The Effect of High Nicotine Dose on Maximum Anaerobic Performance and Perceived Pain in Healthy Non-Smoking Athletes: Crossover Pilot Study
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36673765
PubMed Central
PMC9859273
DOI
10.3390/ijerph20021009
PII: ijerph20021009
Knihovny.cz E-resources
- Keywords
- Wingate test, anaerobic performance, high-nicotine dose, pain perception, perceived exertion,
- MeSH
- Anaerobiosis MeSH
- Pain * drug therapy MeSH
- Adult MeSH
- Humans MeSH
- Nicotine * pharmacology MeSH
- Pain Perception MeSH
- Pilot Projects MeSH
- Cross-Sectional Studies MeSH
- Athletes MeSH
- Physical Exertion MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Nicotine * MeSH
Background: In recent years, there has been intensive discussion about the positive effect of nicotine usage on enhancing sports performance. It is frequently applied through a non-burned tobacco form before physical activity. Nicotine is under the World Anti-Doping Agency (WADA) 2021 monitoring program. Therefore, study results that reveal either positive or negative effects are expected. This is the pilot study that reports the effect of 8 mg dose of nicotine on performance and perceived pain. Material and Methods: This research aimed to explore the oral intake effect of a high-nicotine dose (8 mg) on the maximum anaerobic performance and other selected physical performance parameters in healthy, well-trained adult athletes (n = 15, age 30.7 ± 3.6, BMI 25.3 ± 1.7). The cross-sectional study protocol included the oral administration of either sublingual nicotine or placebo tablets before the anaerobic load assessed by a standardized 30 s Wingate test of the lower limbs. Afterward, the Borg subjective perception of pain (CR 10) and Borg rating of perceived exertion (RPE) were evaluated. Wilcoxon signed-rank test was used for the analysis of data with a 0.05 level of significance. Results: The results revealed that oral administration of an 8 mg nicotine dose does not significantly improve any of the physical performance parameters monitored. We only reported the statistically significant positive effect in RPE (p = 0.03). Conclusion: Lower perception of pain intensity that we reported after nicotine application might be an important factor that affects performance. However, we did not report any improvement in physical performance parameters.
See more in PubMed
Aguilar-Navarro M., Muñoz G., Salinero J.J., Muñoz-Guerra J., Fernández-Álvarez M., Plata M.D., Del Coso J. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019;11:286. doi: 10.3390/nu11020286. PubMed DOI PMC
Jiménez S.L., Díaz-Lara J., Pareja-Galeano H., Del Coso J. Caffeinated Drinks and Physical Performance in Sport: A Systematic Review. Nutrients. 2021;13:2944. doi: 10.3390/nu13092944. PubMed DOI PMC
Hudson G.M., Green J.M., Bishop P.A., Richardson M.T. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J. Strength Cond. Res. 2008;22:1950–1957. doi: 10.1519/JSC.0b013e31818219cb. PubMed DOI
Tscholl P., Alonso J.M., Dollé G., Junge A., Dvorak J. The use of drugs and nutritional supplements in top-level track and field athletes. Am. J. Sport. Med. 2010;38:133–140. doi: 10.1177/0363546509344071. PubMed DOI
World Anti-Doping Agency The 2021 Prohibited List. [(accessed on 18 November 2021)]; Available online: https://www.wada-ama.org/en/what-we-do/the-prohibited-list.
World Anti-Doping Agency 2020 Monitoring Program. [(accessed on 18 November 2021)]; Available online: https://www.wada-ama.org/en/resources/science-medicine/monitoring-program.
Mündel T. Nicotine: Sporting friend or foe? A review of athlete use, performance consequences and other considerations. Sport. Med. 2017;47:2497–2506. doi: 10.1007/s40279-017-0764-5. PubMed DOI PMC
Marclay F., Saugy M. Determination of nicotine and nicotine metabolites in urine by hydrophilic interaction chromatography–tandem mass spectrometry: Potential use of smokeless tobacco products by ice hockey players. J. Chromatogr. A. 2010;1217:7528–7538. doi: 10.1016/j.chroma.2010.10.005. PubMed DOI
World Health Organization Who Report on the Global Tobacco Epidemic. [(accessed on 18 November 2021)]; Available online: http://www.who.int/tobacco/global_report/2013/en/2013.
