Clinical Outcome of Coronavirus Disease 2019 in Patients with Primary Antibody Deficiencies

. 2023 Jan 09 ; 12 (1) : . [epub] 20230109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36678457

Grantová podpora
NU22-05-00402 Ministry of Health

In 2019, the novel coronavirus, SARS-CoV-2, caused a worldwide pandemic, affecting more than 630 million individuals and causing 6.5 million deaths. In the general population, poorer outcomes have been associated with older age, chronic lung and cardiovascular diseases, and lymphopenia, highlighting the important role of cellular immunity in the immune response against SARS-CoV-2. Moreover, SARS-CoV-2 variants may have a significant impact on disease severity. There is a significant overlap with complications commonly found in inborn errors of immunity (IEI), such as primary antibody deficiencies. The results of various studies have provided ambiguous findings. Several studies identified risk factors in the general population with a minor impact on SARS-CoV-2 infection. However, other studies have found a significant contribution of underlying immunodeficiency and immune-system dysregulation to the disease course. This ambiguity probably reflects the demographic differences and viral evolution. Impaired antibody production was associated with prolonged viral shedding, suggesting a critical role of humoral immunity in controlling SARS-CoV-2 infection. This may explain the poorer outcomes in primary antibody deficiencies compared to other IEIs. Understanding coronavirus disease 2019 (COVID-19) pathogenesis and identifying risk factors may help us identify patients at high risk of severe COVID-19 for whom preventive measures should be introduced.

Zobrazit více v PubMed

Cui J., Li F., Shi Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9. PubMed DOI PMC

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC

World Health Organization WHO Coronavirus (COVID-19) Dashboard. 2022. [(accessed on 24 November 2022)]. Available online: https://covid19.who.int/

Resnick E.S., Moshier E.L., Godbold J.H., Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119:1650–1657. doi: 10.1182/blood-2011-09-377945. PubMed DOI PMC

Ho H.-E., Cunningham-Rundles C. Non-infectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front. Immunol. 2020;11:149. doi: 10.3389/fimmu.2020.00149. PubMed DOI PMC

Grainger R., Kim A.H.J., Conway R., Yazdany J., Robinson P.C. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat. Rev. Rheumatol. 2022;18:191–204. doi: 10.1038/s41584-022-00755-x. PubMed DOI PMC

Belsky J.A., Tullius B.P., Lamb M.G., Sayegh R., Stanek J.R., Auletta J.J. COVID-19 in immunocompromised patients: A systematic review of cancer, hematopoietic cell and solid organ transplant patients. J. Infect. 2021;82:329–338. doi: 10.1016/j.jinf.2021.01.022. PubMed DOI PMC

Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC

Gasparyan A.Y., Ayvazyan L., Blackmore H., Kitas G.D. Writing a narrative biomedical review: Considerations for authors, peer reviewers, and editors. Rheumatol. Int. 2011;31:1409–1417. doi: 10.1007/s00296-011-1999-3. PubMed DOI

Abolhassani H., Azizi G., Sharifi L., Yazdani R., Mohsenzadegan M., Delavari S., Sohani M., Shirmast P., Chavoshzadeh Z., Mahdaviani S.A., et al. Global systematic review of primary immunodeficiency registries. Expert Rev. Clin. Immunol. 2020;16:717–732. doi: 10.1080/1744666X.2020.1801422. PubMed DOI

El-Helou S.M., Biegner A.-K., Bode S., Ehl S.R., Heeg M., Maccari M.E., Ritterbusch H., Speckmann C., Rusch S., Scheible R., et al. The German National Registry of Primary Immunodeficiencies (2012–2017) Front. Immunol. 2019;10:1272. doi: 10.3389/fimmu.2019.01272. PubMed DOI PMC

Grimbacher B. The European Society for Immunodeficiencies (ESID) registry 2014. Clin. Exp. Immunol. 2014;178((Suppl. S1)):18–20. doi: 10.1111/cei.12496. PubMed DOI PMC

Bousfiha A., Moundir A., Tangye S.G., Picard C., Jeddane L., Al-Herz W., Rundles C.C., Franco J.L., Holland S.M., Klein C., et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J. Clin. Immunol. 2022;42:1508–1520. doi: 10.1007/s10875-022-01352-z. PubMed DOI

Yazdani R., Azizi G., Abolhassani H., Aghamohammadi A. Selective IgA Deficiency: Epidemiology, Pathogenesis, Clinical Phenotype, Diagnosis, Prognosis and Management. Scand. J. Immunol. 2017;85:3–12. doi: 10.1111/sji.12499. PubMed DOI

