Association of Thermoresponsive Diblock Copolymer PDEGMA-b-PDIPAEMA in Aqueous Solutions: The Influence of Terminal Groups
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000417-CUCAM
Ministry of Education Youth and Sports
PubMed
39125129
PubMed Central
PMC11313919
DOI
10.3390/polym16152102
PII: polym16152102
Knihovny.cz E-zdroje
- Klíčová slova
- association, block copolymers, pH-responsive polymers, thermoresponsive polymers,
- Publikační typ
- časopisecké články MeSH
Aqueous solutions of a thermoresponsive diblock copolymer poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate) (PDEGMA-b-PDIPAEMA) were studied by static, dynamic and electrophoretic light scattering, small-angle X-ray scattering and differential scanning calorimetry. Thermoresponsive behavior of PDEGMA-b-PDIPAEMA was investigated at two pH values, pH = 2, at which the terminal carboxylic group of the PDEGMA chain and the PDIPAEMA block are protonated, and pH = 7, where the carboxyl terminal group is ionized while the PDIPAEMA block is partially deprotonated and more hydrophobic. Both at pH = 2 and 7, PDEGMA-b-PDIPAEMA copolymer underwent extensive association (the size of the aggregates was between 100 and 300 nm), indicating strong interchain interactions. While the measurements confirmed thermoresponsive behavior of PDEGMA-b-PDIPAEMA at pH = 7, no changes in the association with temperature were observed at pH 2 as the thermoresponsivity of PDEGMA was suppressed by hydrogen bonding between carboxylic groups and PDEGMA segments, as well as due to the increased hydrophilicity of the PDIPAEMA block. Fluorescence measurements with pyrene as a fluorescent probe showed that both at pH = 2 and pH = 7 the associates were able to solubilize hydrophobic substances.
Zobrazit více v PubMed
Blanazs A., Armes S.P., Ryan A.J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol. Rapid Commun. 2009;30:267–277. doi: 10.1002/marc.200800713. PubMed DOI
Kuperkar K., Patel D., Atanase L.I. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers. 2022;14:4702. doi: 10.3390/polym14214702. PubMed DOI PMC
Kamaly N., Xiao Z.Y., Valencia P.M., Radovic-Moreno A.F., Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Revs. 2012;41:2971–3010. doi: 10.1039/c2cs15344k. PubMed DOI PMC
Sharma R., Shrivastava P., Gautam L., Agrawal U., Lakshmi S.M., Vyas S.P. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discovery Today. 2023;28:103786. doi: 10.1016/j.drudis.2023.103786. PubMed DOI
Zhang W.J., Hong C.Y., Pan C.Y. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol. Rapid. Commun. 2019;40:1800279. doi: 10.1002/marc.201800279. PubMed DOI
Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug. Deliv Revs. 2012;64:37–48. doi: 10.1016/j.addr.2012.09.013. PubMed DOI
Dickerson M., Bae Y. Block copolymer nanoassemblies for photodynamic therapy and diagnosis. Ther. Deliv. 2013;4:1431–1441. doi: 10.4155/tde.13.105. PubMed DOI
Niu D.C., Li Y.S., Shi J.L. Silica/organosilica cross-linked block copolymer micelles: A versatile theranostic platform. Chem. Soc. Revs. 2017;46:569–585. doi: 10.1039/C6CS00495D. PubMed DOI
Yin J., Chen Y., Zhang Z.H., Han X. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications. Polymers. 2016;8:268. doi: 10.3390/polym8070268. PubMed DOI PMC
Liu Y.J., Wang J.L., Zhang M.Y., Li H.M., Lin Z.J. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS Nano. 2020;14:12491–12521. doi: 10.1021/acsnano.0c06936. PubMed DOI
Li X., Iocozzia J., Chen Y.H., Zhao S.Q., Cui X., Wang W., Yu H.F., Lin S.L., Lin Z.Q. From Precision Synthesis of Block Copolymers to Properties and Applications of Nanoparticles. Angew. Chem. Int. Ed. 2017;57:2046–2070. doi: 10.1002/anie.201705019. PubMed DOI
Hunter S.J., Armes S.P. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Langmuir. 2020;36:15463–15484. doi: 10.1021/acs.langmuir.0c02595. PubMed DOI PMC
Akimoto J., Nakayama M., Sakai K., Okano T. Temperature-Induced Intracellular Uptake of Thermoresponsive Polymeric Micelles. Biomacromolecules. 2009;10:1331–1336. doi: 10.1021/bm900032r. PubMed DOI
Li J.B., Leng J.Z., Qu Y., Deng L., Ren J. Preparation and optimization of biodegradable star-block copolymer micelles for temperature-triggered drug release. Mater. Lett. 2014;131:5–8. doi: 10.1016/j.matlet.2014.05.177. DOI
