Genotypic and Phenotypic Detection of Polyhydroxyalkanoate Production in Bacterial Isolates from Food

. 2023 Jan 08 ; 24 (2) : . [epub] 20230108

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36674766

Grantová podpora
IGA/FT/2022/006 Internal Grant Agency of Tomas Bata University in Zlin

Polyhydroxyalkanoates (PHAs) are widely used in medical and potentially in other applications due to their biocompatibility and biodegradability. Understanding PHA biosynthetic pathways may lead to the detection of appropriate conditions (substrates) for producing a particular PHA type by a specific microbial strain. The aim of this study was to establish a method enabling potentially interesting PHA bacterial producers to be found. In the study, all four classes of PHA synthases and other genes involved in PHA formation (fabG, phaA, phaB, phaG, and phaJ) were detected by PCR in 64 bacterial collection strains and food isolates. Acinetobacter, Bacillus, Cupriavidus, Escherichia, Klebsiella, Lelliottia, Lysinibacillus, Mammaliicoccus, Oceanobacillus, Pantoea, Peribacillus, Priestia, Pseudomonas, Rahnella, Staphylococcus, and Stenotrophomonas genera were found among these strains. Fructose, glucose, sunflower oil, and propionic acid were utilized as carbon sources and PHA production was detected by Sudan black staining, Nile blue staining, and FTIR methods. The class I synthase and phaA genes were the most frequently found, indicating the strains' ability to synthesize PHA from carbohydrates. Among the tested bacterial strains, the Pseudomonas genus was identified as able to utilize all tested carbon sources. The Pseudomonas extremorientalis strain was determined as a prospect for biotechnology applications.

Zobrazit více v PubMed

Khanna S., Srivastava A.K. Recent Advances in Microbial Polyhydroxyalkanoates. Process Biochem. 2005;40:607–619. doi: 10.1016/j.procbio.2004.01.053. DOI

Chen G.-Q. Biofunctionalization of Polymers and Their Applications. Springer; Berlin/Heidelberg, Germany: 2011. Biofunctionalization of Polymers and Their Applications; pp. 29–45.

Gómez-Gast N., Cuellar M.D.R.L., Vergara-Porras B., Vieyra H. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers. Polymers. 2022;14:1114. doi: 10.3390/polym14061114. PubMed DOI PMC

Kosior E., Messias R., Fowler P. Lightweight Compostable Packaging: Literature Review. Resources Action Programme; Banbury, UK: 2006. The Waste.

Sharma S.K., Mudhoo A. Handbook of Applied Biopolymer Technology. Royal Society of Chemistry; Cambridge, UK: 2011.

Kumar A., Srivastava J.K., Mallick N., Singh A.K. Commercialization of Bacterial Cell Factories for the Sustainable Production of Polyhydroxyalkanoate Thermoplastics: Progress and Prospects. Recent Pat. Biotechnol. 2015;9:4–21. doi: 10.2174/2211550104666150615211414. PubMed DOI

Pulingam T., Appaturi J.N., Parumasivam T., Ahmad A., Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers. 2022;14:2141. doi: 10.3390/polym14112141. PubMed DOI PMC

Gadgil B.S.T., Killi N., Rathna G.V.N. Polyhydroxyalkanoates as Biomaterials. MedChemComm. 2017;8:1774–1787. doi: 10.1039/C7MD00252A. PubMed DOI PMC

Wong P.A.L., Cheung M.K., Lo W.-H., Chua H., Yu P.H.F. Investigation of the Effects of the Types of Food Waste Utilized as Carbon Source on the Molecular Weight Distributions and Thermal Properties of Polyhydroxybutyrate Produced by Two Strains of Microorganisms. E-Polymers. 2004;4:1–11. doi: 10.1515/epoly.2004.4.1.324. DOI

Tan G.-Y., Chen C.-L., Li L., Ge L., Wang L., Razaad I., Li Y., Zhao L., Mo Y., Wang J.-Y. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers. 2014;6:706. doi: 10.3390/polym6030706. DOI