Weifenbach N., Schneckenburger A.A.C., Lötters S. Global Distribution of Common Variable Immunodeficiency (CVID) in the Light of the UNDP Human Development Index (HDI): A Preliminary Perspective of a Rare Disease. J. Immunol. Res. 2020;2020:8416124. doi: 10.1155/2020/8416124. PubMed DOI PMC

Tangye S.G., Al-Herz W., Bousfiha A., Cunningham-Rundles C., Franco J.L., Holland S.M., Klein C., Morio T., Oksenhendler E., Picard C., et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022;42:1473–1507. doi: 10.1007/s10875-022-01289-3. PubMed DOI PMC

Vale A.M., Schroeder H.W. Clinical consequences of defects in B-cell development. J. Allergy Clin. Immunol. 2010;125:778–787. doi: 10.1016/j.jaci.2010.02.018. PubMed DOI PMC

Cardenas-Morales M., Hernandez-Trujillo V.P. Agammaglobulinemia: From X-linked to Autosomal Forms of Disease. Clin. Rev. Allergy Immunol. 2022;63:22–35. doi: 10.1007/s12016-021-08870-5. PubMed DOI PMC

Conley M.E., Broides A., Hernandez-Trujillo V., Howard V., Kanegane H., Miyawaki T., Shurtleff S.A. Genetic analysis of patients with defects in early B-cell development. Immunol. Rev. 2005;203:216–234. doi: 10.1111/j.0105-2896.2005.00233.x. PubMed DOI

Aggarwal V., Banday A.Z., Jindal A.K., Das J., Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis. 2020;7:26–37. doi: 10.1016/j.gendis.2019.10.002. PubMed DOI PMC

Bogaert D.J.A., Dullaers M., Lambrecht B.N., Vermaelen K.Y., de Baere E., Haerynck F. Genes associated with common variable immunodeficiency: One diagnosis to rule them all? J. Med. Genet. 2016;53:575–590. doi: 10.1136/jmedgenet-2015-103690. PubMed DOI

de Valles-Ibáñez G., Esteve-Solé A., Piquer M., González-Navarro E.A., Hernandez-Rodriguez J., Laayouni H., González-Roca E., Plaza-Martin A.M., Deyà-Martínez Á., Martín-Nalda A., et al. Evaluating the Genetics of Common Variable Immunodeficiency: Monogenetic Model and Beyond. Front. Immunol. 2018;9:636. doi: 10.3389/fimmu.2018.00636. PubMed DOI PMC

Abolhassani H., Aghamohammadi A., Hammarström L. Monogenic mutations associated with IgA deficiency. Expert Rev. Clin. Immunol. 2016;12:1321–1335. doi: 10.1080/1744666X.2016.1198696. PubMed DOI

Nechvatalova J., Pikulova Z., Stikarovska D., Pesak S., Vlkova M., Litzman J. B-lymphocyte subpopulations in patients with selective IgA deficiency. J. Clin. Immunol. 2012;32:441–448. doi: 10.1007/s10875-012-9655-6. PubMed DOI

Wehr C., Kivioja T., Schmitt C., Ferry B., Witte T., Eren E., Vlkova M., Hernandez M., Detkova D., Bos P.R., et al. The EUROclass trial: Defining subgroups in common variable immunodeficiency. Blood. 2008;111:77–85. doi: 10.1182/blood-2007-06-091744. PubMed DOI

Warnatz K., Schlesier M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B Clin. Cytom. 2008;74:261–271. doi: 10.1002/cyto.b.20432. PubMed DOI

Isnardi I., Ng Y.-S., Menard L., Meyers G., Saadoun D., Srdanovic I., Samuels J., Berman J., Buckner J.H., Cunningham-Rundles C., et al. Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones. Blood. 2010;115:5026–5036. doi: 10.1182/blood-2009-09-243071. PubMed DOI PMC

Unger S., Seidl M., van Schouwenburg P., Rakhmanov M., Bulashevska A., Frede N., Grimbacher B., Pfeiffer J., Schrenk K., Munoz L., et al. The TH1 phenotype of follicular helper T cells indicates an IFN-γ-associated immune dysregulation in patients with CD21low common variable immunodeficiency. J. Allergy Clin. Immunol. 2018;141:730–740. doi: 10.1016/j.jaci.2017.04.041. PubMed DOI

