Stimuli-Responsive Triblock Terpolymer Conversion into Multi-Stimuli-Responsive Micelles with Dynamic Covalent Bonds for Drug Delivery through a Quick and Controllable Post-Polymerization Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
INTER-EXCELLENCE Czech-India grant LTAIN 19078
Ministry of Education of Czech Republic
Project No. CZ.02.1.01/0.0/0.0/15_003/0000417-CUCAM
Ministry of Education of Czech Republic
PubMed
36678912
PubMed Central
PMC9867120
DOI
10.3390/pharmaceutics15010288
PII: pharmaceutics15010288
Knihovny.cz E-zdroje
- Klíčová slova
- alizarin, drug delivery systems, micelles, poly(4-vinyl pyridine), poly(styrene)-b-poly(4-vinyl pyridine)-b-poly(ethylene oxide) terpolymer, quaternization,
- Publikační typ
- časopisecké články MeSH
Stimuli-responsive copolymers are of great interest for targeted drug delivery. This study reports on a controllable post-polymerization quaternization with 2-bromomethyl-4-fluorophenylboronic acid of the poly(4-vinyl pyridine) (P4VP) block of a common poly(styrene)-b-poly(4-vinyl pyridine)-b-poly(ethylene oxide) (SVE) triblock terpolymer in order to achieve a selective responsivity to various diols. For this purpose, a reproducible method was established for P4VP block quaternization at a defined ratio, confirming the reaction yield by 11B, 1H NMR. Then, a reproducible self-assembly protocol is designed for preparing stable micelles from functionalized stimuli-responsive triblock terpolymers, which are characterized by light scattering and by cryogenic transmission electron microscopy. In addition, UV-Vis spectroscopy is used to monitor the boron-ester bonding and hydrolysis with alizarin as a model drug and to study encapsulation and release of this drug, induced by sensing with three geminal diols: fructose, galactose and ascorbic acid. The obtained results show that only the latter, with the vicinal diol group on sp2-hybridized carbons, was efficient for alizarin release. Therefore, the post-polymerization method for triblock terpolymer functionalization presented in this study allows for preparation of specific stimuli-responsive systems with a high potential for targeted drug delivery, especially for cancer treatment.
Academy of Romanian Scientists 050045 Bucharest Romania
Faculty of Medical Dentistry Apollonia University of Iasi 700511 Iasi Romania
Zobrazit více v PubMed
Moughton A.O., Hillmyer M.A., Lodge T.P. Multicompartment Block Polymer Micelles. Macromolecules. 2011;45:2–19. doi: 10.1021/ma201865s. DOI
Holder S.J., Sommerdijk N.A.J.M. New micellar morphologies from amphiphilic block copolymers: Disks, toroids and bicontinuous micelles. Polym. Chem. 2011;2:1018–1028. doi: 10.1039/C0PY00379D. DOI
Bates C.M., Bates F.S. 50th Anniversary Perspective: Block Polymers—Pure Potential. Macromolecules. 2016;50:3–22. doi: 10.1021/acs.macromol.6b02355. DOI
Aznar E., Oroval M., Pascual L., Murguía J.R., Martínez-Máñez R., Sancenón F. Gated Materials for On-Command Release of Guest Molecules. Chem. Rev. 2016;116:561–718. doi: 10.1021/acs.chemrev.5b00456. PubMed DOI
Casasús R., Marcos M.D., Martínez-Máñez R., Ros-Lis J.V., Soto J., Villaescusa L.A., Amorós P., Beltrán D., Guillem C., Latorre J. Toward the Development of Ionically Controlled Nanoscopic Molecular Gates. J. Am. Chem. Soc. 2004;126:8612–8613. doi: 10.1021/ja048095i. PubMed DOI
Fernandez-Alvarez R., Hlavatovičová E., Rodzeń K., Strachota A., Kereïche S., Matějíček P., Cabrera-González J., Núñez R., Uchman M. Synthesis and self-assembly of a carborane-containing ABC triblock terpolymer: Morphology control on a dual-stimuli responsive system. Polym. Chem. 2019;10:2774–2780. doi: 10.1039/C9PY00518H. DOI
