Association of Thermoresponsive Diblock Copolymer PDEGMA-b-PDIPAEMA in Aqueous Solutions: The Influence of Terminal Groups

. 2024 Jul 24 ; 16 (15) : . [epub] 20240724

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39125129

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000417-CUCAM Ministry of Education Youth and Sports

Aqueous solutions of a thermoresponsive diblock copolymer poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate) (PDEGMA-b-PDIPAEMA) were studied by static, dynamic and electrophoretic light scattering, small-angle X-ray scattering and differential scanning calorimetry. Thermoresponsive behavior of PDEGMA-b-PDIPAEMA was investigated at two pH values, pH = 2, at which the terminal carboxylic group of the PDEGMA chain and the PDIPAEMA block are protonated, and pH = 7, where the carboxyl terminal group is ionized while the PDIPAEMA block is partially deprotonated and more hydrophobic. Both at pH = 2 and 7, PDEGMA-b-PDIPAEMA copolymer underwent extensive association (the size of the aggregates was between 100 and 300 nm), indicating strong interchain interactions. While the measurements confirmed thermoresponsive behavior of PDEGMA-b-PDIPAEMA at pH = 7, no changes in the association with temperature were observed at pH 2 as the thermoresponsivity of PDEGMA was suppressed by hydrogen bonding between carboxylic groups and PDEGMA segments, as well as due to the increased hydrophilicity of the PDIPAEMA block. Fluorescence measurements with pyrene as a fluorescent probe showed that both at pH = 2 and pH = 7 the associates were able to solubilize hydrophobic substances.

Zobrazit více v PubMed

Blanazs A., Armes S.P., Ryan A.J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol. Rapid Commun. 2009;30:267–277. doi: 10.1002/marc.200800713. PubMed DOI

Kuperkar K., Patel D., Atanase L.I. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers. 2022;14:4702. doi: 10.3390/polym14214702. PubMed DOI PMC

Kamaly N., Xiao Z.Y., Valencia P.M., Radovic-Moreno A.F., Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Revs. 2012;41:2971–3010. doi: 10.1039/c2cs15344k. PubMed DOI PMC

Sharma R., Shrivastava P., Gautam L., Agrawal U., Lakshmi S.M., Vyas S.P. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discovery Today. 2023;28:103786. doi: 10.1016/j.drudis.2023.103786. PubMed DOI

Zhang W.J., Hong C.Y., Pan C.Y. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol. Rapid. Commun. 2019;40:1800279. doi: 10.1002/marc.201800279. PubMed DOI

Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug. Deliv Revs. 2012;64:37–48. doi: 10.1016/j.addr.2012.09.013. PubMed DOI

Dickerson M., Bae Y. Block copolymer nanoassemblies for photodynamic therapy and diagnosis. Ther. Deliv. 2013;4:1431–1441. doi: 10.4155/tde.13.105. PubMed DOI

Niu D.C., Li Y.S., Shi J.L. Silica/organosilica cross-linked block copolymer micelles: A versatile theranostic platform. Chem. Soc. Revs. 2017;46:569–585. doi: 10.1039/C6CS00495D. PubMed DOI

Yin J., Chen Y., Zhang Z.H., Han X. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications. Polymers. 2016;8:268. doi: 10.3390/polym8070268. PubMed DOI PMC

Liu Y.J., Wang J.L., Zhang M.Y., Li H.M., Lin Z.J. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS Nano. 2020;14:12491–12521. doi: 10.1021/acsnano.0c06936. PubMed DOI

Li X., Iocozzia J., Chen Y.H., Zhao S.Q., Cui X., Wang W., Yu H.F., Lin S.L., Lin Z.Q. From Precision Synthesis of Block Copolymers to Properties and Applications of Nanoparticles. Angew. Chem. Int. Ed. 2017;57:2046–2070. doi: 10.1002/anie.201705019. PubMed DOI

Hunter S.J., Armes S.P. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Langmuir. 2020;36:15463–15484. doi: 10.1021/acs.langmuir.0c02595. PubMed DOI PMC

Akimoto J., Nakayama M., Sakai K., Okano T. Temperature-Induced Intracellular Uptake of Thermoresponsive Polymeric Micelles. Biomacromolecules. 2009;10:1331–1336. doi: 10.1021/bm900032r. PubMed DOI

Li J.B., Leng J.Z., Qu Y., Deng L., Ren J. Preparation and optimization of biodegradable star-block copolymer micelles for temperature-triggered drug release. Mater. Lett. 2014;131:5–8. doi: 10.1016/j.matlet.2014.05.177. DOI

Hruby M., Filippov S.K., Panek J., Novakova M., Mackova H., Kucka J., Vetvicka D., Ulbrich K. Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems. Macromol. Biosci. 2010;10:916–924. doi: 10.1002/mabi.201000034. PubMed DOI

Iurciuc-Tincu C.E., Cretan S.E., Purcar V., Popa M., Daraba O.M., Atanase L.I., Ochiuz L. Drug Delivery System Based on pH-Sensitive Biocompatible Poly(2-vinyl pyridine)-b-poly(ethylene oxide) Nanomicelles Loaded with Curcumin and 5-Fluorouracil. Polymers. 2020;12:1450. doi: 10.3390/polym12071450. PubMed DOI PMC

