Genotypic and Phenotypic Detection of Polyhydroxyalkanoate Production in Bacterial Isolates from Food
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2022/006
Internal Grant Agency of Tomas Bata University in Zlin
PubMed
36674766
PubMed Central
PMC9864133
DOI
10.3390/ijms24021250
PII: ijms24021250
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial strains, biomaterial, biosynthetic pathways, polyhydroxyalkanoate, screening,
- MeSH
- acyltransferasy genetika metabolismus MeSH
- Bacillus * metabolismus MeSH
- Bacteria metabolismus MeSH
- polyhydroxyalkanoáty * MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acyltransferasy MeSH
- polyhydroxyalkanoáty * MeSH
- uhlík MeSH
Polyhydroxyalkanoates (PHAs) are widely used in medical and potentially in other applications due to their biocompatibility and biodegradability. Understanding PHA biosynthetic pathways may lead to the detection of appropriate conditions (substrates) for producing a particular PHA type by a specific microbial strain. The aim of this study was to establish a method enabling potentially interesting PHA bacterial producers to be found. In the study, all four classes of PHA synthases and other genes involved in PHA formation (fabG, phaA, phaB, phaG, and phaJ) were detected by PCR in 64 bacterial collection strains and food isolates. Acinetobacter, Bacillus, Cupriavidus, Escherichia, Klebsiella, Lelliottia, Lysinibacillus, Mammaliicoccus, Oceanobacillus, Pantoea, Peribacillus, Priestia, Pseudomonas, Rahnella, Staphylococcus, and Stenotrophomonas genera were found among these strains. Fructose, glucose, sunflower oil, and propionic acid were utilized as carbon sources and PHA production was detected by Sudan black staining, Nile blue staining, and FTIR methods. The class I synthase and phaA genes were the most frequently found, indicating the strains' ability to synthesize PHA from carbohydrates. Among the tested bacterial strains, the Pseudomonas genus was identified as able to utilize all tested carbon sources. The Pseudomonas extremorientalis strain was determined as a prospect for biotechnology applications.
Zobrazit více v PubMed
Khanna S., Srivastava A.K. Recent Advances in Microbial Polyhydroxyalkanoates. Process Biochem. 2005;40:607–619. doi: 10.1016/j.procbio.2004.01.053. DOI
Chen G.-Q. Biofunctionalization of Polymers and Their Applications. Springer; Berlin/Heidelberg, Germany: 2011. Biofunctionalization of Polymers and Their Applications; pp. 29–45.
Gómez-Gast N., Cuellar M.D.R.L., Vergara-Porras B., Vieyra H. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers. Polymers. 2022;14:1114. doi: 10.3390/polym14061114. PubMed DOI PMC
Kosior E., Messias R., Fowler P. Lightweight Compostable Packaging: Literature Review. Resources Action Programme; Banbury, UK: 2006. The Waste.
Sharma S.K., Mudhoo A. Handbook of Applied Biopolymer Technology. Royal Society of Chemistry; Cambridge, UK: 2011.