Lu J., Tappel R.C., Nomura C.T. Mini-Review: Biosynthesis of Poly(hydroxyalkanoates) Polym. Rev. 2009;49:226–248. doi: 10.1080/15583720903048243. DOI

Steinbüchel A., Hein S. Biopolyesters. Springer; Berlin/Heidelberg, Germany: 2001. Biochemical and Molecular Basis of Microbial Synthesis of Polyhydroxyalkanoates in Microorganisms; pp. 81–123. PubMed

Witholt B., Kessler B. Perspectives of Medium Chain Length Poly(hydroxyalkanoates), a Versatile Set of Bacterial Bioplastics. Curr. Opin. Biotechnol. 1999;10:279–285. doi: 10.1016/S0958-1669(99)80049-4. PubMed DOI

Nomura C.T., Tanaka T., Eguen T.E., Appah A.S., Matsumoto K., Taguchi S., Ortiz C.L., Doi Y. FabG Mediates Polyhydroxyalkanoate Production from Both Related and Nonrelated Carbon Sources in Recombinant Escherichia Coli LS5218. Biotechnol. Prog. 2008;24:342–351. doi: 10.1021/bp070303y. PubMed DOI

Tsuge T., Fukui T., Matsusaki H., Taguchi S., Kobayashi G., Ishizaki A., Doi Y. Molecular Cloning of Two (r)-Specific Enoyl-CoA Hydratase Genes from Pseudomonas Aeruginosa and Their Use for Polyhydroxyalkanoate Synthesis. FEMS Microbiol. Lett. 2000;184:193–198. doi: 10.1111/j.1574-6968.2000.tb09013.x. PubMed DOI

Lenz R.W., Marchessault R.H. Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI

Aldor I.S., Kim S.-W., Prather K.L.J., Keasling J.D. Metabolic Engineering of a Novel Propionate-Independent Pathway for the Production of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) in Recombinant Salmonella Enterica Serovar Typhimurium. Appl. Environ. Microbiol. 2002;68:3848–3854. doi: 10.1128/AEM.68.8.3848-3854.2002. PubMed DOI PMC

Satoh Y., Murakami F., Tajima K., Munekata M. Enzymatic Synthesis of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) with CoA Recycling Using Polyhydroxyalkanoate Synthase and Acyl-CoA Synthetase. J. Biosci. Bioeng. 2005;99:508–511. doi: 10.1263/jbb.99.508. PubMed DOI

Rehm B.H.A. Polyester Synthases: Natural Catalysts for Plastics. Biochem. J. 2003;376:15–33. doi: 10.1042/bj20031254. PubMed DOI PMC

Rehm B.H.A. Biogenesis of Microbial Polyhydroxyalkanoate Granules: A Platform Technology for the Production of Tailor-Made Bioparticles. Curr. Issues Mol. Biol. 2007;9:41–62. doi: 10.21775/cimb.009.041. PubMed DOI

Chek M.F., Kim S.-Y., Mori T., Arsad H., Samian M.R., Sudesh K., Hakoshima T. Structure of Polyhydroxyalkanoate (PHA) Synthase PhaC from Chromobacterium Sp. USM2, Producing Biodegradable Plastics. Sci. Rep. 2017;7:5312. doi: 10.1038/s41598-017-05509-4. PubMed DOI PMC

Montenegro E., Delabary G., Silva M., Andreote F., Lima A. Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria. Bioengineering. 2017;4:52. doi: 10.3390/bioengineering4020052. PubMed DOI PMC

Pohlmann A., Fricke W.F., Reinecke F., Kusian B., Liesegang H., Cramm R., Eitinger T., Ewering C., Pötter M., Schwartz E., et al. Genome Sequence of the Bioplastic-Producing “Knallgas” Bacterium Ralstonia eutropha H16. Nat. Biotechnol. 2006;24:1257–1262. doi: 10.1038/nbt1244. PubMed DOI

Mezzolla V., D’Urso O., Poltronieri P. Role of PhaC Type i and Type II Enzymes during PHA Biosynthesis. Polymers. 2018;10:910. doi: 10.3390/polym10080910. PubMed DOI PMC