Fant R.V., Henningfield J.E., Nelson R.A., Pickworth W.B. Pharmacokinetics and pharmacodynamics of moist snuff in humans. Tob. Control. 1999;8:387–392. doi: 10.1136/tc.8.4.387. PubMed DOI PMC
Prakash S., Kumar M., Kumari N., Thakur M., Rathour S., Pundir A., Sharma A.K., Bangar S.P., Dhumal S., Singh S., et al. Plant-Based Antioxidant Extracts and Compounds in the Management of Oral Cancer. Antioxidants. 2021;10:1358. doi: 10.3390/antiox10091358. PubMed DOI PMC
Worakhajit P., Fuangtharnthip P., Khovidhunkit S.O., Chiewwit P., Klongnoi B. The relationship of tobacco, alcohol, and betel quid with the formation of oral potentially malignant disorders: A community-based study from Northeastern Thailand. Int. J. Environ. Res. Public Health. 2021;18:8738. doi: 10.3390/ijerph18168738. PubMed DOI PMC
Chien C.Y., Chen Y.C., Hsu C.C., Chou Y.T., Shiah S.G., Liu S.Y., Hsieh A.C., Yen C.Y., Lee C.H., Shieh Y.S. YAP-Dependent BiP Induction Is Involved in Nicotine-Mediated Oral Cancer Malignancy. Cells. 2021;10:2080. doi: 10.3390/cells10082080. PubMed DOI PMC
Connolly G.N., Orleans C.T., Kogan M. Use of smokeless tobacco in major-league baseball. N. Engl. J. Med. 1988;318:1281–1285. doi: 10.1056/NEJM198805123181918. PubMed DOI
Odani S., O’Flaherty K., Veatch N., Tynan M.A., Agaku I.T. Attitudes toward smokeless tobacco use at all public sports venues among US adults, 2016. Prev. Med. 2018;111:397–401. doi: 10.1016/j.ypmed.2017.11.034. PubMed DOI PMC
Gossin M., Gmel G., Studer J., Saubade M., Clair C. The association between type and intensity of sport and tobacco or nicotine use—A cross-sectional study among young Swiss men. Int. J. Environ. Res. Public Health. 2020;17:8299. doi: 10.3390/ijerph17228299. PubMed DOI PMC
Chagué F., Guenancia C., Gudjoncik A., Moreau D., Cottin Y., Zeller M. Smokeless tobacco, sport and the heart. Arch. Cardiovasc. Dis. 2015;108:75–83. doi: 10.1016/j.acvd.2014.10.003. PubMed DOI
Mattila V.M., Raisamo S., Pihlajamäki H., Mäntysaari M., Rimpelä A. Sports activity and the use of cigarettes and snus among young males in Finland in 1999–2010. BMC Public Health. 2012;12:230. doi: 10.1186/1471-2458-12-230. PubMed DOI PMC
Heishman S.J., Kleykamp B.A., Singleton E.G. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology. 2010;210:453–469. doi: 10.1007/s00213-010-1848-1. PubMed DOI PMC
Levin E.D. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem. Pharmacol. 2013;86:1145–1152. doi: 10.1016/j.bcp.2013.07.021. PubMed DOI PMC
Levin E.D., McClernon F.J., Rezvani A.H. Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology. 2006;184:523–539. doi: 10.1007/s00213-005-0164-7. PubMed DOI
Poltavski D.V., Petros T.V., Holm J.E. Lower but not higher doses of transdermal nicotine facilitate cognitive performance in smokers on gender non-preferred tasks. Pharmacol. Biochem. Behav. 2012;102:423–433. doi: 10.1016/j.pbb.2012.06.003. PubMed DOI
Herman A.I., Sofuoglu M. Cognitive effects of nicotine: Genetic moderators. Addict. Biol. 2010;15:250–265. doi: 10.1111/j.1369-1600.2010.00213.x. PubMed DOI PMC
Bakhshaie J., Ditre J.W., Langdon K.J., Asmundson G.J., Paulus D.J., Zvolensky M.J. Pain intensity and smoking behavior among treatment seeking smokers. Psychiatry Res. 2016;237:67–71. doi: 10.1016/j.psychres.2016.01.073. PubMed DOI PMC