Thorarinsdottir K., Camponeschi A., Gjertsson I., Mårtensson I.-L. CD21 -/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease. Scand. J. Immunol. 2015;82:254–261. doi: 10.1111/sji.12339. PubMed DOI

Barsotti N.S., Almeida R.R., Costa P.R., Barros M.T., Kalil J., Kokron C.M. IL-10-Producing Regulatory B Cells Are Decreased in Patients with Common Variable Immunodeficiency. PLoS ONE. 2016;11:e0151761. doi: 10.1371/journal.pone.0151761. PubMed DOI PMC

Azizi G., Rezaei N., Kiaee F., Tavakolinia N., Yazdani R., Mirshafiey A., Aghamohammadi A. T-Cell Abnormalities in Common Variable Immunodeficiency. J. Investig. Allergol. Clin. Immunol. 2016;26:233–243. doi: 10.18176/jiaci.0069. PubMed DOI

Wong G.K., Huissoon A.P. T-cell abnormalities in common variable immunodeficiency: The hidden defect. J. Clin. Pathol. 2016;69:672–676. doi: 10.1136/jclinpath-2015-203351. PubMed DOI PMC

Azizi G., Abolhassani H., Kiaee F., Tavakolinia N., Rafiemanesh H., Yazdani R., Mahdaviani S.A., Mohammadikhajehdehi S., Tavakol M., Ziaee V., et al. Autoimmunity and its association with regulatory T cells and B cell subsets in patients with common variable immunodeficiency. Allergol. Immunopathol. (Madr.) 2018;46:127–135. doi: 10.1016/j.aller.2017.04.004. PubMed DOI

Malphettes M., Gérard L., Carmagnat M., Mouillot G., Vince N., Boutboul D., Bérezné A., Nove-Josserand R., Lemoing V., Tetu L., et al. Late-onset combined immune deficiency: A subset of common variable immunodeficiency with severe T cell defect. Clin. Infect. Dis. 2009;49:1329–1338. doi: 10.1086/606059. PubMed DOI

Oksenhendler E., Gérard L., Fieschi C., Malphettes M., Mouillot G., Jaussaud R., Viallard J.-F., Gardembas M., Galicier L., Schleinitz N., et al. Infections in 252 patients with common variable immunodeficiency. Clin. Infect. Dis. 2008;46:1547–1554. doi: 10.1086/587669. PubMed DOI

Jones T.P.W., Buckland M., Breuer J., Lowe D.M. Viral infection in primary antibody deficiency syndromes. Rev. Med. Virol. 2019;29:e2049. doi: 10.1002/rmv.2049. PubMed DOI

Janssen L.M., van der Flier M., de Vries E. Lessons learned from the clinical presentation of common variable immunodeficiency disorders: A systematic review and meta-analysis. Front. Immunol. 2021;12:620709. doi: 10.3389/fimmu.2021.620709. PubMed DOI PMC

Hanitsch L., Baumann U., Boztug K., Burkhard-Meier U., Fasshauer M., Habermehl P., Hauck F., Klock G., Liese J., Meyer O., et al. Treatment and management of primary antibody deficiency: German interdisciplinary evidence-based consensus guideline. Eur. J. Immunol. 2020;50:1432–1446. doi: 10.1002/eji.202048713. PubMed DOI

Jolles S., Orange J.S., Gardulf A., Stein M.R., Shapiro R., Borte M., Berger M. Current treatment options with immunoglobulin G for the individualization of care in patients with primary immunodeficiency disease. Clin. Exp. Immunol. 2015;179:146–160. doi: 10.1111/cei.12485. PubMed DOI PMC

Abolhassani H., Sagvand B.T., Shokuhfar T., Mirminachi B., Rezaei N., Aghamohammadi A. A review on guidelines for management and treatment of common variable immunodeficiency. Expert Rev. Clin. Immunol. 2013;9:561–574; quiz 575. doi: 10.1586/eci.13.30. PubMed DOI

Cunningham-Rundles C. How I treat common variable immune deficiency. Blood. 2010;116:7–15. doi: 10.1182/blood-2010-01-254417. PubMed DOI PMC

Salzer U., Warnatz K., Peter H.H. Common variable immunodeficiency: An update. Arthritis Res. Ther. 2012;14:223. doi: 10.1186/ar4032. PubMed DOI PMC