Kumar A., Srivastava J.K., Mallick N., Singh A.K. Commercialization of Bacterial Cell Factories for the Sustainable Production of Polyhydroxyalkanoate Thermoplastics: Progress and Prospects. Recent Pat. Biotechnol. 2015;9:4–21. doi: 10.2174/2211550104666150615211414. PubMed DOI
Pulingam T., Appaturi J.N., Parumasivam T., Ahmad A., Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers. 2022;14:2141. doi: 10.3390/polym14112141. PubMed DOI PMC
Gadgil B.S.T., Killi N., Rathna G.V.N. Polyhydroxyalkanoates as Biomaterials. MedChemComm. 2017;8:1774–1787. doi: 10.1039/C7MD00252A. PubMed DOI PMC
Wong P.A.L., Cheung M.K., Lo W.-H., Chua H., Yu P.H.F. Investigation of the Effects of the Types of Food Waste Utilized as Carbon Source on the Molecular Weight Distributions and Thermal Properties of Polyhydroxybutyrate Produced by Two Strains of Microorganisms. E-Polymers. 2004;4:1–11. doi: 10.1515/epoly.2004.4.1.324. DOI
Tan G.-Y., Chen C.-L., Li L., Ge L., Wang L., Razaad I., Li Y., Zhao L., Mo Y., Wang J.-Y. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers. 2014;6:706. doi: 10.3390/polym6030706. DOI
Lu J., Tappel R.C., Nomura C.T. Mini-Review: Biosynthesis of Poly(hydroxyalkanoates) Polym. Rev. 2009;49:226–248. doi: 10.1080/15583720903048243. DOI
Steinbüchel A., Hein S. Biopolyesters. Springer; Berlin/Heidelberg, Germany: 2001. Biochemical and Molecular Basis of Microbial Synthesis of Polyhydroxyalkanoates in Microorganisms; pp. 81–123. PubMed
Witholt B., Kessler B. Perspectives of Medium Chain Length Poly(hydroxyalkanoates), a Versatile Set of Bacterial Bioplastics. Curr. Opin. Biotechnol. 1999;10:279–285. doi: 10.1016/S0958-1669(99)80049-4. PubMed DOI
Nomura C.T., Tanaka T., Eguen T.E., Appah A.S., Matsumoto K., Taguchi S., Ortiz C.L., Doi Y. FabG Mediates Polyhydroxyalkanoate Production from Both Related and Nonrelated Carbon Sources in Recombinant Escherichia Coli LS5218. Biotechnol. Prog. 2008;24:342–351. doi: 10.1021/bp070303y. PubMed DOI
Tsuge T., Fukui T., Matsusaki H., Taguchi S., Kobayashi G., Ishizaki A., Doi Y. Molecular Cloning of Two (r)-Specific Enoyl-CoA Hydratase Genes from Pseudomonas Aeruginosa and Their Use for Polyhydroxyalkanoate Synthesis. FEMS Microbiol. Lett. 2000;184:193–198. doi: 10.1111/j.1574-6968.2000.tb09013.x. PubMed DOI
Lenz R.W., Marchessault R.H. Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI
Aldor I.S., Kim S.-W., Prather K.L.J., Keasling J.D. Metabolic Engineering of a Novel Propionate-Independent Pathway for the Production of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) in Recombinant Salmonella Enterica Serovar Typhimurium. Appl. Environ. Microbiol. 2002;68:3848–3854. doi: 10.1128/AEM.68.8.3848-3854.2002. PubMed DOI PMC
Satoh Y., Murakami F., Tajima K., Munekata M. Enzymatic Synthesis of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) with CoA Recycling Using Polyhydroxyalkanoate Synthase and Acyl-CoA Synthetase. J. Biosci. Bioeng. 2005;99:508–511. doi: 10.1263/jbb.99.508. PubMed DOI
Rehm B.H.A. Polyester Synthases: Natural Catalysts for Plastics. Biochem. J. 2003;376:15–33. doi: 10.1042/bj20031254. PubMed DOI PMC
Rehm B.H.A. Biogenesis of Microbial Polyhydroxyalkanoate Granules: A Platform Technology for the Production of Tailor-Made Bioparticles. Curr. Issues Mol. Biol. 2007;9:41–62. doi: 10.21775/cimb.009.041. PubMed DOI
