. tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Exp. Brain Res. 2011;216:1–10. doi: 10.1007/s00221-011-2891-9. PubMed DOI

Nitsche M.A., Paulus W. Transcranial direct current stimulation—Update 2011. Restor. Neurol. Neurosci. 2011;29:463–492. doi: 10.3233/RNN-2011-0618. PubMed DOI

Nitsche M.A., Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–1901. doi: 10.1212/WNL.57.10.1899. PubMed DOI

Nitsche M.A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000;527:633. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x. PubMed DOI PMC

Nitsche M.A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., Henning S., Tergau F., Paulus W. Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. J. Physiol. 2003;553:293–301. doi: 10.1113/jphysiol.2003.049916. PubMed DOI PMC

Bindman L.J., Lippold O.C.J., Redfearn J.W.T. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 1964;172:369–382. doi: 10.1113/jphysiol.1964.sp007425. PubMed DOI PMC

Lee S.B., Youn J., Jang W., Yang H.O. Neuroprotective effect of anodal transcranial direct current stimulation on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice through modulating mitochondrial dynamics. Neurochem. Int. 2019;129:104491. doi: 10.1016/j.neuint.2019.104491. PubMed DOI

Lee S.B., Kim H.T., Yang H.O., Jang W. Anodal transcranial direct current stimulation prevents methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by modulating autophagy in an in vivo mouse model of Parkinson’s disease. Sci. Rep. 2018;8:15165. doi: 10.1038/s41598-018-33515-7. PubMed DOI PMC

Scelzo E., Giannicola G., Rosa M., Ciocca M., Ardolino G., Cogiamanian F., Ferrucci R., Fumagalli M., Mameli F., Barbieri S., et al. Increased short latency afferent inhibition after anodal transcranial direct current stimulation. Neurosci. Lett. 2011;498:167–170. doi: 10.1016/j.neulet.2011.05.007. PubMed DOI

Marshall L., Mölle M., Hallschmid M., Born J. Transcranial Direct Current Stimulation during Sleep Improves Declarative Memory. J. Neurosci. 2004;24:9985. doi: 10.1523/JNEUROSCI.2725-04.2004. PubMed DOI PMC

Fregni F., Boggio P.S., Nitsche M., Bermpohl F., Antal A., Feredoes E., Marcolin M.A., Rigonatti S.P., Silva M.T., Paulus W., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain. Res. 2005;166:23–30. doi: 10.1007/s00221-005-2334-6. PubMed DOI

Reis J., Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. 2011;24:590–596. doi: 10.1097/WCO.0b013e32834c3db0. PubMed DOI

Pereira J.B., Junqué C., Bartrés-Faz D., Martí M.J., Sala-Llonch R., Compta Y., Falcón C., Vendrell P., Pascual-Leone Á., Valls-Solé J., et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul. 2013;6:16–24. doi: 10.1016/j.brs.2012.01.006. PubMed DOI

Dockery C.A., Hueckel-Weng R., Birbaumer N., Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. J. Neurosci. 2009;29:7271–7277. doi: 10.1523/JNEUROSCI.0065-09.2009. PubMed DOI PMC

Huang Y., A Liu A., Lafon B., Friedman D., Dayan M., Wang X., Bikson M., Doyle W.K., Devinsky O., Parra L.C. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife. 2017;6:e18834. doi: 10.7554/eLife.18834. PubMed DOI PMC

Kuo M.F., Nitsche M.A. Effects of Transcranial Electrical Stimulation on Cognition. Clin. EEG Neurosci. 2012;43:192–199. doi: 10.1177/1550059412444975. PubMed DOI

Thut G., Miniussi C. New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn. Sci. 2009;13:182–189. doi: 10.1016/j.tics.2009.01.004. PubMed DOI

Kirov R., Weiss C., Siebner H.R., Born J., Marshall L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc. Natl. Acad. Sci. USA. 2009;106:15460–15465. doi: 10.1073/pnas.0904438106. PubMed DOI PMC