Ren Q., Sierro N., Witholt B., Kessler B. FabG, an NADPH-Dependent 3-Ketoacyl Reductase of Pseudomonas aeruginosa, Provides Precursors for Medium-Chain-Length Poly-3-Hydroxyalkanoate Biosynthesis in Escherichia coli. J. Bacteriol. 2000;182:2978–2981. doi: 10.1128/JB.182.10.2978-2981.2000. PubMed DOI PMC

Tsuge T., Taguchi K., Seiichi , Taguchi , Doi Y. Molecular Characterization and Properties of (r)-Specific Enoyl-CoA Hydratases from Pseudomonas aeruginosa: Metabolic Tools for Synthesis of Polyhydroxyalkanoates via Fatty Acid ß-Oxidation. Int. J. Biol. Macromol. 2003;31:195–205. doi: 10.1016/S0141-8130(02)00082-X. PubMed DOI

Lucas S., Copeland A., Lapidus A., Glavina del Rio T., Dalin E., Tice H., Pitluck S., Chain P., Malfatti S., Shin M., et al. Complete sequence of Stenotrophomonas maltophilia R551-3. [(accessed on 29 November 2022)]; Available online: https://www.ncbi.nlm.nih.gov/nuccore/NC_011071.1?report=genbank&from=2718240&to=2719304&strand=true.

Tsuge T., Hyakutake M., Mizuno K. Class IV Polyhydroxyalkanoate (PHA) Synthases and PHA-Producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6240. doi: 10.1007/s00253-015-6777-9. PubMed DOI

Ohji S., Yamazoe A., Hosoyama A., Tsuchikane K., Ezaki T., Fujita N. The Complete Genome Sequence of Pseudomonas putida NBRC 14164 t Confirms High Intraspecies Variation. Genome Announc. 2014;2:e00029-14. doi: 10.1128/genomeA.00029-14. PubMed DOI PMC

Idris S., Rahim R.A., Amirul A.-A.A. Bioprospecting and Molecular Identification of Used Transformer Oil-Degrading Bacteria for Bioplastics Production. Microorganisms. 2022;10:583. doi: 10.3390/microorganisms10030583. PubMed DOI PMC

Lee S.-E., Li Q.X., Yu J. Diverse Protein Regulations on PHA Formation in Ralstonia eutropha on Short Chain Organic Acids. Int. J. Biol. Sci. 2009;5:215–225. doi: 10.7150/ijbs.5.215. PubMed DOI PMC

McCool G.J., Cannon M.C. Polyhydroxyalkanoate Inclusion Body-Associated Proteins and Coding Region in Bacillus megaterium. J. Bacteriol. 1999;181:585–592. doi: 10.1128/JB.181.2.585-592.1999. PubMed DOI PMC

Singh M., Kumar P., Patel S.K.S., Kalia V.C. Production of Polyhydroxyalkanoate Co-Polymer by Bacillus thuringiensis. Indian J. Microbiol. 2013;53:77–83. doi: 10.1007/s12088-012-0294-7. PubMed DOI PMC

Mohandas S.P., Balan L., Jayanath G., Anoop B.S., Philip R., Cubelio S.S., Singh I.S.B. Biosynthesis and Characterization of Polyhydroxyalkanoate from Marine Bacillus cereus MCCB 281 Utilizing Glycerol as Carbon Source. Int. J. Biol. Macromol. 2018;119:380–392. doi: 10.1016/j.ijbiomac.2018.07.044. PubMed DOI

Ray S., Kalia V.C. Polyhydroxyalkanoate Production and Degradation Patterns in Bacillus Species. Indian J. Microbiol. 2017;57:387–392. doi: 10.1007/s12088-017-0676-y. PubMed DOI PMC

Kacanski M., Pucher L., Peral C., Dietrich T., Neureiter M. Cell Retention as a Viable Strategy for PHA Production from Diluted VFAs with Bacillus megaterium. Bioengineering. 2022;9:122. doi: 10.3390/bioengineering9030122. PubMed DOI PMC