Chek M.F., Kim S.-Y., Mori T., Arsad H., Samian M.R., Sudesh K., Hakoshima T. Structure of Polyhydroxyalkanoate (PHA) Synthase PhaC from Chromobacterium Sp. USM2, Producing Biodegradable Plastics. Sci. Rep. 2017;7:5312. doi: 10.1038/s41598-017-05509-4. PubMed DOI PMC
Montenegro E., Delabary G., Silva M., Andreote F., Lima A. Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria. Bioengineering. 2017;4:52. doi: 10.3390/bioengineering4020052. PubMed DOI PMC
Pohlmann A., Fricke W.F., Reinecke F., Kusian B., Liesegang H., Cramm R., Eitinger T., Ewering C., Pötter M., Schwartz E., et al. Genome Sequence of the Bioplastic-Producing “Knallgas” Bacterium Ralstonia eutropha H16. Nat. Biotechnol. 2006;24:1257–1262. doi: 10.1038/nbt1244. PubMed DOI
Mezzolla V., D’Urso O., Poltronieri P. Role of PhaC Type i and Type II Enzymes during PHA Biosynthesis. Polymers. 2018;10:910. doi: 10.3390/polym10080910. PubMed DOI PMC
Ren Q., Sierro N., Witholt B., Kessler B. FabG, an NADPH-Dependent 3-Ketoacyl Reductase of Pseudomonas aeruginosa, Provides Precursors for Medium-Chain-Length Poly-3-Hydroxyalkanoate Biosynthesis in Escherichia coli. J. Bacteriol. 2000;182:2978–2981. doi: 10.1128/JB.182.10.2978-2981.2000. PubMed DOI PMC
Tsuge T., Taguchi K., Seiichi , Taguchi , Doi Y. Molecular Characterization and Properties of (r)-Specific Enoyl-CoA Hydratases from Pseudomonas aeruginosa: Metabolic Tools for Synthesis of Polyhydroxyalkanoates via Fatty Acid ß-Oxidation. Int. J. Biol. Macromol. 2003;31:195–205. doi: 10.1016/S0141-8130(02)00082-X. PubMed DOI
Lucas S., Copeland A., Lapidus A., Glavina del Rio T., Dalin E., Tice H., Pitluck S., Chain P., Malfatti S., Shin M., et al. Complete sequence of Stenotrophomonas maltophilia R551-3. [(accessed on 29 November 2022)]; Available online: https://www.ncbi.nlm.nih.gov/nuccore/NC_011071.1?report=genbank&from=2718240&to=2719304&strand=true.
Tsuge T., Hyakutake M., Mizuno K. Class IV Polyhydroxyalkanoate (PHA) Synthases and PHA-Producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6240. doi: 10.1007/s00253-015-6777-9. PubMed DOI
Ohji S., Yamazoe A., Hosoyama A., Tsuchikane K., Ezaki T., Fujita N. The Complete Genome Sequence of Pseudomonas putida NBRC 14164 t Confirms High Intraspecies Variation. Genome Announc. 2014;2:e00029-14. doi: 10.1128/genomeA.00029-14. PubMed DOI PMC
Idris S., Rahim R.A., Amirul A.-A.A. Bioprospecting and Molecular Identification of Used Transformer Oil-Degrading Bacteria for Bioplastics Production. Microorganisms. 2022;10:583. doi: 10.3390/microorganisms10030583. PubMed DOI PMC
Lee S.-E., Li Q.X., Yu J. Diverse Protein Regulations on PHA Formation in Ralstonia eutropha on Short Chain Organic Acids. Int. J. Biol. Sci. 2009;5:215–225. doi: 10.7150/ijbs.5.215. PubMed DOI PMC
McCool G.J., Cannon M.C. Polyhydroxyalkanoate Inclusion Body-Associated Proteins and Coding Region in Bacillus megaterium. J. Bacteriol. 1999;181:585–592. doi: 10.1128/JB.181.2.585-592.1999. PubMed DOI PMC
Singh M., Kumar P., Patel S.K.S., Kalia V.C. Production of Polyhydroxyalkanoate Co-Polymer by Bacillus thuringiensis. Indian J. Microbiol. 2013;53:77–83. doi: 10.1007/s12088-012-0294-7. PubMed DOI PMC
