Treatment of Spent Pickling Solutions by Diffusion Dialysis Using Anion-Exchange Membrane Neosepta-AFN
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36676816
PubMed Central
PMC9864578
DOI
10.3390/membranes13010009
PII: membranes13010009
Knihovny.cz E-zdroje
- Klíčová slova
- anion-exchange membrane, continuous diffusion dialysis, ferric nitrate, hydrofluoric acid, spent pickling solution,
- Publikační typ
- časopisecké články MeSH
This article presents the possibility of using diffusion dialysis for processing spent pickling solution from pickling stainless steels with a mixture of nitric acid and hydrofluoric acid. A counter-current two-compartment dialyzer equipped with an anion-exchange membrane Neosepta-AFN was used to study and compare the diffusion dialysis of model mixture of hydrofluoric acid and ferric nitrate and a real spent pickling solution. The separation efficiency was characterized by the acid recovery yield, the rejection coefficient of the metals, the permeability coefficient of the membrane, and the separation factor. These characteristics were calculated from the data obtained at steady state. For the real spent pickling solution tested, the permeability values of nitrates 1.7 × 10-6 m s-1, fluorides 0.4 × 10-6 m s-1, and ferric ions 1.1 × 10-7 m s-1 were achieved. The separation factor for nitrates/ferric ions was 15.7 and 3.6 for fluorides/ferric ions. Furthermore, the dependencies of recovery yield and rejection for different concentrations of hydrofluoric acid and ferric nitrate were determined.
Zobrazit více v PubMed
Regel-Rosocka M. A review on methods of regeneration of spent pickling solutions from steel processing. J. Hazard. Mater. 2010;177:57–69. doi: 10.1016/j.jhazmat.2009.12.043. PubMed DOI
Devi A., Singhal A., Gupta R., Panzade P. A study on treatment methods of spent pickling liquor generated by pickling process of steel. Clean Technol. Environ. Policy. 2014;16:1515–1527. doi: 10.1007/s10098-014-0726-7. DOI
Lan S.J., Wen X.M., Zhu Z.H., Shao F., Zhu C.L. Recycling of spent nitric acid solution from electrodialysis by diffusion dialysis. Desalination. 2011;278:227–230. doi: 10.1016/j.desal.2011.05.031. DOI
Li W., Zhang Y.M., Huang J., Zhu X.B., Wang Y. Separation and recovery of sulfuric acid from acidic vanadium leaching solution by diffusion dialysis. Sep. Purif. Technol. 2012;96:44–49. doi: 10.1016/j.seppur.2012.05.011. DOI
Kim J.Y., Shin C.H., Choi H., Bae W. Recovery of phosphoric acid from mixed waste acids of semiconductor industry by diffusion dialysis and vacuum distillation. Sep. Purif. Technol. 2012;90:64–68. doi: 10.1016/j.seppur.2012.02.013. DOI
Ahn J.W., Ryu S.H., Kim T.Y. Recovery of tin and nitric acid from spent solder stripping solutions. Korean J. Met. Mater. 2015;53:426–431. doi: 10.3365/KJMM.2015.53.6.426. DOI
Xiao H.F., Chen Q., Cheng H., Li X.M., Qin W.M., Chen B.S., Xiao D., Zhang W.M. Selective removal of halides from spent zinc sulfate electrolyte by diffusion dialysis. J. Membr. Sci. 2017;537:111–118. doi: 10.1016/j.memsci.2017.05.009. DOI
Wang K., Zhang Y.M., Huang J., Liu T., Wang J.P. Recovery of sulfuric acid from a stone coal acid leaching solution by diffusion dialysis. Hydrometallurgy. 2017;173:9–14. doi: 10.1016/j.hydromet.2017.07.005. DOI