Zaehle T., Rach S., Herrmann C.S. Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE. 2010;5:e13766. doi: 10.1371/journal.pone.0013766. PubMed DOI PMC

Zaghi S., Rezende L.D.F., Oliveira L., El-Nazer R., Menning S., Tadini L., Fregni F. Inhibition of motor cortex excitability with 15 Hz transcranial alternating current stimulation (tACS) Neurosci. Lett. 2010;479:211–214. doi: 10.1016/j.neulet.2010.05.060. PubMed DOI

Wach C., Krause V., Moliadze V., Paulus W., Schnitzler A., Pollok B. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav. Brain Res. 2013;241:1–6. doi: 10.1016/j.bbr.2012.11.038. PubMed DOI

Schutter D.J.L.G., Hortensius R. Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul. 2011;4:97–103. doi: 10.1016/j.brs.2010.07.002. PubMed DOI

Veniero D., Vossen A., Gross J., Thut G. Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: Level of control over oscillatory network activity. Front. Cell. Neurosci. 2015;9:477. doi: 10.3389/fncel.2015.00477. PubMed DOI PMC

Bland N.S., Sale M.V. Current challenges: The ups and downs of tACS. Exp. Brain Res. 2019;237:3071–3088. doi: 10.1007/s00221-019-05666-0. PubMed DOI

Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. Frequency-Dependent Electrical Stimulation of the Visual Cortex. Curr. Biol. 2008;18:1839–1843. doi: 10.1016/j.cub.2008.10.027. PubMed DOI

Laczó B., Antal A., Niebergall R., Treue S., Paulus W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 2012;5:484–491. doi: 10.1016/j.brs.2011.08.008. PubMed DOI

Antal A., Boros K., Poreisz C., Chaieb L., Terney D., Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1:97–105. doi: 10.1016/j.brs.2007.10.001. PubMed DOI

Pogosyan A., Gaynor L.D., Eusebio A., Brown P. Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans. Curr. Biol. 2009;19:1637. doi: 10.1016/j.cub.2009.07.074. PubMed DOI PMC

Feurra M., Bianco G., Santarnecchi E., del Testa M., Rossi A., Rossi S. Frequency-Dependent Tuning of the Human Motor System Induced by Transcranial Oscillatory Potentials. J. Neurosci. 2011;31:12165–12170. doi: 10.1523/JNEUROSCI.0978-11.2011. PubMed DOI PMC

Brignani D., Ruzzoli M., Mauri P., Miniussi C. Is Transcranial Alternating Current Stimulation Effective in Modulating Brain Oscillations? PLoS ONE. 2013;8:e56589. doi: 10.1371/journal.pone.0056589. PubMed DOI PMC

Wach C., Krause V., Moliadze V., Paulus W., Schnitzler A., Pollok B. The effect of 10 Hz transcranial alternating current stimulation (tACS) on corticomuscular coherence. Front. Hum. Neurosci. 2013;7:511. doi: 10.3389/fnhum.2013.00511. PubMed DOI PMC

Mulquiney P.G., Hoy K.E., Daskalakis Z.J., Fitzgerald P.B. Improving working memory: Exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin. Neurophysiol. 2011;122:2384–2389. doi: 10.1016/j.clinph.2011.05.009. PubMed DOI

Boggio P.S., Rigonatti S.P., Ribeiro R., Myczkowski M.L., Nitsche M.A., Pascual-Leone A., Fregni F. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int. J. Neuropsychopharmacol. 2008;11:249–254. doi: 10.1017/S1461145707007833. PubMed DOI PMC

Polanía R., Nitsche M.A., Korman C., Batsikadze G., Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 2012;22:1314–1318. doi: 10.1016/j.cub.2012.05.021. PubMed DOI

Cappelletti M., Gessaroli E., Hithersay R., Mitolo M., Didino D., Kanai R., Kadosh R.C., Walsh V. Transfer of Cognitive Training across Magnitude Dimensions Achieved with Concurrent Brain Stimulation of the Parietal Lobe. J. Neurosci. 2013;33:14899. doi: 10.1523/JNEUROSCI.1692-13.2013. PubMed DOI PMC