Mohandas S.P., Balan L., Jayanath G., Anoop B.S., Philip R., Cubelio S.S., Singh I.S.B. Biosynthesis and Characterization of Polyhydroxyalkanoate from Marine Bacillus cereus MCCB 281 Utilizing Glycerol as Carbon Source. Int. J. Biol. Macromol. 2018;119:380–392. doi: 10.1016/j.ijbiomac.2018.07.044. PubMed DOI
Ray S., Kalia V.C. Polyhydroxyalkanoate Production and Degradation Patterns in Bacillus Species. Indian J. Microbiol. 2017;57:387–392. doi: 10.1007/s12088-017-0676-y. PubMed DOI PMC
Kacanski M., Pucher L., Peral C., Dietrich T., Neureiter M. Cell Retention as a Viable Strategy for PHA Production from Diluted VFAs with Bacillus megaterium. Bioengineering. 2022;9:122. doi: 10.3390/bioengineering9030122. PubMed DOI PMC
Biedendieck R., Knuuti T., Moore S.J., Jahn D. The “Beauty in the Beast”—The Multiple Uses of Priestia megaterium in Biotechnology. Appl. Microbiol. Biotechnol. 2021;105:5719–5737. doi: 10.1007/s00253-021-11424-6. PubMed DOI PMC
Edilane M.F., de Lima Procópio Aldo R., Raimundo C.P.J., Sandra P.Z., de Lima Procópio Rudi E. Polyhydroxyalkanoate (PHA) Production by Lysinibacillus sp. Strain UEA-20.171. Afr. J. Biotechnol. 2016;15:1827–1834. doi: 10.5897/AJB2016.15329. DOI
Sagong H.-Y., Son H.F., Choi S.Y., Lee S.Y., Kim K.-J. Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends Biochem. Sci. 2018;43:790–805. doi: 10.1016/j.tibs.2018.08.005. PubMed DOI
Vu D.H., Mahboubi A., Root A., Heinmaa I., Taherzadeh M.J., Åkesson D. Thorough Investigation of the Effects of Cultivation Factors on Polyhydroalkanoates (PHAs) Production by Cupriavidus necator from Food Waste-Derived Volatile Fatty Acids. Fermentation. 2022;8:605. doi: 10.3390/fermentation8110605. DOI
Ekere I., Johnston B., Tchuenbou-Magaia F., Townrow D., Wojciechowski S., Marek A., Zawadiak J., Duale K., Zieba M., Sikorska W., et al. Bioconversion Process of Polyethylene from Waste Tetra Pak® Packaging to Polyhydroxyalkanoates. Polymers. 2022;14:2840. doi: 10.3390/polym14142840. PubMed DOI PMC
Favaro L., Basaglia M., Casella S. Improving Polyhydroxyalkanoate Production from Inexpensive Carbon Sources by Genetic Approaches: A Review. Biofuels Bioprod. Biorefin. 2019;13:208–227. doi: 10.1002/bbb.1944. DOI
Srirangan K., Liu X., Tran T.T., Charles T.C., Moo-Young M., Chou C.P. Engineering of Escherichia coli for Direct and Modulated Biosynthesis of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Copolymer Using Unrelated Carbon Sources. Sci. Rep. 2016;6:36470. doi: 10.1038/srep36470. PubMed DOI PMC
Lopes M.S.G., Rocha R.C.S., Zanotto S.P., Gomez J.G.C., da Silva L.F. Screening of Bacteria to Produce Polyhydroxyalkanoates from Xylose. World J. Microbiol. Biotechnol. 2009;25:1751–1756. doi: 10.1007/s11274-009-0072-9. DOI
Ferreira A.M., Queirós D., Gagliano M.C., Serafim L.S., Rossetti S. Polyhydroxyalkanoates-Accumulating Bacteria Isolated from Activated Sludge Acclimatized to Hardwood Sulphite Spent Liquor. Ann. Microbiol. 2016;66:833–842. doi: 10.1007/s13213-015-1169-z. DOI
Gasser I., Müller H., Berg G. Ecology and Characterization of Polyhydroxyalkanoate-Producing Microorganisms on and in Plants. FEMS Microbiol. Ecol. 2009;70:142–150. doi: 10.1111/j.1574-6941.2009.00734.x. PubMed DOI
Kumar V., Thakur V., Ambika , Kumar S., Singh D. Bioplastic Reservoir of Diverse Bacterial Communities Revealed along Altitude Gradient of Pangi-Chamba Trans-Himalayan Region. FEMS Microbiol. Lett. 2018;365:fny144. doi: 10.1093/femsle/fny144. PubMed DOI