Zhou S.Y., Fu S.W., Wang H.L., Deng Y.H., Zhou X., Sun W., Zhai Y.L. Acetal-linked polymeric prodrug micelles based on aliphatic polycarbonates for paclitaxel delivery: Preparation, characterization, in vitro release and anti-proliferation effects. J. Biomater. Sci. Polym. Ed. 2020;31:2007–2023. doi: 10.1080/09205063.2020.1792046. PubMed DOI

Khine Y.Y., Jiang Y.Y., Dag A., Lu H.X., Stenzel M.H. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs. Macromol. Biosci. 2015;8:1091–1104. doi: 10.1002/mabi.201500057. PubMed DOI

Hlavatovičová E., Fernández-Álvarez R., Byś K., Kereïche S., Mandal T.K., Atanase L.I., Štěpánek M., Uchman M. Stimuli-Responsive Triblock Terpolymer Conversion into Multi-Stimuli-Responsive Micelles with Dynamic Covalent Bonds for Drug Delivery through a Quick and Controllable Post-Polymerization Reaction. Pharmaceutics. 2023;15:288. doi: 10.3390/pharmaceutics15010288. PubMed DOI PMC

Vasantha V.A., Jana S., Lee S.S.C., Lim C.S., Teo S.L.M., Parthiban A., Vancso J.G. Dual hydrophilic and salt responsive schizophrenic block copolymers-synthesis and study of self-assembly behavior. Polym. Chem. 2015;6:599–606. doi: 10.1039/C4PY01113A. DOI

Butun V., Liu S., Weaver J.V.M., Bories-Azeau X., Cai Y., Armes S.P. A brief review of ‘schizophrenic’ block copolymers. React. Funct. Polym. 2006;66:157–165. doi: 10.1016/j.reactfunctpolym.2005.07.021. DOI

Hocine S., Li M.H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter. 2013;9:5839–5861. doi: 10.1039/c3sm50428j. DOI

Haladjova E., Rangelov S., Tsvetanov C., Simon P. Preparation of polymeric nanocapsules via nano-sized poly(methoxydiethyleneglycol methacrylate) colloidal templates. Polymer. 2014;55:1621–1627. doi: 10.1016/j.polymer.2014.02.026. DOI

Thavanesan T., Herbert C., Plamper F.A. Insight in the Phase Separation Peculiarities of Poly(dialkylaminoethyl methacrylate)s. Langmuir. 2014;30:5609–5616. doi: 10.1021/la5007583. PubMed DOI

Selianitis D., Pispas S. PDEGMA-b-PDIPAEMA copolymers via RAFT polymerization and their pH and thermoresponsive schizophrenic self-assembly in aqueous media. J. Polym. Sci. 2020;58:1867–1880. doi: 10.1002/pol.20200266. DOI

Li J., Wen G.Y., Selianitis D., Pispas S., Zhang Y., Li H.F. Effects of subphase pH and temperature on the interfacial behavior of double hydrophilic diblock copolymer PDEGMA-b-PDIPAEMA. J. Appl. Polym. Sci. 2024;141:e54898. doi: 10.1002/app.54898. DOI

Fanova A., Davidovich I., Talmon Y., Skandalis A., Pispas S., Štěpánek M. Modification of the Co-assembly Behavior of Double-Hydrophilic Block Polyelectrolytes by Hydrophobic Terminal Groups: Ordered Nanostructures with Interpolyelectrolyte Complex Domains. ACS Appl. Polym. Mater. 2021;3:1956–1963. doi: 10.1021/acsapm.1c00033. DOI

Miyoshi T., Takegoshi K., Hikichi K. High-resolution solid state C-13 nmr study of the interpolymer interaction, morphology and chain dynamics of the poly(acrylic acid)/poly(ethylene oxide) complex. Polymer. 1997;38:2315–2320. doi: 10.1016/S0032-3861(96)00799-9. DOI

Holappa S., Kantonen L., Winnik F.M., Tenhu H. Self-complexation of poly(ethylene oxide)-block-poly(methacrylic acid) studied by fluorescence spectroscopy. Macromolecules. 2004;37:7008–7018. doi: 10.1021/ma049153n. DOI

Sedlák M., Amis E.J. Dynamics of moderately concentrated salt-free polyelectrolyte solutions—Molecular-weight dependence. J. Chem. Phys. 1992;96:817–825. doi: 10.1063/1.462467. DOI

Hammouda B., Ho D.L., Kline S. Insight into clustering in poly(ethylene oxide) solutions. Macromolecules. 2004;37:6932–6937. doi: 10.1021/ma049623d. DOI

Rumyantsev A.M., Zhulina E.B., Borisov O.V. Surface-Immobilized Interpolyelectrolyte Complexes Formed by Polyelectrolyte Brushes. ACS Macro Lett. 2023;12:1727–1732. doi: 10.1021/acsmacrolett.3c00548. PubMed DOI

Bilati U., Allémann E., Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 2005;24:67–75. doi: 10.1016/j.ejps.2004.09.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...