Mormile I., Punziano A., Riolo C.A., Granata F., Williams M., de Paulis A., Spadaro G., Rossi F.W. Common Variable Immunodeficiency and Autoimmune Diseases: A Retrospective Study of 95 Adult Patients in a Single Tertiary Care Center. Front. Immunol. 2021;12:652487. doi: 10.3389/fimmu.2021.652487. PubMed DOI PMC

Lo B., Zhang K., Lu W., Zheng L., Zhang Q., Kanellopoulou C., Zhang Y., Liu Z., Fritz J.M., Marsh R., et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349:436–440. doi: 10.1126/science.aaa1663. PubMed DOI

Egg D., Rump I.C., Mitsuiki N., Rojas-Restrepo J., Maccari M.-E., Schwab C., Gabrysch A., Warnatz K., Goldacker S., Patiño V., et al. Therapeutic options for CTLA-4 insufficiency. J. Allergy Clin. Immunol. 2022;149:736–746. doi: 10.1016/j.jaci.2021.04.039. PubMed DOI

Coulter T.I., Cant A.J. The Treatment of Activated PI3Kδ Syndrome. Front. Immunol. 2018;9:2043. doi: 10.3389/fimmu.2018.02043. PubMed DOI PMC

Maccari M.E., Abolhassani H., Aghamohammadi A., Aiuti A., Aleinikova O., Bangs C., Baris S., Barzaghi F., Baxendale H., Buckland M., et al. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry. Front. Immunol. 2018;9:543. doi: 10.3389/fimmu.2018.00543. PubMed DOI PMC

Pecoraro A., Crescenzi L., Galdiero M.R., Marone G., Rivellese F., Rossi F.W., de Paulis A., Genovese A., Spadaro G. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin. Mol. Allergy. 2019;17:9. doi: 10.1186/s12948-019-0113-3. PubMed DOI PMC

de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. PubMed DOI PMC

Hu B., Guo H., Zhou P., Shi Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. PubMed DOI PMC

Holmes E.C., Goldstein S.A., Rasmussen A.L., Robertson D.L., Crits-Christoph A., Wertheim J.O., Anthony S.J., Barclay W.S., Boni M.F., Doherty P.C., et al. The origins of SARS-CoV-2: A critical review. Cell. 2021;184:4848–4856. doi: 10.1016/j.cell.2021.08.017. PubMed DOI PMC

Prince T., Smith S.L., Radford A.D., Solomon T., Hughes G.L., Patterson E.I. SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses. 2021;13:494. doi: 10.3390/v13030494. PubMed DOI PMC

Yang H., Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 2021;19:685–700. doi: 10.1038/s41579-021-00630-8. PubMed DOI PMC

Wang M.-Y., Zhao R., Gao L.-J., Gao X.-F., Wang D.-P., Cao J.-M. SARS-CoV-2, Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell Infect. Microbiol. 2020;10:587269. doi: 10.3389/fcimb.2020.587269. PubMed DOI PMC

Sridhar S., Nicholls J. Pathophysiology of infection with SARS-CoV-2-What is known and what remains a mystery. Respirology. 2021;26:652–665. doi: 10.1111/resp.14091. PubMed DOI PMC

Cevik M., Kuppalli K., Kindrachuk J., Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862. doi: 10.1136/bmj.m3862. PubMed DOI

Chu H., Yuen K.-Y. Pathogenicity of SARS-CoV-2 Omicron. Clin. Transl. Med. 2022;12:e880. doi: 10.1002/ctm2.880. PubMed DOI PMC

Diamond M.S., Kanneganti T.-D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022;23:165–176. doi: 10.1038/s41590-021-01091-0. PubMed DOI PMC

Lamers M.M., Haagmans B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022;20:270–284. doi: 10.1038/s41579-022-00713-0. PubMed DOI

Del Valle D.M., Kim-Schulze S., Huang H.-H., Beckmann N.D., Nirenberg S., Wang B., Lavin Y., Swartz T.H., Madduri D., Stock A., et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020;26:1636–1643. doi: 10.1038/s41591-020-1051-9. PubMed DOI PMC

Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brüggen M.-C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75:1564–1581. doi: 10.1111/all.14364. PubMed DOI PMC

Gusev E., Sarapultsev A., Solomatina L., Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int. J. Mol. Sci. 2022;23:1716. doi: 10.3390/ijms23031716. PubMed DOI PMC

Yaugel-Novoa M., Bourlet T., Paul S. Role of the humoral immune response during COVID-19, guilty or not guilty? Mucosal Immunol. 2022;15:1170–1180. doi: 10.1038/s41385-022-00569-w. PubMed DOI PMC