Biedendieck R., Knuuti T., Moore S.J., Jahn D. The “Beauty in the Beast”—The Multiple Uses of Priestia megaterium in Biotechnology. Appl. Microbiol. Biotechnol. 2021;105:5719–5737. doi: 10.1007/s00253-021-11424-6. PubMed DOI PMC

Edilane M.F., de Lima Procópio Aldo R., Raimundo C.P.J., Sandra P.Z., de Lima Procópio Rudi E. Polyhydroxyalkanoate (PHA) Production by Lysinibacillus sp. Strain UEA-20.171. Afr. J. Biotechnol. 2016;15:1827–1834. doi: 10.5897/AJB2016.15329. DOI

Sagong H.-Y., Son H.F., Choi S.Y., Lee S.Y., Kim K.-J. Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends Biochem. Sci. 2018;43:790–805. doi: 10.1016/j.tibs.2018.08.005. PubMed DOI

Vu D.H., Mahboubi A., Root A., Heinmaa I., Taherzadeh M.J., Åkesson D. Thorough Investigation of the Effects of Cultivation Factors on Polyhydroalkanoates (PHAs) Production by Cupriavidus necator from Food Waste-Derived Volatile Fatty Acids. Fermentation. 2022;8:605. doi: 10.3390/fermentation8110605. DOI

Ekere I., Johnston B., Tchuenbou-Magaia F., Townrow D., Wojciechowski S., Marek A., Zawadiak J., Duale K., Zieba M., Sikorska W., et al. Bioconversion Process of Polyethylene from Waste Tetra Pak® Packaging to Polyhydroxyalkanoates. Polymers. 2022;14:2840. doi: 10.3390/polym14142840. PubMed DOI PMC

Favaro L., Basaglia M., Casella S. Improving Polyhydroxyalkanoate Production from Inexpensive Carbon Sources by Genetic Approaches: A Review. Biofuels Bioprod. Biorefin. 2019;13:208–227. doi: 10.1002/bbb.1944. DOI

Srirangan K., Liu X., Tran T.T., Charles T.C., Moo-Young M., Chou C.P. Engineering of Escherichia coli for Direct and Modulated Biosynthesis of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Copolymer Using Unrelated Carbon Sources. Sci. Rep. 2016;6:36470. doi: 10.1038/srep36470. PubMed DOI PMC

Lopes M.S.G., Rocha R.C.S., Zanotto S.P., Gomez J.G.C., da Silva L.F. Screening of Bacteria to Produce Polyhydroxyalkanoates from Xylose. World J. Microbiol. Biotechnol. 2009;25:1751–1756. doi: 10.1007/s11274-009-0072-9. DOI

Ferreira A.M., Queirós D., Gagliano M.C., Serafim L.S., Rossetti S. Polyhydroxyalkanoates-Accumulating Bacteria Isolated from Activated Sludge Acclimatized to Hardwood Sulphite Spent Liquor. Ann. Microbiol. 2016;66:833–842. doi: 10.1007/s13213-015-1169-z. DOI

Gasser I., Müller H., Berg G. Ecology and Characterization of Polyhydroxyalkanoate-Producing Microorganisms on and in Plants. FEMS Microbiol. Ecol. 2009;70:142–150. doi: 10.1111/j.1574-6941.2009.00734.x. PubMed DOI

Kumar V., Thakur V., Ambika , Kumar S., Singh D. Bioplastic Reservoir of Diverse Bacterial Communities Revealed along Altitude Gradient of Pangi-Chamba Trans-Himalayan Region. FEMS Microbiol. Lett. 2018;365:fny144. doi: 10.1093/femsle/fny144. PubMed DOI

Elsayed N.S., Aboshanab K.M., Aboulwafa M.M., Hassouna N.A. Cost-Effective Production of the Bio-Plastic Poly-Beta-Hydroxybutyrate Using Acinetobacter baumannii Isolate P39. J. Microbiol. Biotechnol. Food Sci. 2016;05:552–556. doi: 10.15414/jmbfs.2016.5.6.552-556. DOI