Lin W., Ma G., Kampf N., Yuan Z., Chen S. Development of Long-Circulating Zwitterionic Cross-Linked Micelles for Active-Targeted Drug Delivery. Biomacromolecules. 2016;17:2010–2018. doi: 10.1021/acs.biomac.6b00168. PubMed DOI
Koh E., Yong T.L. Preparation of Ligand Brush Nanocapsules for Robust Self-Controlled Antimicrobial Activity with Low Cytotoxicity at Target pH and Humidity. Pharmaceutics. 2022;14:280. doi: 10.3390/pharmaceutics14020280. PubMed DOI PMC
Skrabania K., André L., Berlepsch H.V., Böttcher C. Synthesis and Micellar Self-Assembly of Ternary Hydrophilic-Lipophilic-Fluorophilic Block Copolymers with a Linear PEO Chain. Langmuir. 2009;25:7594–7601. doi: 10.1021/la900253j. PubMed DOI
Laschewsky A., Marsat J.-N.L., Skrabania K., Berlepsch H.V. Bioinspired Block Copolymers: Translating Structural Features from Proteins to Synthetic Polymers. Macromol. Chem. Phys. 2010;211:215–221. doi: 10.1002/macp.200900378. DOI
Uchman M., Štěpánek M., Procházka K., Mountrichas G., Pispas S., Voets I.K., Walther A. Multicompartment Nanoparticles Formed by a Heparin-Mimicking Block Terpolymer in Aqueous Solutions. Macromolecules. 2009;42:5605–5613. doi: 10.1021/ma9008115. DOI
Kubowicz S., Baussard J.-F., Lutz J.-F., Thünemann A.F., Berlepsch H.V., Laschewsky A. Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium. Angew. Chem. Int. Ed. 2005;44:5262–5265. doi: 10.1002/anie.200500584. PubMed DOI
Gröschel A.H., Schacher F.H., Schmalz H., Borisov O.V., Zhulina E.B., Walther A., Müller A.H. Precise hierarchical self-assembly of multicompartment micelles. Nat. Comm. 2012;3:710. doi: 10.1038/ncomms1707. PubMed DOI PMC
Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. doi: 10.1038/nnano.2007.387. PubMed DOI
Feng C., Wang F., Dang Y., Xu Z., Yu H., Zhang W. A Self-Assembled Ratiometric Polymeric Nanoprobe for Highly Selective Fluorescence Detection of Hydrogen Peroxide. Langmuir. 2017;33:3287–3295. doi: 10.1021/acs.langmuir.7b00189. PubMed DOI
Surnar B., Jayakannan M. Triple Block Nanocarrier Platform for Synergistic Cancer Therapy of Antagonistic Drugs. Biomacromolecules. 2016;17:4075–4085. doi: 10.1021/acs.biomac.6b01608. PubMed DOI
Kuperkar K., Patel D., Atanase L.I., Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers. 2022;14:4702. doi: 10.3390/polym14214702. PubMed DOI PMC
Stuart M., Huck W., Genzer J. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010;9:101–113. doi: 10.1038/nmat2614. PubMed DOI
Atanase L.I., Riess G. Micellization of pH-stimulable poly(2-vinylpyridine)-b-poly(ethylene oxide)copolymers and their complexation with anionic surfactants. J. Colloid Interface Sci. 2013;395:190–197. doi: 10.1016/j.jcis.2012.12.058. PubMed DOI
Lerch J.P., Atanase L.I., Purcar V., Riess G. Self-aggregation of poly(butadiene)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) triblock copolymers in heptane studied by viscometry and dynamic light scattering. Comptes Rendu Chimie. 2017;20:724–729. doi: 10.1016/j.crci.2017.03.005. DOI
Atanase L.I., Lerch J.P., Caprarescu S., Iurciuc (Tincu) C.E., Riess G. Micellization of pH-sensitive poly(butadiene)-block-poly(2 vinylpyridine)-block-poly(ethylene oxide) triblock copolymers: Complex formation with anionic surfactants. J. Appl. Polym. Sci. 2017;134:45313–45321. doi: 10.1002/app.45313. DOI
Iurciuc-Tincu C.E., Cretan M.S., Purcar V., Popa M., Daraba O.M., Atanase L.I., Ochiuz L. Drug Delivery System Based on pH-Sensitive Biocompatible Poly(2-vinyl pyridine)-b-poly(ethylene oxide) Nanomicelles Loaded with Curcumin and 5-Fluorouracil. Polymers. 2020;12:1450. doi: 10.3390/polym12071450. PubMed DOI PMC