Grabner R.H., Krenn J., Fink A., Arendasy M., Benedek M. Effects of alpha and gamma transcranial alternating current stimulation (tACS) on verbal creativity and intelligence test performance. Neuropsychologia. 2018;118:91–98. doi: 10.1016/j.neuropsychologia.2017.10.035. PubMed DOI

Santarnecchi E., Polizzotto N.R., Godone M., Giovannelli F., Feurra M., Matzen L., Rossi A., Rossi S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr. Biol. 2013;23:1449–1453. doi: 10.1016/j.cub.2013.06.022. PubMed DOI

Sauseng P., Griesmayr B., Freunberger R., Klimesch W. Control mechanisms in working memory: A possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 2010;34:1015–1022. doi: 10.1016/j.neubiorev.2009.12.006. PubMed DOI

Jaušovec N., Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS) Biol. Psychol. 2014;96:42–47. doi: 10.1016/j.biopsycho.2013.11.006. PubMed DOI

Jaušovec N., Jaušovec K., Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. 2014;146:1–6. doi: 10.1016/j.actpsy.2013.11.011. PubMed DOI

Pahor A., Jaušovec N. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. Int. J. Psychophysiol. 2014;93:322–331. doi: 10.1016/j.ijpsycho.2014.06.015. PubMed DOI

Neuling T., Rach S., Herrmann C.S. Orchestrating neuronal networks: Sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 2013;7:161. doi: 10.3389/fnhum.2013.00161. PubMed DOI PMC

Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012;16:606–617. doi: 10.1016/j.tics.2012.10.007. PubMed DOI PMC

Voss U., Holzmann R., Hobson A., Paulus W., Koppehele-Gossel J., Klimke A., A Nitsche M. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat. Neurosci. 2014;17:810–812. doi: 10.1038/nn.3719. PubMed DOI

Klink K., Paßmann S., Kasten F.H., Peter J. The modulation of cognitive performance with transcranial alternating current stimulation: A systematic review of frequency-specific effects. Brain Sci. 2020;10:932. doi: 10.3390/brainsci10120932. PubMed DOI PMC

Schutter D.J.L.G., Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia. 2016;86:110–118. doi: 10.1016/j.neuropsychologia.2016.04.011. PubMed DOI

Figee M., Mayberg H. The future of personalized brain stimulation. Nat. Med. 2021;27:196–197. doi: 10.1038/s41591-021-01243-7. PubMed DOI

Frohlich F., Riddle J. Conducting double-blind placebo-controlled clinical trials of transcranial alternating current stimulation (tACS) Transl. Psychiatry. 2021;11:1–12. doi: 10.1038/s41398-021-01391-x. PubMed DOI PMC

Van Driel J., Sligte I.G., Linders J., Elport D., Cohen M.X. Frequency Band-Specific Electrical Brain Stimulation Modulates Cognitive Control Processes. PLoS ONE. 2015;10:e0138984. doi: 10.1371/journal.pone.0138984. PubMed DOI PMC

Onslow A.C.E., Bogacz R., Jones M.W. Quantifying phase–amplitude coupling in neuronal network oscillations. Prog. Biophys. Mol. Biol. 2011;105:49–57. doi: 10.1016/j.pbiomolbio.2010.09.007. PubMed DOI

Meiron O., Lavidor M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin. Neurophysiol. 2014;125:77–82. doi: 10.1016/j.clinph.2013.06.013. PubMed DOI

Gonzalez-Perez M., Wakui E., Thoma V., Nitsche M.A., Rivolta D. Transcranial alternating current stimulation (tACS) at 40 Hz enhances face and object perception. Neuropsychologia. 2019;135:107237. doi: 10.1016/j.neuropsychologia.2019.107237. PubMed DOI