Hruby M., Filippov S.K., Panek J., Novakova M., Mackova H., Kucka J., Vetvicka D., Ulbrich K. Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems. Macromol. Biosci. 2010;10:916–924. doi: 10.1002/mabi.201000034. PubMed DOI
Iurciuc-Tincu C.E., Cretan S.E., Purcar V., Popa M., Daraba O.M., Atanase L.I., Ochiuz L. Drug Delivery System Based on pH-Sensitive Biocompatible Poly(2-vinyl pyridine)-b-poly(ethylene oxide) Nanomicelles Loaded with Curcumin and 5-Fluorouracil. Polymers. 2020;12:1450. doi: 10.3390/polym12071450. PubMed DOI PMC
Zhou S.Y., Fu S.W., Wang H.L., Deng Y.H., Zhou X., Sun W., Zhai Y.L. Acetal-linked polymeric prodrug micelles based on aliphatic polycarbonates for paclitaxel delivery: Preparation, characterization, in vitro release and anti-proliferation effects. J. Biomater. Sci. Polym. Ed. 2020;31:2007–2023. doi: 10.1080/09205063.2020.1792046. PubMed DOI
Khine Y.Y., Jiang Y.Y., Dag A., Lu H.X., Stenzel M.H. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs. Macromol. Biosci. 2015;8:1091–1104. doi: 10.1002/mabi.201500057. PubMed DOI
Hlavatovičová E., Fernández-Álvarez R., Byś K., Kereïche S., Mandal T.K., Atanase L.I., Štěpánek M., Uchman M. Stimuli-Responsive Triblock Terpolymer Conversion into Multi-Stimuli-Responsive Micelles with Dynamic Covalent Bonds for Drug Delivery through a Quick and Controllable Post-Polymerization Reaction. Pharmaceutics. 2023;15:288. doi: 10.3390/pharmaceutics15010288. PubMed DOI PMC
Vasantha V.A., Jana S., Lee S.S.C., Lim C.S., Teo S.L.M., Parthiban A., Vancso J.G. Dual hydrophilic and salt responsive schizophrenic block copolymers-synthesis and study of self-assembly behavior. Polym. Chem. 2015;6:599–606. doi: 10.1039/C4PY01113A. DOI
Butun V., Liu S., Weaver J.V.M., Bories-Azeau X., Cai Y., Armes S.P. A brief review of ‘schizophrenic’ block copolymers. React. Funct. Polym. 2006;66:157–165. doi: 10.1016/j.reactfunctpolym.2005.07.021. DOI
Hocine S., Li M.H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter. 2013;9:5839–5861. doi: 10.1039/c3sm50428j. DOI
Haladjova E., Rangelov S., Tsvetanov C., Simon P. Preparation of polymeric nanocapsules via nano-sized poly(methoxydiethyleneglycol methacrylate) colloidal templates. Polymer. 2014;55:1621–1627. doi: 10.1016/j.polymer.2014.02.026. DOI
Thavanesan T., Herbert C., Plamper F.A. Insight in the Phase Separation Peculiarities of Poly(dialkylaminoethyl methacrylate)s. Langmuir. 2014;30:5609–5616. doi: 10.1021/la5007583. PubMed DOI
Selianitis D., Pispas S. PDEGMA-b-PDIPAEMA copolymers via RAFT polymerization and their pH and thermoresponsive schizophrenic self-assembly in aqueous media. J. Polym. Sci. 2020;58:1867–1880. doi: 10.1002/pol.20200266. DOI
Li J., Wen G.Y., Selianitis D., Pispas S., Zhang Y., Li H.F. Effects of subphase pH and temperature on the interfacial behavior of double hydrophilic diblock copolymer PDEGMA-b-PDIPAEMA. J. Appl. Polym. Sci. 2024;141:e54898. doi: 10.1002/app.54898. DOI
Fanova A., Davidovich I., Talmon Y., Skandalis A., Pispas S., Štěpánek M. Modification of the Co-assembly Behavior of Double-Hydrophilic Block Polyelectrolytes by Hydrophobic Terminal Groups: Ordered Nanostructures with Interpolyelectrolyte Complex Domains. ACS Appl. Polym. Mater. 2021;3:1956–1963. doi: 10.1021/acsapm.1c00033. DOI
Miyoshi T., Takegoshi K., Hikichi K. High-resolution solid state C-13 nmr study of the interpolymer interaction, morphology and chain dynamics of the poly(acrylic acid)/poly(ethylene oxide) complex. Polymer. 1997;38:2315–2320. doi: 10.1016/S0032-3861(96)00799-9. DOI
Holappa S., Kantonen L., Winnik F.M., Tenhu H. Self-complexation of poly(ethylene oxide)-block-poly(methacrylic acid) studied by fluorescence spectroscopy. Macromolecules. 2004;37:7008–7018. doi: 10.1021/ma049153n. DOI
Sedlák M., Amis E.J. Dynamics of moderately concentrated salt-free polyelectrolyte solutions—Molecular-weight dependence. J. Chem. Phys. 1992;96:817–825. doi: 10.1063/1.462467. DOI
Hammouda B., Ho D.L., Kline S. Insight into clustering in poly(ethylene oxide) solutions. Macromolecules. 2004;37:6932–6937. doi: 10.1021/ma049623d. DOI
Rumyantsev A.M., Zhulina E.B., Borisov O.V. Surface-Immobilized Interpolyelectrolyte Complexes Formed by Polyelectrolyte Brushes. ACS Macro Lett. 2023;12:1727–1732. doi: 10.1021/acsmacrolett.3c00548. PubMed DOI
Bilati U., Allémann E., Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 2005;24:67–75. doi: 10.1016/j.ejps.2004.09.011. PubMed DOI