Milota T., Strizova Z., Smetanova J., Sediva A. An immunologist’s perspective on anti-COVID-19 vaccines. Curr. Opin. Allergy Clin. Immunol. 2021;21:545–552. doi: 10.1097/ACI.0000000000000788. PubMed DOI

Qi H., Liu B., Wang X., Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat. Immunol. 2022;23:1008–1020. doi: 10.1038/s41590-022-01248-5. PubMed DOI

Moss P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022;23:186–193. doi: 10.1038/s41590-021-01122-w. PubMed DOI

Niessl J., Sekine T., Buggert M. T cell immunity to SARS-CoV-2. Semin. Immunol. 2021;55:101505. doi: 10.1016/j.smim.2021.101505. PubMed DOI PMC

Vardhana S., Baldo L., Morice W.G., Wherry E.J. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci. Immunol. 2022;7:eabo1303. doi: 10.1126/sciimmunol.abo1303. PubMed DOI PMC

Geers D., Shamier M.C., Bogers S., den Hartog G., Gommers L., Nieuwkoop N.N., Schmitz K.S., Rijsbergen L.C., van Osch J.A.T., Dijkhuizen E., et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 2021;6:abj1750. doi: 10.1126/sciimmunol.abj1750. PubMed DOI PMC

Mlcochova P., Kemp S.A., Dhar M.S., Papa G., Meng B., Ferreira I.A.T.M., Datir R., Collier D.A., Albecka A., Singh S., et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599:114–119. doi: 10.1038/s41586-021-03944-y. PubMed DOI PMC

Harvey W.T., Carabelli A.M., Jackson B., Gupta R.K., Thomson E.C., Harrison E.M., Ludden C., Reeve R., Rambaut A., Peacock S.J., et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0. PubMed DOI PMC

Fan Y., Li X., Zhang L., Wan S., Zhang L., Zhou F. SARS-CoV-2 Omicron variant: Recent progress and future perspectives. Signal Transduct. Target. Ther. 2022;7:141. doi: 10.1038/s41392-022-00997-x. PubMed DOI PMC

Li Q., Wang Y., Sun Q., Knopf J., Herrmann M., Lin L., Jiang J., Shao C., Li P., He X., et al. Immune response in COVID-19: What is next? Cell Death Differ. 2022;29:1107–1122. doi: 10.1038/s41418-022-01015-x. PubMed DOI PMC

Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020;20:363–374. doi: 10.1038/s41577-020-0311-8. PubMed DOI PMC

Adhikari S.P., Meng S., Wu Y.-J., Mao Y.-P., Ye R.-X., Wang Q.-Z., Sun C., Sylvia S., Rozelle S., Raat H., et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty. 2020;9:29. doi: 10.1186/s40249-020-00646-x. PubMed DOI PMC

Vetter P., Vu D.L., L’Huillier A.G., Schibler M., Kaiser L., Jacquerioz F. Clinical features of COVID-19. BMJ. 2020;369:m1470. doi: 10.1136/bmj.m1470. PubMed DOI

Da Rosa Mesquita R., Francelino Silva Junior L.C., Santos Santana F.M., Farias de Oliveira T., Campos Alcântara R., Monteiro Arnozo G., Da Rodrigues Silva Filho E., Galdino Dos Santos A.G., Da Oliveira Cunha E.J., Salgueiro de Aquino S.H., et al. Clinical manifestations of COVID-19 in the general population: Systematic review. Wien. Klin. Wochenschr. 2021;133:377–382. doi: 10.1007/s00508-020-01760-4. PubMed DOI PMC

Mendiola-Pastrana I.R., López-Ortiz E., La Río de Loza-Zamora J.G., González J., Gómez-García A., López-Ortiz G. SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life. 2022;12:170. doi: 10.3390/life12020170. PubMed DOI PMC

Ong S.W.X., Chiew C.J., Ang L.W., Mak T.M., Cui L., Toh M.P.H.S., Lim Y.D., Lee P.H., Lee T.H., Chia P.Y., et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta) Clin. Infect. Dis. 2022;75:e1128–e1136. doi: 10.1093/cid/ciab721. PubMed DOI PMC