Abellaneda-Pérez K., Vaqué-Alcázar L., Perellón-Alfonso R., Bargalló N., Kuo M.F., Pascual-Leone A., Nitsche M.A., Bartrés-Faz D. Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity. Front. Neurosci. 2020;13:1440. doi: 10.3389/fnins.2019.01440. PubMed DOI PMC

Sahu P.P., Tseng P. Frontoparietal theta tACS nonselectively enhances encoding, maintenance, and retrieval stages in visuospatial working memory. Neurosci. Res. 2021;172:41–50. doi: 10.1016/j.neures.2021.05.005. PubMed DOI

Chander B.S., Witkowski M., Braun C., Robinson S.E., Born J., Cohen L.G., Birbaumer N., Soekadar S.R. tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance. Front. Cell. Neurosci. 2016;10:120. doi: 10.3389/fncel.2016.00120. PubMed DOI PMC

Vosskuhl J., Huster R.J., Herrmann C.S. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front. Hum. Neurosci. 2015;9:257. doi: 10.3389/fnhum.2015.00257. PubMed DOI PMC

Alekseichuk I., Pabel S.C., Antal A., Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor. Neurol. Neurosci. 2017;35:147–158. doi: 10.3233/RNN-160714. PubMed DOI

Tseng P., Iu K.C., Juan C.H. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-017-18449-w. PubMed DOI PMC

Violante I.R., Li L.M., Carmichael D.W., Lorenz R., Leech R., Hampshire A., Rothwell J.C., Sharp D.J. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife. 2017;6:e22001. doi: 10.7554/eLife.22001. PubMed DOI PMC

Kleinert M.L., Szymanski C., Müller V. Frequency-unspecific effects of θ-tACS related to a visuospatial working memory task. Front. Hum. Neurosci. 2017;11:367. doi: 10.3389/fnhum.2017.00367. PubMed DOI PMC

Becher A.K., Höhne M., Axmacher N., Chaieb L., Elger C.E., Fell J. Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation. Eur. J. Neurosci. 2015;41:254–263. doi: 10.1111/ejn.12760. PubMed DOI

Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 2009;32:209–224. doi: 10.1146/annurev.neuro.051508.135603. PubMed DOI

Jia X., Kohn A. Gamma Rhythms in the Brain. PLoS Biol. 2011;9:e1001045. doi: 10.1371/journal.pbio.1001045. PubMed DOI PMC

Hoy K.E., Bailey N., Arnold S., Windsor K., John J., Daskalakis Z.J., Fitzgerald P.B. The effect of γ-tACS on working memory performance in healthy controls. Brain. Cogn. 2015;101:51–56. doi: 10.1016/j.bandc.2015.11.002. PubMed DOI

Tseng P., Chang Y.T., Chang C.F., Liang W.K., Juan C.H. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci. Rep. 2016;6:32138. doi: 10.1038/srep32138. PubMed DOI PMC

Möller A., Nemmi F., Karlsson K., Klingberg T. Transcranial Electric Stimulation Can Impair Gains during Working Memory Training and Affects the Resting State Connectivity. Front. Hum. Neurosci. 2017;11:364. doi: 10.3389/fnhum.2017.00364. PubMed DOI PMC

Misselhorn J., Göschl F., Higgen F.L., Hummel F.C., Gerloff C., Engel A.K. Sensory capability and information integration independently explain the cognitive status of healthy older adults. Sci. Rep. 2020;10:22437. doi: 10.1038/s41598-020-80069-8. PubMed DOI PMC

Santarnecchi E., Muller T., Rossi S., Sarkar A., Polizzotto N., Rossi A., Kadosh R.C. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex. 2016;75:33–43. doi: 10.1016/j.cortex.2015.11.003. PubMed DOI

Pahor A., Jaušovec N. The effects of theta and gamma tacs on working memory and electrophysiology. Front. Hum. Neurosci. 2018;11:651. doi: 10.3389/fnhum.2017.00651. PubMed DOI PMC