Girdler S.S., Maixner W., Naftel H.A., Stewart P.W., Moretz R.L., Light K.C. Cigarette smoking, stress-induced analgesia and pain perception in men and women. Pain. 2005;114:372–385. doi: 10.1016/j.pain.2004.12.035. PubMed DOI
McDermott K.A., Joyner K.J., Hakes J.K., Okey S.A., Cougle J.R. Pain interference and alcohol, nicotine, and cannabis use disorder in a national sample of substance users. Drug Alcohol Depend. 2018;186:53–59. doi: 10.1016/j.drugalcdep.2018.01.011. PubMed DOI
Shi Y., Weingarten T.N., Mantilla C.B., Hooten W.M., Warner D.O. Smoking and pain: Pathophysiology and clinical implications. J. Am. Soc. Anesthesiol. 2010;113:977–992. doi: 10.1097/ALN.0b013e3181ebdaf9. PubMed DOI
Deschamps T., Hug F., Hodges P.W., Tucker K. Influence of experimental pain on the perception of action capabilities and performance of a maximal single-leg hop. J. Pain. 2014;15:271-e1–271.e7. doi: 10.1016/j.jpain.2013.10.016. PubMed DOI
Hureau T.J., Romer L.M., Amann M. The ‘sensory tolerance limit’: A hypothetical construct determining exercise performance? Eur. J. Sport Sci. 2018;18:13–24. doi: 10.1080/17461391.2016.1252428. PubMed DOI PMC
Thornton C., Sheffield D., Baird A. Exposure to contact sports results in maintained performance during experimental pain. J. Pain. 2021;22:68–75. doi: 10.1016/j.jpain.2020.03.008. PubMed DOI
Gao M.M., Hu F., Zeng X.D., Tang H.L., Zhang H., Jiang W., Yan H.J., Shi H., Shu Y., Long Y.S. Hypothalamic proteome changes in response to nicotine and its withdrawal are potentially associated with alteration in body weight. J. Proteom. 2020;214:103633. doi: 10.1016/j.jprot.2020.103633. PubMed DOI
Schwartz A., Bellissimo N. Nicotine and energy balance: A review examining the effect of nicotine on hormonal appetite regulation and energy expenditure. Appetite. 2021;164:105260. doi: 10.1016/j.appet.2021.105260. PubMed DOI
Metz C.N., Gregersen P.K., Malhotra A.K. Metabolism and biochemical effects of nicotine for primary care providers. Med. Clin. 2004;88:1399–1413. doi: 10.1016/j.mcna.2004.06.004. PubMed DOI
Behr M.J., Leong K.H., Jones R.H. Acute effects of cigarette smoking on left ventricular function at rest and exercise. Med. Sci. Sport. Exerc. 1981;13:9–12. doi: 10.1249/00005768-198101000-00010. PubMed DOI
Grassi G., Seravalle G., Calhoun D.A., Bolla G.B., Giannattasio C., Marabini M., Del Bo A., Mancia G. Mechanisms responsible for sympathetic activation by cigarette smoking in humans. Circulation. 1994;90:248–253. doi: 10.1161/01.CIR.90.1.248. PubMed DOI
Ilebekk A., Lekven J. Cardiac effects of nicotine in dogs. Scand. J. Clin. Lab. Investig. 1974;33:153–159. doi: 10.3109/00365517409082483. PubMed DOI
Omvik P. How smoking affects blood pressure. Blood Press. 1996;5:71–77. doi: 10.3109/08037059609062111. PubMed DOI
Hoyt G.L. Cigarette Smoking: Nicotine, Carbon Monoxide, and the Physiological Effects on Exercise Responses. Sport Sci. Rev. 2013;22:19. doi: 10.2478/ssr-2013-0001. DOI
Rotstein A., Sagiv M. Acute effect of cigarette smoking on physiologic response to graded exercise. Int. J. Sport. Med. 1986;7:322–324. doi: 10.1055/s-2008-1025784. PubMed DOI
Turner J.M., McNicol M.W. The effect of nicotine and carbon monoxide on exercise performance in normal subjects. Respir. Med. 1993;87:427–431. doi: 10.1016/0954-6111(93)90068-B. PubMed DOI
Bridge M.W., Broom J., Besford G., Allen T., Sharma A., Jones D.A. The action of caffeine and perception of exertion during prolonged exercise. J. Physiol. Lond. 2000;523:224P–225P.