Elsayed N.S., Aboshanab K.M., Aboulwafa M.M., Hassouna N.A. Cost-Effective Production of the Bio-Plastic Poly-Beta-Hydroxybutyrate Using Acinetobacter baumannii Isolate P39. J. Microbiol. Biotechnol. Food Sci. 2016;05:552–556. doi: 10.15414/jmbfs.2016.5.6.552-556. DOI
Pereira J.R., Araújo D., Marques A.C., Neves L.A., Grandfils C., Sevrin C., Alves V.D., Fortunato E., Reis M.A.M., Freitas F. Demonstration of the Adhesive Properties of the Medium-Chain-Length Polyhydroxyalkanoate Produced by Pseudomonas chlororaphis Subsp. Aurantiaca from Glycerol. Int. J. Biol. Macromol. 2019;122:1144–1151. doi: 10.1016/j.ijbiomac.2018.09.064. PubMed DOI
Mozejko-Ciesielska J., Szacherska K., Marciniak P. Pseudomonas Species as Producers of Eco-Friendly Polyhydroxyalkanoates. J. Polym. Environ. 2019;27:1151–1166. doi: 10.1007/s10924-019-01422-1. DOI
Rai R., Yunos D.M., Boccaccini A.R., Knowles J.C., Barker I.A., Howdle S.M., Tredwell G.D., Keshavarz T., Roy I. Poly-3-Hydroxyoctanoate p(3HO), a Medium Chain Length Polyhydroxyalkanoate Homopolymer from Pseudomonas mendocina. Biomacromolecules. 2011;12:2126–2136. doi: 10.1021/bm2001999. PubMed DOI
Fernández D., Rodríguez E., Bassas M., Viñas M., Solanas A.M., Llorens J., Marqués A.M., Manresa A. Agro-Industrial Oily Wastes as Substrates for PHA Production by the New Strain Pseudomonas aeruginosa NCIB 40045: Effect of Culture Conditions. Biochem. Eng. J. 2005;26:159–167. doi: 10.1016/j.bej.2005.04.022. DOI
Kanavaki I., Drakonaki A., Geladas E.D., Spyros A., Xie H., Tsiotis G. Polyhydroxyalkanoate (PHA) Production in Pseudomonas sp. phDV1 Strain Grown on Phenol as Carbon Sources. Microorganisms. 2021;9:1636. doi: 10.3390/microorganisms9081636. PubMed DOI PMC
Iqbal B., Khan N., Jamil N. Polyhydroxybutyrate Production by Stenotrophomonas and Exiguobacterium Using Renewable Carbon Source. Annu. Res. Rev. Biol. 2016;9:1–9. doi: 10.9734/ARRB/2016/23066. DOI
Kačániová M., Klúga A., Kántor A., Medo J., Žiarovská J., Puchalski C., Terentjeva M. Comparison of MALDI-TOF MS Biotyper and 16S rDNA sequencing for the identification of Pseudomonas species isolated from fish. Microb. Pathog. 2019;132:313–318. doi: 10.1016/j.micpath.2019.04.024. PubMed DOI
Kitamura S., Doi Y. Staining Method of Poly(3-Hydroxyalkanoic Acids) Producing Bacteria by Nile Blue. Biotechnol. Tech. 1994;8:345–350. doi: 10.1007/BF02428979. DOI
Godbole S. Methods for Identification, Quantification and Characterization of Polyhydroxyalkanoates. Int. J. Bioassays. 2016;5:4977–4983. doi: 10.21746/ijbio.2016.04.005. DOI
Schlegel H.G., Lafferty R., Krauss I. The Isolation of Mutants Not Accumulating Poly-β-Hydroxybutyric Acid. Arch. Für Mikrobiol. 1970;71:283–294. doi: 10.1007/BF00410161. PubMed DOI
Liu M., González J.E., Willis L.B., Walker G.C. A Novel Screening Method for Isolating Exopolysaccharide-Deficient Mutants. Appl. Environ. Microbiol. 1998;64:4600–4602. doi: 10.1128/AEM.64.11.4600-4602.1998. PubMed DOI PMC
Arcos-Hernandez M.V., Gurieff N., Pratt S., Magnusson P., Werker A., Vargas A., Lant P. Rapid Quantification of Intracellular PHA Using Infrared Spectroscopy: An Application in Mixed Cultures. J. Biotechnol. 2010;150:372–379. doi: 10.1016/j.jbiotec.2010.09.939. PubMed DOI