Lisman J.E., Jensen O. The Theta-Gamma Neural Code. Neuron. 2013;77:1002–1016. doi: 10.1016/j.neuron.2013.03.007. PubMed DOI PMC

de Lara G.A., Alekseichuk I., Turi Z., Lehr A., Antal A., Paulus W. Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimul. 2018;11:509–517. doi: 10.1016/j.brs.2017.12.007. PubMed DOI

Turi Z., Mittner M., Lehr A., Bürger H., Antal A., Paulus W. θ-γ Cross-Frequency Transcranial Alternating Current Stimulation over the Trough Impairs Cognitive Control. ENeuro. 2020;7:1–12. doi: 10.1523/ENEURO.0126-20.2020. PubMed DOI PMC

Riddle J., McFerren A., Frohlich F. Causal role of cross-frequency coupling in distinct components of cognitive control. Prog. Neurobiol. 2021;202:102033. doi: 10.1016/j.pneurobio.2021.102033. PubMed DOI PMC

Alekseichuk I., Turi Z., Amador de Lara G., Antal A., Paulus W. Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex. Curr. Biol. 2016;26:1513–1521. doi: 10.1016/j.cub.2016.04.035. PubMed DOI

Delorme A., Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009. PubMed DOI

Benesty J., Chen J., Huang Y. A generalized MVDR spectrum. IEEE Signal. Process. Lett. 2005;12:827–830. doi: 10.1109/LSP.2005.859517. DOI

Grover S., Wen W., Viswanathan V., Gill C.T., Reinhart R.M.G. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat. Neurosci. 2022;25:1237–1246. doi: 10.1038/s41593-022-01132-3. PubMed DOI PMC

Pittman-polletta B., Hsieh W.H., Kaur S., Lo M.T., Hu K. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J. Neurosci. Methods. 2014;226:15–32. doi: 10.1016/j.jneumeth.2014.01.006. PubMed DOI PMC

Joundi R.A., Jenkinson N., Brittain J.S., Aziz T.Z., Brown P. Driving Oscillatory Activity in the Human Cortex Enhances Motor Performance. Curr. Biol. 2012;22:403. doi: 10.1016/j.cub.2012.01.024. PubMed DOI PMC

Kasten F.H., Dowsett J., Herrmann C.S. Sustained aftereffect of α-tACS lasts up to 70 min after stimulation. Front. Hum. Neurosci. 2016;10:245. doi: 10.3389/fnhum.2016.00245. PubMed DOI PMC

Elyamany O., Leicht G., Herrmann C.S., Mulert C. Transcranial alternating current stimulation (tACS): From basic mechanisms towards first applications in psychiatry. Eur. Arch. Psychiatry Clin. Neurosci. 2021;271:135–156. doi: 10.1007/s00406-020-01209-9. PubMed DOI PMC

Moussavi Z., Kimura K., Kehler L., de Oliveira Francisco C., Lithgow B. A Novel Program to Improve Cognitive Function in Individuals With Dementia Using Transcranial Alternating Current Stimulation (tACS) and Tutored Cognitive Exercises. Front. Aging. 2021;2:632545. doi: 10.3389/fragi.2021.632545. PubMed DOI PMC

Kehler L., Francisco C.O., Uehara M.A., Moussavi Z. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia; Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Montreal, QC, Canada. 20–24 July 2020; pp. 3649–3653. PubMed DOI

Haller N., Hasan A., Padberg F., Brunelin J., da Costa Lane Valiengo L., Palm U. Gamma transcranial alternating current stimulation in patients with negative symptoms in schizophrenia: A case series. Neurophysiol. Clin. 2020;50:301–304. doi: 10.1016/j.neucli.2020.06.004. PubMed DOI

Bréchet L., Yu W., Biagi M.C., Ruffini G., Gagnon M., Manor B., Pascual-Leone A. Patient-Tailored, Home-Based Non-invasive Brain Stimulation for Memory Deficits in Dementia Due to Alzheimer’s Disease. Front. Neurol. 2021;12:775. doi: 10.3389/fneur.2021.598135. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...