Pereira J.R., Araújo D., Marques A.C., Neves L.A., Grandfils C., Sevrin C., Alves V.D., Fortunato E., Reis M.A.M., Freitas F. Demonstration of the Adhesive Properties of the Medium-Chain-Length Polyhydroxyalkanoate Produced by Pseudomonas chlororaphis Subsp. Aurantiaca from Glycerol. Int. J. Biol. Macromol. 2019;122:1144–1151. doi: 10.1016/j.ijbiomac.2018.09.064. PubMed DOI

Mozejko-Ciesielska J., Szacherska K., Marciniak P. Pseudomonas Species as Producers of Eco-Friendly Polyhydroxyalkanoates. J. Polym. Environ. 2019;27:1151–1166. doi: 10.1007/s10924-019-01422-1. DOI

Rai R., Yunos D.M., Boccaccini A.R., Knowles J.C., Barker I.A., Howdle S.M., Tredwell G.D., Keshavarz T., Roy I. Poly-3-Hydroxyoctanoate p(3HO), a Medium Chain Length Polyhydroxyalkanoate Homopolymer from Pseudomonas mendocina. Biomacromolecules. 2011;12:2126–2136. doi: 10.1021/bm2001999. PubMed DOI

Fernández D., Rodríguez E., Bassas M., Viñas M., Solanas A.M., Llorens J., Marqués A.M., Manresa A. Agro-Industrial Oily Wastes as Substrates for PHA Production by the New Strain Pseudomonas aeruginosa NCIB 40045: Effect of Culture Conditions. Biochem. Eng. J. 2005;26:159–167. doi: 10.1016/j.bej.2005.04.022. DOI

Kanavaki I., Drakonaki A., Geladas E.D., Spyros A., Xie H., Tsiotis G. Polyhydroxyalkanoate (PHA) Production in Pseudomonas sp. phDV1 Strain Grown on Phenol as Carbon Sources. Microorganisms. 2021;9:1636. doi: 10.3390/microorganisms9081636. PubMed DOI PMC

Iqbal B., Khan N., Jamil N. Polyhydroxybutyrate Production by Stenotrophomonas and Exiguobacterium Using Renewable Carbon Source. Annu. Res. Rev. Biol. 2016;9:1–9. doi: 10.9734/ARRB/2016/23066. DOI

Kačániová M., Klúga A., Kántor A., Medo J., Žiarovská J., Puchalski C., Terentjeva M. Comparison of MALDI-TOF MS Biotyper and 16S rDNA sequencing for the identification of Pseudomonas species isolated from fish. Microb. Pathog. 2019;132:313–318. doi: 10.1016/j.micpath.2019.04.024. PubMed DOI

Kitamura S., Doi Y. Staining Method of Poly(3-Hydroxyalkanoic Acids) Producing Bacteria by Nile Blue. Biotechnol. Tech. 1994;8:345–350. doi: 10.1007/BF02428979. DOI

Godbole S. Methods for Identification, Quantification and Characterization of Polyhydroxyalkanoates. Int. J. Bioassays. 2016;5:4977–4983. doi: 10.21746/ijbio.2016.04.005. DOI

Schlegel H.G., Lafferty R., Krauss I. The Isolation of Mutants Not Accumulating Poly-β-Hydroxybutyric Acid. Arch. Für Mikrobiol. 1970;71:283–294. doi: 10.1007/BF00410161. PubMed DOI

Liu M., González J.E., Willis L.B., Walker G.C. A Novel Screening Method for Isolating Exopolysaccharide-Deficient Mutants. Appl. Environ. Microbiol. 1998;64:4600–4602. doi: 10.1128/AEM.64.11.4600-4602.1998. PubMed DOI PMC

Arcos-Hernandez M.V., Gurieff N., Pratt S., Magnusson P., Werker A., Vargas A., Lant P. Rapid Quantification of Intracellular PHA Using Infrared Spectroscopy: An Application in Mixed Cultures. J. Biotechnol. 2010;150:372–379. doi: 10.1016/j.jbiotec.2010.09.939. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...