Hodgson A.B., Randell R.K., Jeukendrup A.E. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE. 2013;8:e59561. doi: 10.1371/journal.pone.0059561. PubMed DOI PMC
McLellan T.M., Bell D.G. The impact of prior coffee consumption on the subsequent ergogenic effect of anhydrous caffeine. Int. J. Sport Nutr. Exerc. Metab. 2004;14:698–708. doi: 10.1123/ijsnem.14.6.698. PubMed DOI
Stadheim H.K., Kvamme B., Olsen R., Ivy J.L., Drevon C.A., Jensen J. Caffeine increases performance in cross-country double-poling time trial exercise. Med. Sci. Sport. Exerc. 2013;45:2175–2183. doi: 10.1249/MSS.0b013e3182967948. PubMed DOI
Johnston R., Doma K., Crowe M. Nicotine effects on exercise performance and physiological responses in nicotine-naïve individuals: A systematic review. Clin. Physiol. Funct. Imaging. 2018;38:527–538. doi: 10.1111/cpf.12443. PubMed DOI
Meier J.N. Ph.D. Thesis. The University of Wisconsin-Whitewater; Whitewater, WI, USA: Jun 12, 2006. [(accessed on 30 December 2022)]. Effect of Nicotine and Muscle Performance Using a Wingate Anaerobic Test on Collegiate Football Players. Available online: http://digital.library.wisc.edu/1793/11629.
Pysný L., Petru D., Pysná J., Cihlár D. The acute effect of nicotine intake on anaerobic exercise performance. J. Phys. Educ. Sport. 2015;15:103.
Mündel T., Machal M., Cochrane D.J., Barnes M.J. A randomised, placebo-controlled, crossover study investigating the effects of nicotine gum on strength, power and anaerobic performance in nicotine-naïve, active males. Sport. Med. Open. 2017;3:5. doi: 10.1186/s40798-016-0074-8. PubMed DOI PMC
Johnston R., Crowe M., Doma K. Effect of nicotine on repeated bouts of anaerobic exercise in nicotine naïve individuals. Eur. J. Appl. Physiol. 2018;118:681–689. doi: 10.1007/s00421-018-3819-x. PubMed DOI
Heller J. Zátěžová Funkční Diagnostika ve Sportu: Východiska, Aplikace a Interpretace. Charles University in Prague, Karolinum Press; Prague, Czech Republic: 2018.
Karaba-Jakovljević D., Popadić-Gaćeša J., Grujić N., Barak O., Drapšin M. Motivation and motoric tests in sports. Med. Pregl. 2007;60:231–236. doi: 10.2298/MPNS0706231K. PubMed DOI
Vandewalle H., Péerès G., Monod H. Standard anaerobic exercise tests. Sport. Med. 1987;4:268–289. doi: 10.2165/00007256-198704040-00004. PubMed DOI
Molander L., Lunell E. Pharmacokinetic investigation of a nicotine sublingual tablet. Eur. J. Clin. Pharmacol. 2001;56:813–819. doi: 10.1007/s002280000223. PubMed DOI
Borg G. Borg’s Perceived Exertion and Pain Scales. Human Kinetics; Champaign, IL, USA: 1998.