Ďorďovič V., Vojtová J., Jana S., Uchman M. Charge reversal and swelling in saccharide binding polyzwitterionic phenylboronic acid-modified poly(4-vinylpyridine) nanoparticles. Polym. Chem. 2019;10:5522–5533. doi: 10.1039/C9PY00938H. DOI
Billing M., Elter J.K., Schacher F.H. Sulfo-and carboxybetaine-containing polyampholytes based on poly(2-vinyl pyridine)s: Synthesis and solution behavior. Polymer. 2016;104:40–48. doi: 10.1016/j.polymer.2016.09.081. DOI
Humpolíčková J., Štěpánek M., Procházka K., Hof M. Solvent Relaxation Study of pH-Dependent Hydration of Poly(oxyethylene) Shells in Polystyrene-block-poly(2-vinylpyridine)-block-poly(oxyethylene) Micelles in Aqueous Solutions. J. Phys. Chem. A. 2005;109:10803–10812. doi: 10.1021/jp053348v. PubMed DOI
Valkama S., Ruotsalainen T., Kosonen H., Ruokolainen J., Torkkeli M., Serimaa R., Brinke G.T., Ikkala O. Amphiphiles Coordinated to Block Copolymers as a Template for Mesoporous Materials. Macromolecules. 2003;36:3986–3991. doi: 10.1021/ma020538k. DOI
Lee D.H., Han S.H., Joo W., Kim J.K., Huh J. Phase behavior of polystyrene-block-poly(4-vinylpyridine) copolymers coordinated by metal chloride. Macromolecules. 2008;41:2577–2583. doi: 10.1021/ma702403k. DOI
Belfiore L.A., McCurdie M.P. Reactive blending via metal-ligand coordination. J. Polym. Sci. Part B Polym. Phys. 1995;33:105–124. doi: 10.1002/polb.1995.090330112. DOI
El-Hamshary H., El-Garawany M., Assubaie F.N., Al-Eed M. Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. J. Appl. Polym. Sci. 2003;89:2522–2526. doi: 10.1002/app.12305. DOI
Kang N.-G., Kang B.-G., Koh H.-D., Changez M., Lee J.-S. Block copolymers containing pyridine moieties: Precise synthesis and applications. React. Funct. Polym. 2009;69:470–479. doi: 10.1016/j.reactfunctpolym.2009.04.011. DOI
Kennemur J.G. Poly(vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules. 2019;52:1354–1370. doi: 10.1021/acs.macromol.8b01661. DOI
Walther A., Müller A.H.E. Formation of hydrophobic bridges between multicompartment micelles of miktoarm star terpolymers in water. Chem. Comm. 2009:1127–1129. doi: 10.1039/b820507h. PubMed DOI
Mondal P., Saha S.K., Chowdhury P. Simultaneous polymerization and quaternization of 4-vinyl pyridine. J.Appl. Polym. Sci. 2012;127:5045–5050. doi: 10.1002/app.38119. DOI
Bicak N., Gazi M. Quantitative Quaternization of Poly(4-Vinyl Pyridine) J. Macromol. Sci. Part A. 2003;40:585–591. doi: 10.1081/MA-120020865. DOI
Medjahed K., Tennouga L., Mansri A. Series of Poly(4-vinylpyridine) Containing Quaternary Alkyl bromides: Synthesis and Determination Percentage of Quaternization. Macromol. Symp. 2014;339:130–133. doi: 10.1002/masy.201300152. DOI
Frere Y., Gramain P. Reaction kinetics of polymer substituents: Macromolecular steric hindrance effect in quaternization of poly(vinylpyridines) Macromolecules. 1992;25:3184–3189. doi: 10.1021/ma00038a026. DOI
Yan J., Springsteen G., Deeter S., Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—It is not as simple as it appears. Tetrahedron. 2004;60:11205–11209. doi: 10.1016/j.tet.2004.08.051. DOI
Iovine P.M., Fletcher M.N., Lin S. Condensation of Arylboroxine Structures on Lewis Basic Copolymers as a Noncovalent Strategy toward Polymer Functionalization. Macromolecules. 2006;39:6324–6326. doi: 10.1021/ma0613741. DOI
Marinaro W.A., Prankerd R., Kinnari K., Stella V.J. Interaction of Model Aryl- and Alkyl-Boronic Acids and 1,2-Diols in Aqueous Solution. J. Pharm. Sci. 2015;104:1399–1408. doi: 10.1002/jps.24346. PubMed DOI