Amrane C., Lalmi A., Bouhidel K.E. Coupling diffusion dialysis with precipitation cementation to separate and recover nitric acid, Cu plus plus, Zn plus plus and Pb plus plus from the wastewater of a brass pickling bath. Int. J. Glob. Warm. 2017;11:337–357. doi: 10.1504/IJGW.2017.10001253. DOI
Bendova H., Weidlich T. Application of diffusion dialysis in hydrometallurgical separation of nickel from spent Raney Ni catalyst. Sep. Sci. Technol. 2018;53:1218–1222. doi: 10.1080/01496395.2017.1329839. DOI
Gueccia R., Aguirre A.R., Randazzo S., Cipollina A., Micale G. Diffusion Dialysis for Separation of Hydrochloric Acid, Iron and Zinc Ions from Highly Concentrated Pickling Solutions. Membranes. 2020;10:129. doi: 10.3390/membranes10060129. PubMed DOI PMC
Culcasi A., Gueccia R., Randazzo S., Cipollina A., Micale G. Design of a novel membrane-integrated waste acid recovery process from pickling solution. J. Clean Prod. 2019;236:117623. doi: 10.1016/j.jclepro.2019.117623. DOI
Gueccia R., Winter D., Randazzo S., Cipollina A., Koschikowski J., Micale G.D.M. An integrated approach for the HCl and metals recovery from waste pickling solutions: Pilot plant and design operations. Chem. Eng. Res. Des. 2021;168:383–396. doi: 10.1016/j.cherd.2021.02.016. DOI
Gueccia R., Bogle D., Randazzo S., Tamburini A., Cipollina A., Winter D., Koschikowski J., Micale G. Economic Benefits of Waste Pickling Solution Valorization. Membranes. 2022;12:114. doi: 10.3390/membranes12020114. PubMed DOI PMC
Zhang X., Fan M.Q., Li W.J., Wu C.M., Han X.Z., Zhong S., Chen Y.S. Application and modeling of pressure-concentration double-driven diffusion dialysis. J. Membr. Sci. 2020;595:117478. doi: 10.1016/j.memsci.2019.117478. DOI
Du M.G., Chen Q., Gao W.T., Li X.M., Zhang W.M. Selective removal of chloride from the adipate formation bath in foil industry by diffusion dialysis. Sep. Purif. Technol. 2020;230:115871. doi: 10.1016/j.seppur.2019.115871. DOI
Hammache Z., Bensaadi S., Berbar Y., Audebrand N., Szymczyk A., Amara M. Recovery of rare earth elements from electronic waste by diffusion dialysis. Sep. Purif. Technol. 2021;254:117641. doi: 10.1016/j.seppur.2020.117641. DOI
Loza S., Loza N., Korzhov A., Romanyuk N., Kovalchuk N., Melnikov S. Hybrid Membrane Technology for Acid Recovery from Wastewater in Coated Steel Wire Production: A Pilot Scale Study. Membranes. 2022;12:1196. doi: 10.3390/membranes12121196. PubMed DOI PMC
Merkel A., Copak L., Dvorak L., Golubenko D., Seda L. Recovery of Spent Sulphuric Acid by Diffusion Dialysis Using a Spiral Wound Module. Int. J. Mol. Sci. 2021;22:11819. doi: 10.3390/ijms222111819. PubMed DOI PMC
Merkel A., Copak L., Golubenko D., Dvorak L., Vavro M., Yaroslavtsev A., Seda L. Recovery of Hydrochloric Acid from Industrial Wastewater by Diffusion Dialysis Using a Spiral-Wound Module. Int. J. Mol. Sci. 2022;23:6212. doi: 10.3390/ijms23116212. PubMed DOI PMC
Bendová H., Palatý Z., Žáková A. Continuous dialysis of inorganic acids: Permeability of Neosepta-AFN membrane. Desalination. 2009;240:333–340. doi: 10.1016/j.desal.2007.10.096. DOI
Palatý Z., Bendová H. Continuous dialysis of sulphuric acid and sodium sulphate mixture. J. Membr. Sci. 2016;497:36–46. doi: 10.1016/j.memsci.2015.07.017. DOI
Coulson J.M., Richardson J.F. Coulson & Richardson Chemical Engineering. 6th ed. Volume 1 Elsevier; Amsterdam, The Netherlands: 2000.
Bendová H., Šnejdrla P., Palatý Z. Continuous dialysis of selected salts of sulphuric acid. Membr. Water Treat. 2010;1:171–179. doi: 10.12989/mwt.2010.1.3.171. DOI