Brunori G., Schoch J., Mercatelli D., Ozawa A., Toll L., Cippitelli A. The influence of neuropathic pain on nAChR plasticity and behavioral responses to nicotine in rats. Pain. 2018;159:2179. doi: 10.1097/j.pain.0000000000001318. PubMed DOI PMC
Shiri R., Karppinen J., Leino-Arjas P., Solovieva S., Viikari-Juntura E. The association between smoking and low back pain: A meta-analysis. Am. J. Med. 2010;123:87.e7–87.e35. doi: 10.1016/j.amjmed.2009.05.028. PubMed DOI
Shiri R., Falah-Hassani K. The effect of smoking on the risk of sciatica: A meta-analysis. Am. J. Med. 2016;129:64–73. doi: 10.1016/j.amjmed.2015.07.041. PubMed DOI
Sugiyama D., Nishimura K., Tamaki K., Tsuji G., Nakazawa T., Morinobu A., Kumagai S. Impact of smoking as a risk factor for developing rheumatoid arthritis: A meta-analysis of observational studies. Ann. Rheum. Dis. 2010;69:70–81. doi: 10.1136/ard.2008.096487. PubMed DOI
Waldie K.E., McGee R., Reeder A.I., Poulton R. Associations between frequent headaches, persistent smoking, and attempts to quit. Headache: J. Head Face Pain. 2008;48:545–552. doi: 10.1111/j.1526-4610.2007.01037.x. PubMed DOI
Riley J.L., III, Tomar S.L., Gilbert G.H. Smoking and smokeless tobacco: Increased risk for oral pain. J. Pain. 2004;5:218–225. doi: 10.1016/j.jpain.2004.03.003. PubMed DOI
Clair C., Cohen M.J., Eichler F., Selby K.J., Rigotti N.A. The effect of cigarette smoking on diabetic peripheral neuropathy: A systematic review and meta-analysis. J. Gen. Intern. Med. 2015;30:1193–1203. doi: 10.1007/s11606-015-3354-y. PubMed DOI PMC
Pisinger C., Aadahl M., Toft U., Birke H., Zytphen-Adeler J., Jørgensen T. The association between active and passive smoking and frequent pain in a general population. Eur. J. Pain. 2011;15:77–83. doi: 10.1016/j.ejpain.2010.05.004. PubMed DOI
De Vita M.J., Maisto S.A., Ansell E.B., Zale E.L., Ditre J.W. Pack-years of tobacco cigarette smoking as a predictor of spontaneous pain reporting and experimental pain reactivity. Exp. Clin. Psychopharmacol. 2019;27:552. doi: 10.1037/pha0000258. PubMed DOI PMC
Zhang Y., Yang J., Sevilla A., Weller R., Wu J., Su C., Zheng C., Rodriguez-Blanco Y.F., Gitlin M., Candiotti K.A. The mechanism of chronic nicotine exposure and nicotine withdrawal on pain perception in an animal model. Neurosci. Lett. 2020;715:134627. doi: 10.1016/j.neulet.2019.134627. PubMed DOI
Jamner L.D., Girdler S.S., Shapiro D., Jarvik M.E. Pain inhibition, nicotine, and gender. Exp. Clin. Psychopharmacol. 1998;6:96. doi: 10.1037/1064-1297.6.1.96. PubMed DOI
Xanthos D.N., Beiersdorf J.W., Thrun A., Ianosi B., Orr-Urtreger A., Huck S., Scholze P. Role of α5-containing nicotinic receptors in neuropathic pain and response to nicotine. Neuropharmacology. 2015;95:37–49. doi: 10.1016/j.neuropharm.2015.02.012. PubMed DOI