Zali A., Khodadoost M., Gholamzadeh S., Janbazi S., Piri H., Taraghikhah N., Hannani K., Looha M.A., Mohammadi G. Mortality among hospitalized COVID-19 patients during surges of SARS-CoV-2 alpha (B.1.1.7) and delta (B.1.617.2) variants. Sci. Rep. 2022;12:18918. doi: 10.1038/s41598-022-23312-8. PubMed DOI PMC

Kumar N., Quadri S., AlAwadhi A.I., AlQahtani M. COVID-19 Recovery Patterns Across Alpha (B.1.1.7) and Delta (B.1.617.2) Variants of SARS-CoV-2. Front. Immunol. 2022;13:812606. doi: 10.3389/fimmu.2022.812606. PubMed DOI PMC

Esper F.P., Adhikari T.M., Tu Z.J., Cheng Y.W., El-Haddad K., Farkas D.H., Bosler D., Rhoads D., Procop G.W., Ko J.S., et al. Alpha to Omicron: Disease Severity and Clinical Outcomes of Major SARS-CoV-2 Variants. J. Infect. Dis. 2022 doi: 10.1093/infdis/jiac411. PubMed DOI PMC

Lewnard J.A., Hong V.X., Patel M.M., Kahn R., Lipsitch M., Tartof S.Y. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California. Nat. Med. 2022;28:1933–1943. doi: 10.1038/s41591-022-01887-z. PubMed DOI PMC

Skarbinski J., Wood M.S., Chervo T.C., Schapiro J.M., Elkin E.P., Valice E., Amsden L.B., Hsiao C., Quesenberry C., Corley D.A., et al. Risk of severe clinical outcomes among persons with SARS-CoV-2 infection with differing levels of vaccination during widespread Omicron (B.1.1.529) and Delta (B.1.617.2) variant circulation in Northern California: A retrospective cohort study. Lancet Reg. Health Am. 2022;12:100297. doi: 10.1016/j.lana.2022.100297. PubMed DOI PMC

Ward I.L., Bermingham C., Ayoubkhani D., Gethings O.J., Pouwels K.B., Yates T., Khunti K., Hippisley-Cox J., Banerjee A., Walker A.S., et al. Risk of COVID-19 related deaths for SARS-CoV-2 omicron (B.1.1.529) compared with delta (B.1.617.2): Retrospective cohort study. BMJ. 2022;378:e070695. doi: 10.1136/bmj-2022-070695. PubMed DOI PMC

Bálint G., Vörös-Horváth B., Széchenyi A. Omicron: Increased transmissibility and decreased pathogenicity. Signal Transduct. Target Ther. 2022;7:151. doi: 10.1038/s41392-022-01009-8. PubMed DOI PMC

Michlmayr D., Hansen C.H., Gubbels S.M., Valentiner-Branth P., Bager P., Obel N., Drewes B., Møller C.H., Møller F.T., Legarth R., et al. Observed protection against SARS-CoV-2 reinfection following a primary infection: A Danish cohort study among unvaccinated using two years of nationwide PCR-test data. Lancet Reg. Health Eur. 2022;20:100452. doi: 10.1016/j.lanepe.2022.100452. PubMed DOI PMC

Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet. 2022;399:1513–1536. doi: 10.1016/S0140-6736(21)02796-3. PubMed DOI PMC

Schöley J., Aburto J.M., Kashnitsky I., Kniffka M.S., Zhang L., Jaadla H., Dowd J.B., Kashyap R. Life expectancy changes since COVID-19. Nat. Hum. Behav. 2022;6:1649–1659. doi: 10.1038/s41562-022-01450-3. PubMed DOI PMC

Booth A., Reed A.B., Ponzo S., Yassaee A., Aral M., Plans D., Labrique A., Mohan D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS One. 2021;16:e0247461. doi: 10.1371/journal.pone.0247461. PubMed DOI PMC

Schröder J., Kahlke V., Staubach K.H., Zabel P., Stüber F. Gender differences in human sepsis. Arch. Surg. 1998;133:1200–1205. doi: 10.1001/archsurg.133.11.1200. PubMed DOI

Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI

Peckham H., de Gruijter N.M., Raine C., Radziszewska A., Ciurtin C., Wedderburn L.R., Rosser E.C., Webb K., Deakin C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and Itu Admission. Nat. Commun. 2020;11:6317. doi: 10.1038/s41467-020-19741-6. PubMed DOI PMC

Bienvenu L.A., Noonan J., Wang X., Peter K. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities. Cardiovasc. Res. 2020;116:2197–2206. doi: 10.1093/cvr/cvaa284. PubMed DOI PMC