Matuszewska A., Uchman M., Adamczyk-Woźniak A., Sporzyński A., Pispas S., Kováčik L., Štěpánek M. Glucose-Responsive Hybrid Nanoassemblies in Aqueous Solutions: Ordered Phenylboronic Acid within Intermixed Poly(4-hydroxystyrene)-block-poly(ethylene oxide) Block Copolymer. Biomacromolecules. 2015;16:3731–3739. doi: 10.1021/acs.biomac.5b01325. PubMed DOI
Su J., Chen F., Cryns V.L., Messersmith P.B. Catechol Polymers for pH-Responsive, Targeted Drug Delivery to Cancer Cells. J. Am. Chem. Soc. 2011;133:11850–11853. doi: 10.1021/ja203077x. PubMed DOI PMC
Liu S., Ono R.J., Yang C., Gao S., Tan J.Y.M., Hedrick J.L., Yang Y.Y. Dual pH-Responsive Shell-Cleavable Polycarbonate Micellar Nanoparticles for in Vivo Anticancer Drug Delivery. ACS Appl. Mater. Interfaces. 2018;10:19355–19364. doi: 10.1021/acsami.8b01954. PubMed DOI
Wu K., Cheng R., Zhang J., Meng F., Deng C., Zhong Z. Micellar nanoformulation of lipophilized bortezomib: High drug loading, improved tolerability and targeted treatment of triple negative breast cancer. J. Mater. Chem. B. 2017;5:5658–5667. doi: 10.1039/C7TB01297G. DOI
Axthelm J., Askes S.H., Elstner M., Görls H., Bellstedt P., Schiller A. Fluorinated Boronic Acid-Appended Pyridinium Salts and 19F NMR Spectroscopy for Diol Sensing. J. Am. Chem. Soc. 2017;139:11413–11420. doi: 10.1021/jacs.7b01167. PubMed DOI
Liang X., Trentle M., Kozlovskaya V., Kharlampieva E., Bonizzoni M. Carbohydrate Sensing Using Water-Soluble Poly(methacrylic acid)-co-3-(Acrylamido)phenylboronic Acid Copolymer. ACS Appl. Polym. Mater. 2019;1:1341–1349. doi: 10.1021/acsapm.9b00141. DOI
Scorei R., Popa R. Sugar-Borate Esters—Potential Chemical Agents in Prostate Cancer Chemoprevention. AntiCancer Agents Med. Chem. 2013;13:901–909. doi: 10.2174/18715206113139990124. PubMed DOI
Marková P., Uchman M. Synthesis and self-assembly of polyzwitterionic phenylboronic acid-containing double hydrophilic block copolymers. Eur. Polym. J. 2021;151:110439. doi: 10.1016/j.eurpolymj.2021.110439. DOI
Vrbata D., Uchman M. Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer micelles using phenylboronic ester as a sensitive block linkage. Nanoscale. 2018;10:8428–8442. doi: 10.1039/C7NR09427B. PubMed DOI
Vrbata D., Kereïche S., Kaliková K., Uchman M. Stimuli-responsive multifunctional micelles of ABC vs. ACB triblock terpolymers using reversible covalent bonding of phenylboronic acid: Controlled synthesis, self-assembly and model drug release. J. Mol. Liq. 2021;335:116528. doi: 10.1016/j.molliq.2021.116528. DOI
Schärtl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer; Berlin/Heidelberg, Germany: 2007.
Huglin M.B. Light scattering from polymer solutions. Academic Press; London, UK: 1972.
Covington A.K., Paabo M., Robinson R.A., Bates R.G. Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water. Anal. Chem. 1968;13:700–706. doi: 10.1021/ac60260a013. DOI
Štěpánek M., Matějíček P., Humpolíčková J., Procházka K. Reversible Aggregation of Polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) Block Copolymer Micelles in Acidic Aqueous Solutions. Langmuir. 2005;21:10783–10790. doi: 10.1021/la0516680. PubMed DOI
Fernandez-Alvarez R., Nová L., Uhlík F., Kereïche S., Uchman M., Košovan P., Matějíček P. Interactions of star-like polyelectrolyte micelles with hydrophobic counterions. J. Colloid Interface Sci. 2019;546:371–380. doi: 10.1016/j.jcis.2019.03.054. PubMed DOI
Schacher F., Walther A., Müller A.H.E. Dynamic Multicompartment-Core Micelles in Aqueous Media. Langmuir. 2009;25:10962–10969. doi: 10.1021/la901182c. PubMed DOI
Gennari A., Gujral C., Hohn E., Lallana E., Cellesi F., Tirelli N. Revisiting Boronate/Diol Complexation as a Double Stimulus-Responsive Bioconjugation. Bioconjugate Chem. 2017;28:1391–1402. doi: 10.1021/acs.bioconjchem.7b00080. PubMed DOI