Mohamed M.S., Moulin T.C., Schiöth H.B. Sex differences in COVID-19, the role of androgens in disease severity and progression. Endocr. 2021;71:3–8. doi: 10.1007/s12020-020-02536-6. PubMed DOI PMC

Sunjaya A.P., Allida S.M., Di Tanna G.L., Jenkins C.R. Asthma and COVID-19 risk: A systematic review and meta-analysis. Eur. Respir. J. 2022;59:2101209. doi: 10.1183/13993003.01209-2021. PubMed DOI PMC

Griesel M., Wagner C., Mikolajewska A., Stegemann M., Fichtner F., Metzendorf M.-I., Nair A.A., Daniel J., Fischer A.-L., Skoetz N. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst. Rev. 2022;3:CD015125. doi: 10.1002/14651858.CD015125. PubMed DOI PMC

Choi J.H., Choi S.-H., Yun K.W. Risk Factors for Severe COVID-19 in Children: A Systematic Review and Meta-Analysis. J. Korean Med. Sci. 2022;37:e35. doi: 10.3346/jkms.2022.37.e35. PubMed DOI PMC

Castanares-Zapatero D., Chalon P., Kohn L., Dauvrin M., Detollenaere J., Maertens de Noordhout C., Primus-de Jong C., Cleemput I., van den Heede K. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022;54:1473–1487. doi: 10.1080/07853890.2022.2076901. PubMed DOI PMC

Mantovani A., Morrone M.C., Patrono C., Santoro M.G., Schiaffino S., Remuzzi G., Bussolati G. Long Covid: Where we stand and challenges ahead. Cell Death Differ. 2022;29:1891–1900. doi: 10.1038/s41418-022-01052-6. PubMed DOI PMC

Michelen M., Manoharan L., Elkheir N., Cheng V., Dagens A., Hastie C., O’Hara M., Suett J., Dahmash D., Bugaeva P., et al. Characterising long COVID: A living systematic review. BMJ Glob. Health. 2021;6:e005427. doi: 10.1136/bmjgh-2021-005427. PubMed DOI PMC

Crook H., Raza S., Nowell J., Young M., Edison P. Long covid-mechanisms, risk factors, and management. BMJ. 2021;374:n1648. doi: 10.1136/bmj.n1648. PubMed DOI

Subramanian A., Nirantharakumar K., Hughes S., Myles P., Williams T., Gokhale K.M., Taverner T., Chandan J.S., Brown K., Simms-Williams N., et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022;28:1706–1714. doi: 10.1038/s41591-022-01909-w. PubMed DOI PMC

Bai F., Tomasoni D., Falcinella C., Barbanotti D., Castoldi R., Mulè G., Augello M., Mondatore D., Allegrini M., Cona A., et al. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022;28:e9–e611. doi: 10.1016/j.cmi.2021.11.002. PubMed DOI PMC

Marcus N., Frizinsky S., Hagin D., Ovadia A., Hanna S., Farkash M., Maoz-Segal R., Agmon-Levin N., Broides A., Nahum A., et al. Minor Clinical Impact of COVID-19 Pandemic on Patients With Primary Immunodeficiency in Israel. Front. Immunol. 2020;11:614086. doi: 10.3389/fimmu.2020.614086. PubMed DOI PMC

Goudouris E.S., Pinto-Mariz F., Mendonça L.O., Aranda C.S., Guimarães R.R., Kokron C., Barros M.T., Anísio F., Alonso M.L.O., Marcelino F., et al. Outcome of SARS-CoV-2 Infection in 121 Patients with Inborn Errors of Immunity: A Cross-Sectional Study. J. Clin. Immunol. 2021;41:1479–1489. doi: 10.1007/s10875-021-01066-8. PubMed DOI PMC

Meyts I., Bucciol G., Quinti I., Neven B., Fischer A., Seoane E., Lopez-Granados E., Gianelli C., Robles-Marhuenda A., Jeandel P.-Y., et al. Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. J. Allergy Clin. Immunol. 2021;147:520–531. doi: 10.1016/j.jaci.2020.09.010. PubMed DOI PMC

Shields A.M., Burns S.O., Savic S., Richter A.G. COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. J. Allergy Clin. Immunol. 2021;147:870–875.e1. doi: 10.1016/j.jaci.2020.12.620. PubMed DOI PMC

Milota T., Sobotkova M., Smetanova J., Bloomfield M., Vydlakova J., Chovancova Z., Litzman J., Hakl R., Novak J., Malkusova I., et al. Risk Factors for Severe COVID-19 and Hospital Admission in Patients With Inborn Errors of Immunity-Results From a Multicenter Nationwide Study. Front. Immunol. 2022;13:835770. doi: 10.3389/fimmu.2022.835770. PubMed DOI PMC

Steiner S., Schwarz T., Corman V.M., Gebert L., Kleinschmidt M.C., Wald A., Gläser S., Kruse J.M., Zickler D., Peric A., et al. SARS-CoV-2 T Cell Response in Severe and Fatal COVID-19 in Primary Antibody Deficiency Patients Without Specific Humoral Immunity. Front. Immunol. 2022;13:840126. doi: 10.3389/fimmu.2022.840126. PubMed DOI PMC

Milito C., Lougaris V., Giardino G., Punziano A., Vultaggio A., Carrabba M., Cinetto F., Scarpa R., Delle Piane R.M., Baselli L., et al. Clinical outcome, incidence, and SARS-CoV-2 infection-fatality rates in Italian patients with inborn errors of immunity. J. Allergy Clin. Immunol. Pract. 2021;9:2904–2906.e2. doi: 10.1016/j.jaip.2021.04.017. PubMed DOI PMC

Castano-Jaramillo L.M., Yamazaki-Nakashimada M.A., O’Farrill-Romanillos P.M., Muzquiz Zermeño D., Scheffler Mendoza S.C., Venegas Montoya E., García Campos J.A., Sánchez-Sánchez L.M., Gámez González L.B., Ramírez López J.M., et al. COVID-19 in the Context of Inborn Errors of Immunity: A Case Series of 31 Patients from Mexico. J. Clin. Immunol. 2021;41:1463–1478. doi: 10.1007/s10875-021-01077-5. PubMed DOI PMC

Karakoc Aydiner E., Bilgic Eltan S., Babayeva R., Aydiner O., Kepenekli E., Kolukisa B., Sefer A.P., Yalcin Gungoren E., Karabiber E., Yucel E.O., et al. Adverse COVID-19 outcomes in immune deficiencies: Inequality exists between subclasses. Allergy. 2022;77:282–295. doi: 10.1111/all.15025. PubMed DOI PMC

Esenboga S., Ocak M., Akarsu A., Bildik H.N., Cagdas D., Iskit A.T., Tezcan I. COVID-19 in Patients with Primary Immunodeficiency. J. Clin. Immunol. 2021;41:1515–1522. doi: 10.1007/s10875-021-01065-9. PubMed DOI PMC

Kołtan S., Ziętkiewicz M., Grześk E., Becht R., Berdej-Szczot E., Cienkusz M., Ewertowska M., Heropolitańska-Pliszka E., Krysiak N., Lewandowicz-Uszyńska A., et al. COVID-19 in unvaccinated patients with inborn errors of immunity-polish experience. Front. Immunol. 2022;13:953700. doi: 10.3389/fimmu.2022.953700. PubMed DOI PMC

Ho H.-E., Mathew S., Peluso M.J., Cunningham-Rundles C. Clinical outcomes and features of COVID-19 in patients with primary immunodeficiencies in New York City. J. Allergy Clin. Immunol. Pract. 2021;9:490–493.e2. doi: 10.1016/j.jaip.2020.09.052. PubMed DOI PMC

Moazzen N., Ahanchian H., Aelami M.H., Asiyon H., Astaneh M., Naeimi A.M., Rezaei N. COVID-19 in children with inborn errors of immunity: Clinical scenarios. Am. J. Clin. Exp. Immunol. 2021;10:77–85. PubMed PMC

Delmonte O.M., Castagnoli R., Notarangelo L.D. COVID-19 and inborn errors of immunity. Physiology. 2022;37:290–301. doi: 10.1152/physiol.00016.2022. PubMed DOI PMC

Abolhassani H., Delavari S., Landegren N., Shokri S., Bastard P., Du L., Zuo F., Hajebi R., Abolnezhadian F., Iranparast S., et al. Genetic and immunologic evaluation of children with inborn errors of immunity and severe or critical COVID-19. J. Allergy Clin. Immunol. 2022;150:1059–1073. doi: 10.1016/j.jaci.2022.09.005. PubMed DOI PMC

National Institutes of Health Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. 10 November 2022. [(accessed on 24 November 2022)]; Available online: https://www.covid19treatmentguidelines.nih.gov/ PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...